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Abstract 

The paper presents an attempt to build a mathematical 
foundation for  modeling secure computer systems in a 
fitzzy environment. It contains a brief  tutorial on fuzzy set 
theory, an introduction to abstract fuzzy systems theory, 
and offers a fuzzy version o f  the basic security theorem in 
the fi'amework o f  the Bell-LaPadula model. 

1 Introduction 

The Joint DoD and CIA Security Commission proposes 
a new security paradigm in which we no longer look for 
perfect security, but settle for a level of security 
appropriate to realistic threat estimates. Fuzzy set theory is 
appropriate to model the new reality because it provides 
rigorous methods to handle many possible degrees of 
security. 

Formal methods and models are inherent components 
of the computer security paradigm because they provide 
for provable security. It is possible to develop formal 
models for computer security in a fuzzy environment and 
use fuzzy logic techniques to establish provable security. 
Not necessarily all components of such models must be 
fuzzy, but if we want to face the reality of computer 
security, we have to have at least some fuzziness present 
in formal models. 

The main goal of this paper is to build a mathematical 
foundation for modeling computer security in a fuzzy 
environment. In their original publications [1, 2], Bell and 
LaPadula developed a basic model of a secure computer 
system based upon general systems theory. We intend to 
follow their approach and develop a similar model using 
ideas, language, and techniques of the contemporary fuzzy 
set theory. 

Fuzzy set theory and its branch, fuzzy logic, use a 
variety of models for basic set operations and logical 
connectives. All these models employ triangular norms (t- 
norms) and conorms ([4]) and negation functions as tools 

for modeling connectives AND, OR and negation NOT. 
More than often the choice of a particular representation is 
made ad hoc without any justification. Only very recently 
such an issue as robustness of fuzzy logics was addressed 
in [3]. In Section 2 we present an original approach to the 
theory of t-norms which based on a "parametrization" of a 
particularly important class of t-norms. This approach will 
allow for a greater flexibility in our future studies and help 
verifying secure computers models in a fuzzy 
environment. 

Section 3 presents basic concepts of fuzzy set theory. 
The main goal of this section is to introduce language and 
notations that will be uniformly used in these studies. We 
pay a special attention to fuzzy orderings in this section, 
because of their potential role in developing Multipolicy 
Machine Model in a fuzzy environment. 

Abstract systems theory is a basis of the Bell-LaPadula 
model. In Section 4 we present elements of abstract fuzzy 
systems theory. This section contains mostly original 
material not found in the pertinent literature. 

Finally, in Section 5, the Bell-LaPadula model in a 
fuzzy environment is described, a fuzzy version of the 
simple security property is formulated, and the Basic 
Security Theorem is proven. A totally new approach to 
trusted computer systems unfolds in this new paradigm. 
We no longer look for hundred percent secure states but 
rather consider any state to be secure to some degree. 
Then a system is considered to be secure if, in its evolution 
from the initial state, the security levels of states form an 
nondecreasing sequence. 

2 Triangular norms and conorms 

Functions 

M ( x ,  Y) = min{z, y}, M*(z ,  y) = max{z, y}, 
and N ( z )  = 1 - z 

are standard models for logical connectives AND, OR, and 
negation NOT in fuzzy set theory. These functions are 
examples of triangular norms (t-norms), conorms 
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(t-conorms), and negation functions, respectively. The 
contemporary fuzzy set theory employs a variety of t- 
norms, t-conorms, and negation functions in modeling 
logical connectives. In this section we describe particular 
classes of t-norms, t-conorms, and general negation 
functions that are most frequently used in applications. An 
important notion of a residual implication is also 
introduced. 

A t-norm T is defined as a function T: [0, 1] 2 --* [0, 1] 
satisfying the following properties: 
(i) T(x,  1) = x identity 
(ii) T(x,  y) <_ T(z ,  u), if x _< z and y <_ u monotonicity 
(iii) T(z ,  y) = T(y, z) commutativity 
(iv) T(x,  T(y,  z)) = T(T(x ,  y), z) associativity 
for all :c, y, z, u E [0, 1]. 

Any t-norm T satisfies inequality T(x,  y) < M(z ,  y) 
for all z, V E [0, 1]. Thus, function M is an extreme case 
of a t-norm. 

An Archimedean t-norm is a t-norm satisfying 
(v) T ( z ,  z)  < z 
for all x in (0,1). Note, that M is not an Archimedean t- 
norm. We say that a t-norm T has zero divisors if it 
satisfies 
(vi) T(x,  V) = 0 
for some positive x and y. 

A 'canonical' example of a t - norm with zero divisors 
is given by the Lukasiewicz t - norm 

W(x ,  y) = max{z + y - 1, 0}. 
A 'canonical' example of a t -  norm without zero 

divisors is given by the product t - norm 
l ] ( z ,  9)  = x -  9. 

We call a strictly increasing function ¢ form the unit 
interval onto itself an automorphism of the unit interval. 
Any automorphism of the unit interval is a continuous 
function satisfying boundary conditions ¢(0) = 0 and 
¢(1) = 1. 

The following two theorems (see [6] and [7]) show that, 
in a sense, any continuous Archimedean t-norm is 'sinfilar' 
to one of the two 'canonical' t-norms. 

Theorem 1. A t - n o r m  T is a continuous 
Archimedean t -  norm with zero divisors if and only if 
there exists an automorphism ¢ of the unit interval [0, 1], 
such that 

T(z,  Y) = w e (  =, V) = ¢~(W(¢(=) ,  ¢(y))). 
Function ¢ from Theorem 1 is called a W-generator of 

T. 
Theorem 2. A t -  norm T is a continuous 

Archimedean t - norm without zero divisors if and only if 
there exists an automorphism ¢ of the unit interval [0, 1], 
such that 

T(x,  Y) = 17¢( =, Y) = ¢ 4 ( ¢ ( z )  ¢(Y)). 

Function ¢ from Theorem 1 is called a 17-generator of 
T. 

A negation function N is defined as a strictly 
decreasing function N: [0, l] ~ [0, 1] satisfying 

N ( N ( z ) )  = z, for all z 6 [0, 1]. 
Thus defined negation function is a continuous function 

satisfying boundary conditions N(0) = land N(1) = 0. 
A 'canonical' example of a negation is given by 

N ( z )  = 1 - z. 
Theorem 3. ([18]) N is a negation function if and only 

if there exists an automorphism ¢ of the unit interval, 
such that 

N ( z )  = N ¢ ( z )  = ¢ 1 ( 1  - ¢ ( z ) ) .  

Function ¢ from Theorem 2 is called a generator of N. 
A t-conorm S is defined as a function S: [0, 1] 2 --* [0, 1] 

satisfying the following properties: 
( i) S(O, z)  = x 
(ii) S (x , y )  < S(z ,u ) ,  i f x  __< z andy  < u 
(ii i) s(=, y) = s(y, =) 
(i.) s(=, s(y, z)) = s(s(=, u), z) 
for all z, y, z, u e [0, 1]. 

Any t-conorm S satisfies inequality 
S( z , y )  > M*(z ,y )  for all z , y  ~ [0, 1]. Thus, function 
M* is an extreme case of a t-norm. 

Let T and N be a t-norm and negation function, 
respectively. Then 

T*(x, y) = N ( T ( N ( x ) ,  N(y))  

defines a t-conorm and any t-conorm can be represented in 
this way. 

If T = W and N(x)  = 1 - x, then the corresponding t- 
conorm W* is given by 

W ( , y) min{z + y, 1}. 
For T = H and N ( x ) =  1 -  x the t-conorm 17" is 

given by 
17" (x, y) = z + y - zy. 

For any t-norm T we h a v e T  < M < M* < T*. In 
particular, 

W < I-I < M < M* < 17" < W*. 
A triple < T, T*, N > ,  where T* is given by the 

above formula, is called a De Morgan triple in fuzzy set 
theory. Suppose ¢ is a W- or/-/-generator of a t-norm T 
and the same ¢ is a generator of a negation function N. 
The automorphism qb can be regarded as a 'parameter' in 
our model < T, T*, N > for logical connectives and a 
negation function. 

Suppose ¢ is a W-generator of T. Then elements of the 
De Morgan triple have the following representations 

T(x,  y) = ¢'X(max{¢(x) + ¢(y) - 1, 0} ), 
T*(x, y) = ¢ ' l (min{¢(z)  + ¢(y), 1} ), 
g ( x )  = ¢1(1 - ¢(x)). 
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If ¢ is a //-generator, then we have a different 
'parametrization ° 

T(x, v) = ¢1(¢(x)  ¢(v)), 
T*(x, V) = + ¢(V) - ¢(x) ¢(V)), 
N(x) = ¢'1(1 - ¢(x)). 

By using the above representations, one can construct 
families of t-norms at will. For instance, for a real 
parameter p, equations 

Tp(x, y) = (max(x ~ + yP - 1, 0)) lip , p # 0 

To(x, y) = H(x, y) = xy 
define a family of t-norms that have no zero divisors if and 
only if p _< 0. 

Let T be a t-norm. Then R-implication (where R stands 
for "residual" [5]) is defined by 

I(z, Y) = sup { z I T(x, z) <_ y }. 

Theorem 4. Suppose T is a continuous Archimedean t- 
norm with zero divisors. Then 

I(z, y) = Ca(rain{1 - ¢(x) + ¢(y), 1}) 

for all x, y E [0, 1], where ¢ is a W-generator of T. If T 
has no zero divisors, then 

I(z, y) = rain ¢ - - ~ ,  1 

for all z, y ~ [0, 1], where ¢ is a H-generator o fT .  
It is easy to verify that I satisfies the following 

conditions: 
I(1, x) = z, 
I(x,y) = 1 if and only if x_< y, 
I ( x , y )  _< I ( x , z )  if y_< z, 
I(x,y) >_ I(z,y) i f x < z .  
The approach to the theory of triangular norms 

presented in this section has been successfully applied to 
modeling preference relations and collective decision- 
making in a fuzzy environment (see [61, [71, [81). 

3 Elements of fuzzy set theory 

The goal of this section is to introduce terminology and 
notations. In what follows I denotes the unit interval [0, 1], 
x A y = rain{x, y}, and x V y = max{x, y}. 

Let U be a set. A fi~zzy set A on U is completely 
defined by its membership function A: U-* ~. In other 
words, we do not distinguish between fuzzy sets and their 
membership functions. The set U is often called the 
universe of discourse or the domain of A. 

A fuzzy set A is a subset of a fuzzy set B (A c_ B) iff 
A(z) < B(x) for all x e U. Basic operations of 
intersection, union, and complement are defined in terms 
of membership functions as follows 

(ANB)(x) = A(x) A B(x), 
(AUB)(x) = A(x) V B(x), 

= 1 - A ( x )  

for all x E U. (Occasionally, t-norms, t-conorms, and 
negation functions are employed in these definitions.) 

The set ~ ( U )  = I v of all fuzzy sets with domain U is a 
complete completely distributive lattice. The set 
79(U) = {0, 1} '~ of all subsets of U is the maximal 
Boolean sublattice of ~'(U). These sets are called crisp 
sets if one wants to distinguish them from fuzzy sets. 

There are different definitions of the difference of two 
subsets of X in the classical set theory. All of them are 
equivalent to the definition of the difference in the 
Boolean algebra 79(X). Since ~ ( X )  is not a Boolean 
lattice, it is possible to introduce differences between fuzzy 
sets in a number of different ways. Thus defined 
differences are not the same in .T(X) but coincide with 
the standard one when restricted to 7:'(X). 

Here we employ the following definition of the 
difference in 7~(X). 

B - A = M { B ' I B '  C _ B , B ' U A = B U A } ,  (3.1) 

where A and B are subsets of X. This definition is 
equivalent to the standard one 

B - A =  {x E B I x  ¢ A}, 

but does not use elements of X explicitly. The main 
advantage of our definition is that it can be used exactly in 
the same form in fuzzy set theory. In terms of membership 
functions, (3.1) can be written in the following form 

( B -  A)(x) = inf {B'(x) IB'(x ) < B(x), (3.2) 
x E X  

B'(x) V A(x) = B(x) V A(x)}. 

Note, that in the particular case when B = X, (3.2) 
defines so-called dual intuitionistic negation [17]. 

We define operation e on the unit interval [ 0, 1] by 

a,  i f a  > / 3  
a e / 3 =  O, i r a < / 3  

Then (3.2) can be written as 

(B - A)(x) = B(x) e A(x) (3.3) 

for all x E X. 
We shall need two properties of the difference defined 

by (3.3). First, we have 

(B - A) O A = B O A. (3.4) 

Second, 

(A - C) U (B - C) = (A U B) - C. (3.5) 
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Let U = 11Ui be a Cartesian product of n sets. A 
i=1 

fuzzy set R with the domain U is called a fuzzy n-ary 
relation. In particular, a fuzzy binary relation on X x Y is 
a fuzzy set with the domain X × Y. Suppose R and S are 
fuzzy binary relations on X x Y and Y × Z, respectively. 
The composition of R and S is a fuzzy binary relation on 
X × Z is defined by 

(R o S)(z, z) = sup R(z, y) • S(y, z) 
y6Y 

for all x e X, z E Z, where,  is a binary operation 
given by a t,norm. By the associativity property of t- 
norms, thus defined composition is also associative. 

Let R be a fuzzy binary relation on X x Y. The inverse 
binary relation R -1 is a fuzzy binary relation on Y x X 
given by R -1 (z, y) = R(y, x). It enjoys usual properties 

(.R o S )  - 1  = S -1  o R - I  and (R- l )  -x = R. 

Suppose A and B are fuzzy sets with domains X and 
Y, respectively, and let R be a fuzzy binary relation on 
X x Y. The image of A under R is a fuzzy set A o R with 
the domain Y defined by 

(A o R)(y) = sup A(x) • R(x, y). 
z6X 

Similarly, the inverse image of B under R is given by 

(n  o B)(z) = supR(x,y) • B(y). 
yEY 

If R is a fuzzy binary relation with domain X x X, we 
say that R is a fuzzy binary relation on X. We define the 
basic properties of fuzzy binary relations as follows ([ 16]). 

Reflexivity: R(x, x) = 1, Vz E X. 
Irreflexivity: R(x, x) = O, Vx 6 X. 
Symmetry: R(x, y) = R(y, x), Vx, y E X. 
Asymmetry: R(x, y) A R(y, x) = 0, Vx, y 6 X. 
WeakAsymmetry: R(z,  y) A R(y, x) < 1, Vz, y E X. 
Transitivity: R(z,  z) > R(x, y) * R(y, z), 

for all z, y, z E X.  
Negative Transitivity: R(x, z) <_ R(x, y) • R(y, z), 

for all x, y, z e X. 
Completeness: R(x, y) V R(y, x) > O, Vz, y E X. 
Strong Completeness: R(z,  y) V R(y, x) = 1, 

for all z, y ~ X. 
Note that the transitivity property means that 

R o R C_ R. If R is a reflexive and transitive fuzzy binary 
relation then R o R = R. 

These and other properties of fuzzy binary relations are 
used to introduce special classes of binary relations. For 
instance, a similarity relation (fuzzy equivalence relation) 
is defined as a reflexive, symmetric, and transitive fuzzy 
binary relation. Let S be a similarity relation on X. A 
similarity class of a 6 X is a fuzzy set S[a] defined by 

S[a](x) = S(a,x). Similarity classes of S for a fuzzy 
partition of X and, conversely, fuzzy partitions generate 
similarity relations on X (see [16]). 

In general, a fuzzy ordering is a transitive fuzzy binary 
relation with some kind of asymmetry property. The 
following classes of fuzzy orderings play an important role 
in modeling preference structures. A fuzzy binary relation 
R o n X i s a  

Partial Ordering if R is asymmetric and transitive, 
Weak Ordering if R is asymmetric and negatively 

transitive, 
Linear Ordering if R is a complete weak ordering, 
Quasi-Transitive Relation if R is strongly complete and 

negatively transitive, 
Complete Quasi-Ordering if R is strongly complete and 

transitive, 
Reflexive Linear Ordering if R is strongly complete, 

weakly asymmetric, and transitive. 
The following table presents the hierarchy of fuzzy 

ordering and reflects the duality ([16]) between 
asymmetric and strongly complete fuzzy binary relations. 

Partial Orderings Quasi-Transitive Relations 
Weak Orderings Complete Quasi-Orders 
Linear Orderings Reflexive Linear Orderings 

A fuzzy function F with domain X and codomain Y is 
a fuzzy binary relation on X × Y satisfying 

(i) for any x e X  there exists y e Y  such that 
F(z, y) = 1, and 

(ii) if F(z, y ' )= F(x, y ) =  1, then y ' =  y, for any 
x E X .  

A fuzzy set A on X is said to be normalized if there is 
x E X such that A(z) = 1. It is a single-peaked set if 
there is only one x with this property. The value F(x) of a 
fuzzy function F is the image of a singleton {x}, i.e., 
F(x) is a fuzzy subset of Y defined by F(x)(y) = F(x, y). 
It follows from (i) and (ii) that all values of a fuzzy 
function are single-peaked fuzzy sets on Y. 

A fuzzy function F is one-to-one if 
F(x', y) = F(x, y) = 1 implies x' = z for all y E Y. F is 
onto if, for any y E Y ,  there is x e X  such that 
F(x, y) = 1. The notions of image and inverse image for 
fuzzy functions are the same as those for fuzzy binary 
relations. 

The concept of possibility developed by Zadeh in [9] 
plays an important role in fuzzy set theory. A very good 
mathematical treatment of the possibility theory based on 
measure theory is given in [10]. We use this concept only 
to give an alternative interpretation for other concepts that 
are introduced later. 
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Let Y be a variable taking values in X; then a 
possibility distribution, H~,, associated with Y may be 
viewed as a fuzzy constraint on the values that may 
assigned to Y. Such a distribution is given by a possibility 
distribution function F: X ~ [0, 1] which associates with 
each z • X the "degree of ease" or the possibility that Y 
takes z as a value. Obviously, F is just a fuzzy set on X; it 
is usually assumed that it is a normalized fuzzy set. 

4 Elements of abstract fuzzy systems 

Although some authors, including Lotfi Zadeh, have 
investigated general systems in a fuzzy environment (see, 
for instance, [11] and [12]), %.. there is virtually no work 
done on mathematical theory of general fuzzy systems" 
(George Klir, personal communication.) Since we attempt 
to develop an approach to computer security in a fuzzy 
environment similar to the Bell-LaPadula model which is 
based on mathematical general systems theory, we present 
in this section elements of abstract fuzzy systems theory 
including such important notions as fuzzy input, output, 
and fuzzy state. Basically, we follow here the ideas 
presented in [13] and [14] and begin with introducing 
basic notions in the nonfuzzy case. 

Suppose X and Y are two abstract sets which are 
usually considered as inputs and outputs of the system. An 
abstract (terminal) system is a proper binary relation 
S c X x Y .  We use the same symbol S for the 
characteristic function of this binary relation. For a given 
x • X the set of all y • Y such that xSy (or, equivalently, 
S(z, y) = 1) is the set of all possible outputs for a given 
input z. Boolean valued function S(x, y) may be viewed 
then as a crisp possibility distribution on outputs. It is 
assumed that the domain of S is X, i.e., for any z • X 
there exists y • Y such that xSy. If C is a set and 
function R: C x X -* Y satisfies 

xSx ¢* (3c)[n(c,z) = Y], 
we say that R is a global response function and C is a 
state object. 

The notion of state is very important in systems theory. 
In traditional approaches this notion plays a primary role 
along with input/output sets and various auxiliary 
functions. The abstract systems theory ". . .  starts from the 
input/output pairs ... and derives the concept of state as a 
secondary concept." ([14]) The following is Theorem 1.1 
in [13]. 

Proposition. For each abstract system S c X × Y 
there exists a global response function R. 

For each given c • C, function R may be viewed as a 
binary relation Rc on X × Y. Then the condition defining 
global response function can be written in the following 
form 

s=URo 
eeO 

in the framework of fuzzy set theory we develop the 
following approach to abstract fuzzy systems theory. 

An abstract fuzzy system is a fuzzy binary relation S on 
X x Y. We assume that the domain, S o Y, of S is X, 
i.e., for any z • X there is y • Y such that S(z,  y) = 1. 
A fuzzy input (fuzzy output) is a fuzzy subset o f X  (Y). We 
shall assume that fuzzy inputs and outputs are normalized 
fuzzy sets. The image O of a fuzzy input I under S may 
be viewed as a fuzzy set of all possible outputs 
corresponding to I. In our notations 

O = I o S or, equivalently, O(y) = supI(x) • S(z, y). 
xEX 

In particular, for I =  {a}, O ( y ) =  S(a,y). This 
function defines the possibility distribution of outcomes 
corresponding to the (crisp) income a. 

Let C be a set and R be a fuzzy function from C x X 
to Y. We say that R is a fuzzy global response function for 
a fuzzy system S if 

S(x, y) = sup R(c, x, y) (*) 
ceG 

for all x • X, y • Y. The set C is called fuzzy state 
object. For any given c • C, R defines a fuzzy function 
Re: X -~ Y. Then 

s=URo 
cEG 

Thus our definition is a fuzzy analog of the crisp one. 
The following theorem asserts the existence of a fuzzy 

global response function for any fuzzy abstract systems S. 
Theorem. For any fuzzy abstract system there exists a 

fuzzy global response function. 
Proof. Let S c X x Y be a fuzzy system. Consider 

C = {c I c _C S and c is a fuzzy function} 

and define R(c, z, y) = c(z, y). It follows from the rest of 
the proof that C # 0. 

Thus defined R is a fuzzy function. Indeed, for any 
given pair (c,z), there is a unique y • Y such that 
R(c, z, y) = e(z, y) = 1, since c is a fuzzy function. 

To prove (,),  we note first that 

R(c, z, y) = c(x, y) __ S(=, y). 

Therefore 
S(x, y) < sup R(c, z, y). 

c6G 
We prove now that, for any given x and y, there is c 

such that 
S(x, U) = a(c, x, U). 

Consider two cases. 
(1) S(x, y) = 1. Since the domain of S is X, for any 

u • X there exists v • Y such that S(u, v) = 1. Consider 
crisp function c such that c ( z ) =  y and c ( u ) =  v for 
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u ¢ x, where v is any element in Y such that S(u,  v) = 1. 
Obviously, c E C and 

R(c,  x, y) = c(z, y) = 1 = S(x,  y). 
(2) S ( z ,  y) < 1. Like in the previous case, one can find 

a crisp function c c C. We define c*(z, y) = S ( z ,  y) and 
c*(u, v) = c(u, v) otherwise. Thus defined c* is a fuzzy 
function since S(x ,  y) < 1. Obviously, c* E C. 

[] 

Instead of developing a theory of fuzzy abstract time 
systems in the most general way, we present here an 
approach based on more traditional ideas. Namely, we 
shall use notions of state transition and output functions to 
describe the dynamics of fuzzy systems. 

Let T =  { 1 , 2 , . . . , t , . . . }  be the time set, A and B 
input and output alphabets, X = A T and Y = B T input 
and output sets, respectively, G an abstract set that we 
shall call a state space. Suppose also that functions 
p : C x A ~ B  and ¢ : C x A - - , C  are given. These 
functions are called output and state-transition functions 
respectively. Equations 

Yt = p(ct, zt) and c~+1 = ¢(ct, x~) 

for all t E T, are called state equations of the system. 
The next step is to assume that, for any given t ~ T, 

xt, yt, and c~ are fuzzy sets on A, B, and C, respectively, 
and functions p and ¢ are fuzzy relations on C x A x B 
and C x A x C, respectively. Then fuzzy state equations 
of a fuzzy system are now 

sup ct(c) * zt(a) * p(c, a, b) 
cEC 
aEA 

and 

= sup a ( d )  • = , (a )  • ¢ ( d ,  a, c) 
dEC 
aEA 

or, more compactly, 

y t = c t o x t o p  and ~+1 = C ' / O X t O ¢  

for all t E T. 
One can view a fuzzy state as a possibility distribution 

over C', i.e., the actual state is one of the elements of C; 
but since the process behavior is partly unknown, several 
states are possible with a non zero possibility degree, p 
and ¢ can be then viewed as conditional possibility 
distributions. For instance, ¢(ct+1, zt, ct) is the possibility 
for the state to be c~+1 at time t + 1, knowing that the state 
and the input at time t are ct and xt ,  respectively. In some 
situations relations p and ¢ can be directly obtained 
through a linguistic description using names of fuzzy sets 
on C, involved in fuzzy conditional propositions. Then 
state equations can be established using the above 

formulas. Such a fuzzy model corresponds to an 
approximate (linguistic) description of a complex system 
whose equations are possibly unknown. 

Consider now the case of nonfuzzy inputs zt. Then the 
state equations can be written in the following form 

Yt = ct o p~, and Ct+l = ct o ¢x, 

where px, and ¢~, are fuzzy output and state-transition 
functions when the input is xt. Expanding the last 
formula, we have 

= c0 o ¢=0 o o . . .  o¢=  = c0 

where ~'t = x o x l . . . z t  is an input string. The output 
equation can be now written in this form 

~/t+l = CO O ~ t  O Pzt+l" 

To illustrate our approach we consider the following 
simple example (cf. [14], section 3.1.1.) Suppose we have 
a vending machine which accepts quarters as inputs and 
gives one fifty-cent can of soft drink as the output. This 
system has two states. The first state ce is when no quarter 
has been put in yet. The second state % corresponds to the 
case when a quarter has been put in beforehand. Thus the 
state space is O = {ce, cq}. The input alphabet is a 
singleton A = {q} where symbol q represents "putting a 
quarter in the machine." Symbols )~ and X are elements of 
the output alphabet B representing the events "nothing in 
the output" and "a can of soft drink at the output", 
respectively. Since the input set is a singleton, the output 
and state-transition functions are just fuzzy binary 
relations and can be described by 2 x 2 matrices. We 
define them as follows: 

P = [ 1  01] and ¢ = [ 1  1 ] .  

where 0 < a < 1. The "fuzziness" of our machine is 
characterized by the possibility a that the machine does 
not accept the input (it either rejects the quarter or 
"swallows" it.) For instance, P21 = a means that the 
possibility of outcome ), (nothing out) in the state % (a 
quarter is in the machine) is a while P22 = I means that 
in the same state the possibility of getting a can of soft 
drink is 1. Since the state space and the output alphabet 
are two-element sets, we represent fuzzy states and fuzzy 
outputs by two-dimensional vectors. Simple calculations 
show that there are two possible cases: 

1) t = 2k. 
Then c¢+ 1 = • 1, a > and Yt+l = < 1, a > ; 

2 ) t = 2 k + 1 .  
T h e n c t + l =  < a , l >  a n d y t + l =  < a , l > .  
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For instance, in the first case, the machine is in the 
state c0 with possibility 1 and in the state cq with 
possibility a. Similarly, in the same case, the possibility of 
getting a can of soft drink is a while the possibility of 
getting no output is 1. 

We conclude this section with a citation from [15]. "A 
general theory of fuzzy systems perhaps demands more 
imagination than a straightforward extension of classical 
concepts of nonfuzzy system theory. Since the theory of 
approximate reasoning, initiated by Zadeh, radically 
departs from multivalent logics, a theory of fuzzy systems 
should perhaps be developed outside of the conceptual 
framework of classical system theory. '° 

5 T h e  B d I - L a P a d u l a  m o d e l  in a f u z z y  
e n v i r o n m e n t  

First, we introduce in this section elements of the Bell- 
LaPadula (BLP) model [1] and then describe a fuzzy 
system based on these elements. 

S = {$1, $2, . . .  , S,}.  Subjects; processes and 
domains. Although each subject is not fuzzy, it is plausible 
to consider a fuzzy set of subjects assigning to each subject 
the degree to which this subject can, say, affect the system 
state. 

0 = { O x , 0 2 , . . . , O m } .  Objects; files, terminals, 
programs, devices. Each subject is also considered as an 
object. A fuzzy set on O would, for example, define the 
degree to which a given subject is considered to be an 
object. 

c= { c~, c~, ... , c~}. Cl > c~ > ... > cq. 
Classifications; elements of this set are clearance levels of 
subjects or classifications of objects. Classifications could 
be values of a linguistic variable and thus represented by 
fuzzy sets. In this case, the ordering of classifications is 
also fuzzy. 

/g = {K1, K 2 , . . . , K r } .  Need-to-know categories; 
project numbers, access privileges. Linguistic variables 
could be used to describe elements of this set. 

,A = {A1, A2 , . . . ,  Ap}. Access attributes; read, write, 
copy, append, owner, control. At least some of the 
attributes could be values of linguistic variables. 

7Z = {Ra, R % . . . ,  R,,}. Requests; inputs, commands, 
requests for access to objects by subjects. 

X = 7% r. Request sequences; a typical element is 

79 = {D1, Dg. , . . . ,  D~}. Decisions; outputs, answers, 
"yes", "no", "error". Elements of this set are very likely 
described in terms of linguistic variables. 

Y = D r. Decision sequences; a typical element is 
~/= {u,}. 

~" = c s x c ° x (~ , (~)s  x (r ' (~)  °. 
Classification/need-to-know vectors. An arbitrary element 
of F is written f = (fl ,  f2, f3, f4)" f l :  subject- 
classification function; f2: object-classification function; 
f~: subject need-to-know function; f4: object need-to- 
know function. In a fuzzy environment, these functions are 
fuzzy functions and the power set 7~(K) is substituted by 
the set of all fuzzy sets on/C. 

A4 = {1VII,M2, . . . ,  Mnm2,}. The set of all possible 
access matrices. The (i, j) entry of an access matrix is an 
element of P(A)  indicating Si's access attributes relative 
to Oj. 

1; = 7~(S x O) x .M x ~'. States. 
27 = l; r .  State sequences, zt is the t-th state in the state 

sequence z E Z. 
Although it is possible to fuzzify most of the elements 

of the standard BLP model, we are concerned only with 
fuzzy states because they are used in the definition of the 
simple security property and the basic security theorem. In 
addition, in our simplified fuzzy version of the BLP 
model, the state-transition relation W is assumed to be a 
crisp relation.f 

In the BLP model, a state v is a triple (b, M, f )  where 
b C_ S x (9 indicating which subject have access to which 
objects in the state v, M is the access matrix in the state v, 
and f = (fx, f2, fa, f4) is the objet/subject 
classification/need-to-know vector in the state v. 

In a fuzzy environment, b is a fuzzy subset of S x O. In 
other words, b is a binary relation on S x O and b(s, o) 
can be interpreted as the degree to which subject s has an 
access to object o. 

To model f using fuzzy sets, we first reformulate the 
simple security condition. In the standard BLP model, 
(_.s, o) e S x O satisfies the security condition relative to 
f i f  

/~(s) >_/2(o) (5.1) 

and 

f~(s) ~_ A(o). (5.2) 

This first inequality defines a binary relation f '  C_ S x O 

(s, o) e / '  ,,/1(~) >-/2(o). 

Similarly, the second inequality defines a binary relation 
f "  C S x O 

(8, O) q f "  ~ fs(s) _D f4(o). 

Let f = f '  n f " .  Then (s, o) satisfies the security 
condition relative to 7 if and only if (s, o) e f .  In terms of 
relations b and f ,  the standard simple security property 
can be written in the following form 
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b c_ f .  (5.3) 

To introduce a fuzzy version of this condition, we need a 
more formal definition of binary relations f '  and f " .  First, 
consider the following diagram 

A 
S ~ C 

f '  J. .L L 
O ---, C 

A 
where L = " _> " is the linear ordering on C. Then, by the 
definition of  f ,  f ' =  fl  o L o  f~l ,  where f21 is the 
inverse relation, not the inverse function. 

In a fuzzy environment, we assume that L is a fuzzy 
ordering on C and define f l  : S --* C and f2 : (9 ~ C as 
fuzzy functions. Then, for instance, f l  (s, c) is the degree 
to which subject s has classification c. By definition of a 
fuzzy function, for any subject s, there is exactly one 
classification c such that f l  (s, c) = 1. The same is true for 
f2. Fuzzy functions f l  and f2 together with fuzzy order L 
on C define a fuzzy binary relation f '  on S x (.9 as 
f '  = f l  o L o f21 or, equivalently, 

f'(~, o) = V A(~, c).L(c, c')*h(o, ~') 
c,dEC 

where • is a t -norm (in particular, • = A = rain). Then 
f ' (s ,  o) may be interpreted as the degree to which s 's 
clearance is higher then o's classification. In the particular 
case when both functions f l  and f2 are crisp, f ' (s ,  o) = 1 
if  and only if  (s, 0) satisfies simple security condition 
relative to f .  

We treat the second part  of  the simple security property 
(5.2) in a similar manner. In this case, L = "_D " is 
inclusion relation on 9r(E) and f3 and f4 are fuzzy 
functions from S and (9 to ~ ' (E) .  Then a fuzzy binary 
relation f "  on S x O is defined by 

f"(s ,  o) ---- V f3(s '  A)*f4(°, B) 
AD_B 

where A, B c 9r(/C). 
In a fuzzy environment, all states are assumed to be 

secure to some degree. I f  condition (5.3) is satisfied for 
fuzzy b and f ,  we say that the state is secure to the degree 
1, or, simply, secure. In other words, the state is secure if, 
for any pair (s, o), the degree to which s has access to o 
does not exceed the degree to which the clearance of  s is 
greater than the classification of o 

b(s, o) <_ f '(s,  o) 

and the degree to which s has access to o does not exceed 
the degree to which need-to-know categories of  s contain 

need-to-know categories of  o 

b(s, o) _< f"(s, o). 

In general, the security level of  the state (b, M ,  f )  
should measure the degree to which b is a subset of  f .  
Consider the height of  the difference b - f 

h(b - f )  = sup((b - f ) ( s ,  o)) = sup(b(s, o) ~ f (s ,  o)). 
(s,o) (s,o) 

This number is a natural measure of  the degree to which b 
is not a subset of  f .  Then we define the security level of  a 
state as follows. 

Simple securi ty p roper ty .  The security level a~ of the 
state v = (b, M ,  f )  is given by 

a~ = 1 - h(b - f )  = 1 - sup (b(s, o) e f (s ,  o))(5.4) 
(s,o) 

Since av does not depend on M ,  we shall also use 
notation a(b, f )  for a~. 

Consider two extreme cases. First, suppose a~ = 1. 
Then b(s, o) 0 f (s ,  0) = 0, or equivalently, 
b(s, o) <_ f(s ,  o). This is the case of  a secure state. The 
converse is obviously also true. Thus av = 1 if and only if 
the state v is secure. Suppose now that av = 0. Then there 
exists a pair (s, o) such that b(s, o) = 1 and f (s ,  o) < 1. 
In other words, s has total access to o, but the degrees to 
which clearance of s is greater than classification of  o and 
need-to-know categories of  s contain need-to-know 
categories of  o are less than one. We consider such a state 
7) as totally insecure. 

Let T = {1, 2, . . .  , t , . . .  } be the time set. Following 
[1], we denote Z = V T the set of  all state sequences. An 
arbitrary element of  Z is written z = {zl, z2, . . . ,  zt, . . .  }. 
In addition, z0 denotes a specified initial state. Let 
X = R r and y = D T be the sets of  all request and 
decision sequences, respectively. For a given state- 
transition relation 

W C _ R x D x V x V ,  

the system ,U(R, D,  W,  zo) C_ X x 3) x Z is defined by 

(x ,y , z )  E . U ( R , D , W ,  zo) ¢* (xt, yt, z~,zt_l) E W,  

for all t E T.  
In a fuzzy environment,  we define the security level az 

of  the state sequence z by 

az = inf {a.~}. 
tET 

Secure  systems. 2,(t~, D, W,  zo) is a secure system if, 
for any 

(x ,y , z )  e X ( R , D , W ,  zo), 
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the security level of z is not less than the security level of 
the initial state z0. 

Thus, the system is secure if era > azo for all t E T. In 
other words, at any moment t, the security level of the 
state zt in a secure system is not less than the security level 
of the initial state Zo. 

We need the following technical result to establish the 
main theorem of this section. 

Lemma, Let v = (b, M, f )  and v* = (b*, M*, f )  be 
two states with the same f .  Then 

o(b*,  f )  _> o(b ,  f )  ^ o(b* - b, f ) .  (5.5) 

Proof. We have, by (3.4) and (3.5), 

[(b* - b) - f l  u (b - f )  = (b* U b) - f b* - f .  

Therefore, 

h((b* - b) - f )  V h ( b -  f )  >_ h(b* - f ) ,  

or, equivalently, 

[1 - h ( ( b *  - b )  - f ) ]  A [1 - h ( b  - f ) l  -< 1 - h ( b *  - f ) .  

By (7), 

o ( b * , / )  ___ o ( b , / )  ^ o(b* - b , / ) .  [ ]  

B a s i c  Security Theorem. Suppose that 
(r, d, (b*, M*, f*),  (b, M, f ) )  E W implies 

(i) i *  = i 
(ii) °(b* - b, f*) > °(b, f ) .  

Then S ( R ,  D, W, z0) is secure. 
Proof. It suffices to prove that the sequence {°a}ter  is 

nondecreasing. For a given t ~ T, let zt-i = (b, M, f )  
and zt = (b* ,M*, f* )be  two consecutive states. By (i), 
f* = f ,  and, by (5.5) and (ii), °(b*, f )  > °(b, f ) .  Thus 
Oz, ~_~ Ozt-i" [] 

6 C o n c l u s i o n  

To make this paper self-content, we first outlined basics 
of the theory of triangular norms, fuzzy set theory, and 
presented some elements of fuzzy abstract systems theory. 
Thus we defined language and introduced notations that 
are used in our ongoing work on modeling computer 
security in a fuzzy environment. 

Just recently, a new computer security paradigm has 
been proposed which no longer looks for a perfect security 
but rather intents to use risk management techniques to 
handle security levels appropriate for particular tasks. 
Fuzzy set theory can be used in developing such risk 
management techniques. 

In this paper, we have shown that it is possible to have 
provable security in a fuzzy environment. Our version of 

the Bell-LaPadula model considers any state of the system 
as secure to some degree. Then a system is secure if these 
degrees form a nondecreasing sequence on consecutive 
states. A fuzzy version of the Basic Security Theorem has 
been proven establishing a necessary condition for a 
system to be secure in a fuzzy environment. 
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