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Abstract 
Computer are finite discrete machines, the set of  real 
numbers is an infinite continuum. So real numbers in 
computers are approximation. Rough set theory is the 
underlying mathematics. A "computer" version of 
Weistrass theorem states that every sequence, within 
the radius of error, repeats certain terms infinitely 
many times. In terms of applications, the theorem 
guarantees that the audit trail has repeating patterns. 
Examining further, based on fuzzy-rough set theory, 
hidden fuzzy relationships (rules) in audit data are 
uncovered. The information about the repeating data 
and fuzzy relationships reflect "unconscious patterns" 
of users' habits. They are some deeper "signatures" 
of computer users, which provide a foundation to 
detect abuses and misuses of computer systems. A 
"sliding window information system" is used to 
illustrate the detection of a "simple" virus attack. 
The complexity problem is believed to be controllable 
via rough set representation of data. 

I.  In troduct ion  

What are patterns? Do they exist? One could 
approach "hard" patterns from the point of view of 
algorithmic information theory. Unfortunately, 
algorithm information theory asserts that almost all 
finite sequences have no patterns [1], [2] However, 
"soft patterns "do exist. In this paper we develop two 
types of patterns, one is repeating records (within the 
radius of error), the other is fuzzy relationslfips (or 
rules) among data. In the area of intrusion detection, 
we believe users exhibit "unconscious patterns" [2], 
[31. In this paper, we continue our earlier efforts on 

the fundamental questions: Do soft patterns exist in 
audit trails? What types of patterns are there? [5], [6] 
Some experimental results based on DataLogic 
software will be reported in the future paper. 
Datalogic is a software system developed by Reduct 
Inc based on Rough Set Theory. 

Let us say few words about the "new" computing 
and mathematical concepts that will be used in this 
paper. Recently Zadeh organized a soft computing 
program at Berkeley, and spoke about soft computing 
at SIMTEC'93 [7], [8]. About the same time, Pawlak 
proposed all-embracing soft sets at RSKD'93 [9]. The 
notion of soft sets is a unified view of classical, rough, 
and fuzzy sets. Rough sets and fuzzy sets are 
complementary generalizations of classical sets. 
Fuzzy set theory allow partial memberships to handle 
vagueness, while rough set theory allows multiple 
memberships to deal with indiscernibility. According 
to Zadeh, soft computing includes, at least, fuzzy 
logic, neural network, probabilistic reasoning, belief 
network, genetic algorithms, and parts of learning 
and chaos theories. We believe that the notion of soft 
sets developed by Pawlak school are also part of soft 
computing. 

Computers are finite discrete machines, however, 
the set of real numbers is an infinite continuum. So 
the representation of real numbers in computers must 
be approximations. What is the mathematical theories 
behind such approximations. Pawlak' rough set 
theory turns out to be the right mathematical model 
for such representations [10], [11]. In this paper, first 
we examine the properties of numbers represented in 
computers from the point of view of mathematical 
analysis. Earlier, we have obtained a "computer" 
version of Weistrass theorem [51, which states that 
every sequence in a closed interval repeats, within the 
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radius of error, certain values infinitely many times. 
In terms of our applications, the theorem implies that 
in the "infinite" input stream of records of numbers or 
strings, there are repeating patterns. Note that if the 
input data are fixed length strings, the data certainly 
will repeat (since there are only finite number of 
them). The audit trail can be interpreted as an infinite 
input stream of records of a database. So the theorem 
guarantees that 

2. R o u g h  Sets and N u m b e r s  in C o m p u t e r s  

As remarked earlier, the set of real numbers is an 
infinite continuum., while computer memory is finite. 
How real numbers are represented in computers? Let 
X be an interval X-[a, b] which covers the range that 
we need. The computer's representation of X is a 
finite set of points lying between the real numbers a 
and b. 

(a) there are repeating records. 

These repeating data are not necessarily the only 
patterns. Some logical relationships among these 
input data may repeating themselves "infinitely" 
many times. So based on rough set theory again, we 
examine further the hidden repeating fuzzy 
relationships among these data. These relationships 
are often the reflection of some unconscious patterns 
of user's habits [3]. The fuzzy-rough set methodology 
allow us to find more elaborate hidden phenomena in 
the audit trail, namely, 

(b) The repeating fuzzy relationships(rules). 

The information about the "repeating records/rules" 
(unconscious habits) are often the deeper facts about 
users. Thus provide us a foundation to detect the 
abuse and misuse of computer systems. 

a =< a 1, a 2 ...... a n <b 

More precisely, X is partitioned into 
intervals 

half-open 

[a 1, al+e), [a2,a2+e) ...... [a n, b=an+e] 

such that each sub-interval si=[ai,ai+e ) is mapped 
(truncated) into the left-end point a i, where e is a 
small positive number, and a i are truncated numbers. 
Such partition defines an equivalence relation R on 
X. The pair (X, R) is called approximation space by 
Pawlak [10], [11]. The equivalence relation, x R y, 
means that x and y are truncated into the same 
number. Geometrically. it means that x and y are in 
the same sub-interval..We will call such R an 
indiscernibility relation o f  radius e. The quotient set 
X/R is a set of sub-intervals that are often represented 
by their left-end points. We will call e the radius of 
tnmcation. 

[ )[ )[ )[ )[ 
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3. Patterns and K o l m o g o r o v  Complex i ty  

Intuitively, a sequence with patterns can not be 
random; a random sequence can not have patterns. So 
we view patterns from the notion of randomness. Let 
us recall few points about randomness in algorithmic 
information theory. We will refer readers to [1], [2] 
for further details. Let x be a binary string (or 
sequence), and K(x), Kolmogorov complexity, be the 
length of shortest program that can generate the 
string x. 

K(x) = rain {length(p) : p is any conceivable program 
that generates the string x} 

where the length of a program can be, say, the length 
of bit string of executable code. 

Let f(n) be a function of n, which tends to oo as n 
goes to ,o. Let x be a string of length n, then x is said 
to be Kolmogorov random, i lK(x)  > n - f(n). It is not 
too difficult to show that for every n, there is a 
random binary sequences of length n. In fact, it has 
been shown that[2] 
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Theorem The "measure" of the set of non-random 
sequences is zero, more precisely, 

Card {x" length(x)=n and random}/2 n _< 2"f(n) 

where Card is the cardinal number. 

If we take a non-random binary sequence as sequence 
with pattern, we have 

Corollary "Almost all" finite binary sequences have 
no patterns. 

This is a rather disturbing fact for Intrusion Detection 
Systems unless one appeals to human behaviors. 
Fortunately, we have positive results on soft patterns. 

4. Soft Patterns in Sequences 

In mathematical analysis, Weistrass theorem 
states that a sequence in a closed interval X has a 
convergent subsequence, say converges to point p. In 
other words, given an e-neighborhood of p, there will 
be infinitely many terms of the sequence located 
inside the ~-neighborhood of p 

Theorem Every sequence in a closed finite interval 
has a e-neighborhood repeating subsequence. 

If  we truncate numbers with radius 2e, the sequence 
will repeat the truncated p infinitely many times. In 
fact, if  we observe that there are only finite truncated 
numbers in a bounded interval, and finite numbers of 
character strings within bounded length, then an 
infinite sequence of data in computers certainly will 
repeat some terms ilffinitely many times. The same 
consideration can be applied to high dimensional 
case, so we have 

Theorem Every sequence of records in computers has 
a repeating subsequence. 

One can view audit trail as a sequence of tuples in a 
relational database. 

Theorem If the audit trail is long enough, then there 
is repeating records. 

The repeating records are part of user's "signature". 

5. R u l e s  in  F u z z y  I n f o r m a t i o n  Systems 

Main focus in this section is on extracting rules 
from audit trails. Audit trails can be viewed as 
relational databases or better Pawlak information 
system with continuous input. We will be more 
interested in data so information systems are better 
framework than relational databases, especially, the 
entity integrity rule is hardly ever enforced in the 
audited data. Information systems have been studied 
intensively by Pawlak school [10]. The main 
contribution in this paper is extending Pawlak's 
methodology to fuzzy rough sets [13], [14]. Based on 
fuzzy view of rough sets, instead of exact rules, we 
obtain fuzzy rules. In audit trails, we need fuzzy 
rules, because of constant updating. Exact rules are 
too expensive to be updated. In our approach, each 
supporting case is weighted, that is, from the point of 
view of fuzzy set theory each case has a partial 
membership. We view an audit trail as a "dynamic" 
information system; the records are constantly 
inserted and faded away (aging). An information 
system in audit trails is a sliding "window". 

5.1. Pawlak  In fo rma t ion  Systems 

In this subsection, we use examples to illustrate 
the idea of how one can extract rules from data.  First 
we have to introduce Pawlak's information system. 

A Pawlak information system is a 4-tuple 

S = (U, T, V, p) 

where 
U is the set of objects of S. 
T is a set of attributes. 
V = the union of all sets V a of values of attributes a. 

p : U x T  ---> V, 
called description function, is a map such that 

p(x,a) is in V a for all x in U and a in V. 

Let B be a non-empty subset of T. Let x, y be two 
objects, x and y are indiscernible by B in S ,  denoted 
by 

x _= y (mod B) if p(x,q) = p(y,q) for every q. 

Obviously, _= is an equivalence relation, it will be 
called indiscernibility relation IND(B). The partition 
induced by B is called a classification of U generated 
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by B. For a non empty subset of B of T, an ordered 
pair A -- (U, B) is an approximation space. A 
definable set X will be called B-definable [10]. An 
information system (S, T, V, p) is called a decision 
table if T = C U D is a set of attributes, where C and 
D are disjoint non-empty subsets [111. The elements 
in C are called conditional attributes. The elements 
in D are called decision attributes. 

A relation/view instance is a snap shot of a 
relational database, which represents user's instant 
perception of entities or objects represented in the 
database. An information system is such an instance. 
We should note that the information systems is an 
extension of relational databases without the entity 
integrity constraint. 

Table-1 

ID# LOCATION TEST 
ID-1. Houston 1 
ID-2. San Jose I 
ID-3. Santa Clara 1 
ID-4. New York 0 
ID-5. Chicago 0 
ID-6. Los Angeles 0 
ID-7. San Franscico 0 
ID-8. Seattle 0 
ID-9. Philadelphia 0 
ID-10. Atlanta 0 
ID-11. St Louis 0 
ID-12. Cincinnati 0 
ID-13. Washington 0 
ID-14 New Orleans 1 
ID-15. Baltimore 1 
ID-16. Boston 1 
ID-17. San Diego 1 
ID-18. Palo Alto. 1 
ID-19. Berkeley 1 
ID-20. Davis 1 
ID-21. Austin 1 

POLL LEVEL NEW CASE RESULT 
0 0 11 1 1 
0 0 11 1 1 
1 1 11 1 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 10 0.7 1 
1 1 12 1 2 
1 0 12 1 2 
1 0 12 1 2 
I 0 12 1 2 
1 0 12 1 2 
1 0 23 1 3 
0 0 23 1 3 
0 0 23 1 3 
0 0 23 1 3 

From this relation, we will form two information 
systems, more precisely, two decision tables; they are 
adopted from (with changes) [12] 

Example 1. Extracting Exact Rules 

DECISION2={ID-13,ID-14,...ID-17}={2 }, 
DECISION3={ID-18,ID-19,..ID-21 }={3 } 

(5.2) For the conditional attributes (NEW, CASE), we 
consider the following equivalence relation 

(5.1) We will consider an equivalence relation 
defined by the attribute RESULT, called decision 
attribute. 

ID-i = ID-j iff 
ID-i.RESULT=ID-j.RESULT, 

We have the following three equivalence classes, 
called decision classes 

DECISIONI={ID- 1,ID-2 ..... ID-12 }={ 1 }, 

ID-i - ID-j iff 
ID-i.NEW=ID-j.NEW, ID-i.CASE=ID-j.CASE, 

Then we have the following three equivalence classes, 
called condition classes. 

#1CASEI={ID-I, II)-2, ID-3}, 
#1CASE2={ID-4, ID-5 ...... ID-12 }, 
#1CASE3={ID-13,1D-15 ...... ID-17}, 
#1CASE4={ID-18,ID-15 ...... ID-21} 
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Later, we will consider the case that each conditional 
class is a fuzzy set. 

Comparing condition & decision classes, we get 
the inclusions 

#1 CASE 1 . . . . . . . . . . . .  >DECISIONI 
# 1 CASE2 . . . . . . . . . . . .  >DECISION 1 
#1CASE3 . . . . . . . . . . . .  >DECISION2 
# 1 CASE4 . . . . . . . . . . . .  >DECISION3 

In other words, it discovers the following exact rules: 

If  NEW=l l  and CASE=l, then RESULT=I 
If NEW=10, and CASE=0.7, then RESULT=I 
If NEW=12, and CASE=l, then RESULT=2 
If  NEW=23, and CASE=l, then RESULT=3 

5.2. Fuzzy Rules in Information Systems 

Example 2. Extracting Fuzzy Rules 

In stead of giving an fuzzy information system, we 
give a fuzzy view of the information system. The 
equivalence classes are regarded as fuzzy sets, and 
hence we have derived fuzzy rules. Our results can be 
viewed as fuzzy version of [12]. The decision 
attributes be the same as in (5.1) 

(5.3) We will consider the equivalence relation 
defined by conditional attributes {TEST, POLL, 
LEVEL} 

ID-i -- ID-j iff 
ID-i.TEST=ID-j.TEST, 
ID-i.POLL=ID-j.POLL, and 
ID-i.LEVEL=ID-j.LEVEL, 

Then we have the following three condition classes 

#2CASEI={ID-1, ID-2, ID-19, ID-20, ID-21 }, 
#2CASE2={ID-3 }, 
#2CASE3={ID-4,ID-5 ...... ID- 13 } 
#2CASE4={ID-lg,ID-15 ...... ID-21} 

Comparing the condition classes with decision 
classes, we found 

(5.3.1) one exact inclusion 

#2CASE2 c (0  ) DECISIONI, 

So, it discovers the exact rule 

If TEST=l,  POLL=l, and LEVEL=I, 
then RESULT=I . . . . . . . . . . . . . . . . . . . . .  (RI) 

(5.3.2) fuzzy inclusions (see Appendix 7.3) 

The equivalence class is a classical set, however, 
we will treat it as a fuzzy set, namely, it is represented 
by its characteristic function with real values in 0 or 
1. The fuzzy inclusions are represented by the 
inequalities of membership functions. Further, we 
will allow certain errors as long as they are within the 
radius e of tolerance(errors). In fact, we will call such 
inclusions e-fuzzy inclusions, denoted by c e [61, In 

this example, we choose e=0.1. Then, we have an e- 
fuzzy inclusion other than 5.3.1 

#3CASE3 c_(0.1 ) DECISION1. 

To see the s-fuzzy inclusion, write 

Y=DECISION1, 
X=#3CASE3, 
Z=XcTY={ID-4,ID-5 ...... ID-12} 

First note that if Z=X, then X c_ Y, so if we want to 
show that X c (0.1) Y, we have to show that Z and 
X are nearly equal. Let FZ =FXc'~FY, FW=FXuFY, 
which express the sets, Z=Xc-~Y, W=XwY, in terms 
of characteristic functions (membership functions). 
So we have to show that 

(Eq-l) 
u21 
]E IFX(u)/Card(FW) -FZ(u)/Card(FW)l ~ e 

u--u 1 

or equivalently 

(Eq-l') 
u21 
E IFX(u) -FZ(u)[ _< e • Card(FW) 

u--u 1 

u21 
E IFX(u)/13 -FZ(u)/131 =1/13 < e 

u=u 1 

where (1) u i = ID-i, i=1,2,..21, are the records 
(2) u is a variable that varies through the 

records, Ul, u 2 ...... u21 
(3) Card is the (fuzzy set theoretical) 

cardinal numbers [15]. 
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The left hand-sided sum (Eq-1) is called deviation 
number. So, the g-fuzzy inclusion discovers the 
following approximate rules 

If TEST=0, POLL=l, and LEVEL=I, 
then (approximately) RESULT=I . . . . . . .  (R2) 

In conclusion, we see that the exact view gives us an 
exact rule, while the fuzzy view give us two fuzzy 
rules (one exact, one fuzzy). Here we would like to 
comment that one could take the attitude that the two 
fuzzy membership functions FX and FZ are the 
different representations of the same fuzzy set (both 
are admissible membership functions). In next 
computation, we will take the aging into account. 

5. 3 Sliding Window Informat ion  System 
(SWIS) 

Since an audit data has a continuous input, we 
have to consider the ages of the data. We will 
consider an information system of sliding window, 
data are continuously come and faded(aging) away. 

Aging Rule: For simplicity, we assume the record id 
is numbered by the time of its arrival. For example, 
ID-1 arrived at time 1 and ID-2 arrived at time 2, and 
so forth. The aging rule is described by an aging 
function which is function of time. In this example, 
the "age" of the newest record is 1, the next 20 
records are 0.9, the 21st (in reverse chronological 
order) is 0.1, the 22nd record and so on are 0. 

We will present two examples here to illustrate 
the idea 

SWlS-Example 1. Extracting Rules from a Sliding 
Window Information System (SWIS). A SWIS is a 
fuzzy information system which consist of the pairs of 
record ids (from Table-l) and their ages (the degrees 
of memberships) 

(ID-I, 0.0) (ID-2, 0.1), (ID-3, 0.9), (ID-4, 0.9) ... 
(ID-21, 0.9), 

together with two new data: 
(ID-22, 0.9), (119-23,1) 

The new data are the tuples 

(ID-22, San Macro, 1, 0, 0, 23, 1, 3),and 

(1/)-23, Hayward, 1, 0, 0, 23, 1, 3) 

The decision attributes are the same as in (5.1) but 
the values may have changed. Use the same 
equivalence relation, we have the following three 
equivalence classes, called decision classes 

DECISIONI={ID- 1,ID-2 ..... 1/)-12}={ 1 }, 
DECISION2={ID-13,ID-14,...ID-17 }={2 }, 
DECISION3 ={ ID- 18,ID- 19,.ID-21, 

ID-22, ID-23}={3} 

(5.3.3) As before, we consider the equivalence 
relation defined by conditional attributes {TEST, 
POLL, LEVEL}, we have the following three 
condition classes 

#3CASEI={ID-1, ID-2, ID-19, ID-20, 
119-21, ID-22, ID-23 }, 

#3CASE2={ID-3}, 
#3 CASE3={ ID-4,ID-5 ...... ID- 13 } 
#3CASE4={ID-18,ID-15 ...... ID-21 } 

Again, let g=0.1. Then, we have a new g-fuzzy 
inclusion other than (5.3.1) 

#3CASE3 -c(0.1) DECISION1. 

To see the g-fuzzy inclusion, write 

Y=DECISION1, 
X=#3CASE3, 
Z=XnY={ID-4,ID-5 ...... ID-12} 

Let FZ =FXcTY, and FW=FX~FY, which express 
Z=XcTY and W=XuY in terms of aging functions 
(membership functions). In such case the value of 
FX(u) in (Eq-1) is the "age" of the record u. Note 
that Card(FW) = 0.9"11=9.9. We can compute the 
formula of (Eq-1) as follows: 

u23 
Z IFX(u)g(u)/Card(FW)-FZ(u)g(u)/Card(FW)[ 

u---u I 

u23 
E IFX(u)g(u)/9.9 -FZ(u)g(u)/9.91 =0.9/9.9< e 

u--u 1 

Note that FX(u)g(u) is the membership function of 
the record u. Recall that the left-most sum is the 
deviation number. If the deviation number of a rule 
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is fluctuated within the tolerance, such as ~, and other 
"signature" data (repeating records) are unchanged, 
then the system is normal, otherwise it may signal 
that there are intrusions. Full experimental results 
will be reported in the near future. For now, let us 
examine the case when there is an intrusion. 

SWlS-Example 2. Blind-append-virus. In this 
example, we examine the case when a virus blindly 
repeat "infinitely" many times of a user's command. 
In other words, the same record repeatedly enter the 
audit trail. Let us first recall the aging rules. The 
"age" of the newest record is 1, the next 20 records 
are 0.9, the 21st (in reverse chronological order) is 
0.1, the 22nd record and so on are 0. 

Let a fuzzy information system be a set of 
following pairs 

(ID-1, 0.0) (ID-2, 0.0) . . . .  (ID-16, 0.1) 
(ID-17, 0.9) ...... (ID-36,0.9) (ID-37,1) 

The new data from ID-22 to ID-28 are the "s,'une": 

(ID-22, San Macro, I, 0, 0, 23, 1, 3) 
(ID-23, 1, 0, 0, 23, 1, 3) 

(ID-37, 1, 0, 0, 23, 1, 3) 

Proceed as before, the decision classes 

DECISION 1={ ID- 1,ID-2 ..... ID- 12 }={ 1 }, 
DECISION2={ID-13,ID-14,...ID- 17}={2 }, 
DECISION3={ID-18,ID-19,..,ID-37}={3} 

(5.3.3) The condition classes are 

#4CASEI={ID-1, ID-2, ID-19, ID-20, 
ID-21 ...... ID-37}, 

#4CASE2={ID-3 }, 
#4CASE3={ID-4,ID-5 ...... ID-13 } 
#4CASE4={ID-18,ID-15 ...... ID-21} 

The e-fuzzy inclusions are 

(Inc-1) #3CASE3 c(0.1 ) DECISION1. 

(Inc-2) #3CASE1 c (0  .1) DECISION3 

Note that Card(FW) = 0.0, so the inequality may not 
be true 

u37 
Y. IFX(u)g(u) -FZ(u)g(u)l ? e*Card(FW)=0.0 

u=u 1 

Note that FX(u)g(u) is the membership function of 
the record u. (Eq-l') no longer stay within the radius 
of tolerance. The fuzzy inclusion is no longer true. 
So the old fuzzy rule disappears from the sliding 
window. Moreover, a new rule is appearing. Write 
D=DECISION3, C=#3CASE1, Z=CcTD={ID-4, ID- 
5 ...... ID-12}. Note that Card(FW) = 0.9"19+1=18.1 

u37 
Y. IFe(u)g(u)/Card(FW) -FZ(u)g(u)/Card(FW)l 

u--u 1 

u23 
Z [FC(u)g(u)/18.1 -FZ(u)g(u)/18.11 = 0.9/18.1 < e 

u---u 1 

Note that FC(u)g(u) is the membership function of 
the record u. (Eq-1) satisfy the radius of tolerance. So 
a new rule (or a new pattern) is forming. The user's 
"signature" changed, so an intrusion is occurring. 
We will not address the complexity problem. 
However, as we have discuss in the beginning part of 
this paper, we have shown tha t ,  based on rough set 
theory, there are only finitely many different records 
in a sequence of records. We believe that the 
complexity problem can be controlled via rough set 
representation of data. We will discuss this in near 
future. 

6. Appl icat ions  to A u d i t  Trails  

From Section 4, we are assured that, we can find 
the repeating records for each user. We could keep a 
log on the following information: 

(a) The repeating records, and its frequency, and 
occurrences 

Co) The fuzzy rules in the audit data. 

Now, as the data are continuously collected and faded 
away (aging), the sliding window slides. If the fuzzy 
rules stay constant, and deviation numbers fluctuate 
within the tolerance level, then the system is normal. 
Otherwise, any significant change on the data (a) or 
(b) signal an abuse or misuse of the system. So the 
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fuzzy-rough set methodology provides us a foundation 
for anomaly detection. 

7. A p p e n d i x -  R o u g h  Sets  

7.1. Equivalence Relations 

A binary relation is an equivalence relation iff it 
is reflexive, symmetric and transitive. For every 
equivalence relation there is a partition and vice 
versa. Let R be a given equivalence relation over U. 
The family of all equivalence classes is a set, it is 
called quotient set and denoted by U/R. There is a 
natural projection from U to U/R. 

NQ: U . . . . . .  > U/R. 

defined by NQ(u) = [u] (read as natural quotient), 
where [ul is the equivalence class containing u. We 
should note here that [u] has dual roles; it is an 
element, not a subset, of U/R, but it is a subset of U. 
In [2], elements in U/R are called names of 
equivalence classes. Let us denote the complete 
inverse image of NQ by 

INV.NQ(q) = {u : NQ(u) = q} =[u] 

or more generally, for a subset X of U/R 

INV.NQ(X) = {u : NQ(u) is in X} 

Note that INV.NQ(q) is an equivalence class and 
INV.NQ(X) is a union of equivalence classes. 

Example 1. Let Z be integers. Let R denote the 
equivalence relation called congruence mod m. That 
is, 

x R y if x - y is divisible by m. 

Let m = 4. Then the equivalence classes are 

[01 = {... -8, -4, O, 4, 8... } 
[11 = {... -7, -3, I, 5, 9 , .}  
[2] = {... -6, -2, 2, 6, 10,.} 
[31 = {... -5, -1, 3, 7, 11,.} 

In other words, [01, [1], [2], [3] is a partition for the 
integers Z. The quotient set of tiffs equivalence 
relation is denoted by Zm. Z4 = {[0], 111, [21, [31}. 

7.2. Rough Sets 

Let U be the universe of discourse. Let RCol be a 
finite Collection of equivalence Relations R over U. 
In general we will use Pawlak's terminology and 
notations. An ordered pair 

K=(U, RCol) 

is called a knowledge base over U (In most cases, 
there is only one equivalence relation R in RCol, so K 
= (U, R)). A subset X of U is called a concept. For an 
equivalence relation R, an equivalence class is called 
R-elementary concept, R-elementary set, R-basic 
category or R-elementary knowledge (about U in K). 
The empty set is assumed to be elementary. A set 
which is a union of elementary sets is called R- 
definable or R-exact. A finite union is called 
composed set in U. The set of equivalence classes is 
the quotient set U/R. There is a neat correspondence 
between the elementary sets of U and the quotient set 
U/R. Each elementary set in U corresponds to an 
element in U/R. 

Let SCol be a nonempty SubCollection of RCol. 
The intersection of all equivalence relations in SCol, 
denoted by IND(SCol), is an equivalence relation and 
will be called an indiscernibility relation over SCol. 
The quotient set U/IND(SCol) will be abbreviated by 
U/SCol. Equivalence classes of IND(SCol) are called 
basic categories (concepts) of knowledge K. A 
concept X is exact in the knowledge base K if there 
exists an equivalence relation R in IND(K) such that 
X is R-exact, where IND(K) is the collection of all 
possible equivalence relations in K, that is, 

IND(K)={IND(SCol): for all SCol's in RCol}. 

For each X, we associate two subsets, upper and lower 
approximation: 

L_APP(X)= {u : iul is a subset of X} 
U_APP(X)= {u : [u] and X has non-empty 

intersection} 

A subset X of U is definable iff U_APP(X) = 
L_APP(X). The lower approximation of X in U is the 
greatest definable set in U contained in X. The upper 
approximation of X in U is the least definable set in U 
containing X. 

As Pawlak pointed out that the equivalence 
classes form a topology for U (it will be called Pawlak 
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topology). So we can rephrase the upper and lower 
approximations as follows: 

L_APP(X)= Interior point of X 
= The largest open set contained in X 

U_APP(X)= Closure of X 
= The smallest closed set containing X. 

Rough set theory serves two functions: one is a 
generalization of the equality which leads to 
classification, the other is the approximation in 
Pawlak topology. 

8. Appendix -Fuzzy Sets 

The theory of fuzzy sets deals with subsets where 
the membership function is real valued, not Boolean 
valued. Intuitively the fuzzy subsets have no well 
defined boundaries in the universe of discourse. Let 
U be the universe of  discourse. Then a fuzzy set FX is 
an ordered pairs: 

FX = (U, FX) 

where FX: U ---> [0,1] is a function.. I f  both FX(0) 
and FX(1) are nonempty, we call the fuzzy set normal 
[16]. Note that FX is a fuzzy set and FX0 is a 
membership function of FX. When context is clear, 
we may use FX both as the fuzzy set or the 
membership function. I f  the membership function 
assumes only real values 0 and 1, the fuzzy set is a 
classical set. An element x is said to be fuzzily 
belonged to FX if FX(x)>0 and x is said to be 
absolutely not belong to FX if FX(x)=0. 

8.1. Quasi Classical Sets 

Let X be a classical set. We would like to 
consider the membership function 

c 'X:  U . . . . . .  > [0,1] 

defined by (c*X)(u) = c*(X(u)) for constant c, where 
* is the multiplication of real numbers. Then c*X is a 
special type of fuzzy set, we will call it quasi 
classical set. The meaning of such quasi classical set 
is that an object x in U is either not in X or the degree 
(possibility, probability) of its membership is c. We 
also would like to consider the "union" of quasi 
classical sets: 

(a*X U a*Y)(x) = MAX (a*X(x), b*Y(x)) 

The union of quasi-classical sets are the so-called 
"step functions" 

8.2. Fuzzy Rough Sets 

Let R be an equivalence relation over U. Let 
FCoI(U/R) be the Collection of all Fuzzy sets over 
U/R. Then the natural projection induces a subfamily 
of fuzzy sets on U. 

NQ FX 
U- . . . . .  > U/R . . . . .  > [0,1 ] 

SubFCoI(U) = {NQ*FX: FX is in FCoI(U/R)} 

where * is the composition of functions. This 
subfamily SubFCol is the family of  all R-exact fuzzy 
sets. SubFcol is precisely, the "step functions" We 
would like to have more explicit description of this 
SubFCol of fuzzy sets on U. Let the membership 
function of the equivalence classes (R-elementary 
sets) be 

ECi: U . . . . . . . . . . . .  > [0, 1], i = 1,2,..n. 

Since ECi(i-th equivalence class) is a classical set, its 
membership function assumes 0 and 1 only; it may be 
referred to as classical equivalence class. A fuzzy set 
in U 

FX: U . . . . . . .  > [0,1l 

is R-definable i f fFX is in SubFCoI(U). That is, FX is 
constant function on every EC i. In other words, FX is 
a linear sum of classical sets. Using functional 
notations, FX is R-definable iff 

FX = Cl*EC 1 + c2*EC 2 + ..... cn*EC n. 

The R-definable fuzzy set may also be called R-exact. 
A fuzzy set (concept) is R-undefinable iff it is not R- 
definable; it may also be called R-inexact. For each 
FX, we associate two subsets, upper and lower 
approximation: 

U_APP(FX)= inf{FY: FX _< FY for all FY in CQE} 
L_APP(FX)= sup{FY: FX ~ for all FY in CQE} 

Such pairs are called fuzzy rough sets. 
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8.3 Real World Fuzzy Sets 

Let U = {Ul,U 2 ...... un}be the universe. For a 
given small number e (called radius of tolerance). Let 
FX and FY be two membership functions. Then both 
functions are said to be representing the same real 
world fuzzy set, if for given e, 

u n 
Z IFX(u) -FY(u)I/ICard(FW)[ < 

u---u 1 

where FW= FXuFY, and Card(FW) is the cardinality 
of fuzzy set FW. Roughly, the "total difference" is 
relatively small compared to "the total measure. 
However, this admissibility is n o t  an equivalence 
relation.. 
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