
Designing Encryption Algorithms for Real People

Bruce Schneier

Counterpane Systems
schneier@chinet, com

Abstract:

There is a wide disparity between cryptographic
algorithms as specified by researchers and
cryptographic algorithms as implemented in
software applications. Programmers are prone to
implement poor key management, make mistakes
coding the algorithm, and use the algorithm in
ways and for periods of time not originally
intended. I propose design heuristics for designing
algorithms in the "hostile" implementation
environment of real-world software development.

In the real world, it is easy to choose a secure
encryption algorithm. There are several, all
designed by respected cryptographers, all described
in the open literature, and all implemented in
public-domain software. It is much harder to
implement the algorithm properly in a software
application.

As a result, implementations of the algorithm are
often far less secure in practice than its creators
envisioned them. While it is not strictly the job of
an algorithm designer to concern himself with
implementation details, it is important to realize
how algorithms are used in the real world. Armed
with this knowledge, a cryptographer can make his
algorithms resilient to the kinds of abuses that they
will most likely face in the hands of naive
programmers.

This paper concerns itself with software
implementations of cryptographic algorithms.
Traditionally strong encryption was almost
exclusively found in special-purpose and embedded
hardware. Since these hardware devices were self-
contained, it was easier to design them securely and

force secure implementations. Today, the
increased demand for cheap encryption combined
with the increased power of personal computers has
made software encryption more ubiquitous.
Mistakes are far more common in software
cryptographic systems, because programmers have
far more control over the details of a software
system. They have more opportunities to make
mistakes in programming, implement bad key
management processes, ignore memory
management issues, and cut corners to improve
performance.

PROBLEMS AND C O R R E C T I O N S

There are several real-world problems that a
cryptographer should take in account and, if
possible, protect against when designing an
algorithm. These problems range from the
entrenchment of standards, the ignorance of users,
and the fallibility of implementers.

Algorithm Entrenchment:

Encryption algorithms are used for a long time,
generally far longer than any original requirements
specified. DES was originally approved as a five-
year standard to be reviewed every five years [9].
Fifteen years later, it was approved for another five
years [4, I0], despite its increased vulnerability to
cryptanalytic attack. The entrenchment of DES
within communities such as banking will make it
difficult to switch to a different encryption
algorithm, even if NIST does not recertify DES in
the future.

Any algorithm developed today will not see
widespread use for at least five years. If it
becomes part of a standard, it will probably still be
in use 25 years later, encrypting data that might
need to remain secure for another 50 years.

98

Therefore, any algorithm developed today should
be designed to be secure against cryptanalytic
attacks mounted in the year 2075.

Since it is impossible to estimate computing power
that far in the future, theoretical arguments have
been used to justify security lengths. The Chinese
lottery, the whimsical DESosaur, and genetically-
engineered algae have all been proposed as brute-
force cracking machines against cryptographic
algorithms [12]. Results from these thought
experiments indicate that an algorithm should be, at
the very least, secure against an attack whose
complexity is on the order of 21z8.

Bad Key Management:

Although most encryption algorithms are designed
to accept a random binary key, certain key
management practices can make this difficult or
impossible. Many software implementations of
DES use ASCII input from the user directly as the
key [14]. Instead of a 56-bit random key, the
actual key is limited to 8 printable ASCII
characters. One implementation on MS-DOS
computers--Symantec's Norton Discreet version
8.0--limits the key choice even further, allowing
converting lower-case letters to upper-case and
ignoring the low-order bit of each byte. The result
is a keyspace of only 40 bits.

One way to correct this problem is to give users the
option of using long easy-to-remember keys: pass
phrases. It is possible to hash a long password,
using a one-way hash function like MD5 [13] or
SHA [11], into a shorter encryption key. This
technique allows end-users to choose easy-to-
remember passwords without succumbing as easily
to dictionary attacks, and ensures that the
encryption key has the maximum possible entropy.
Assuming that the entropy of English is 1.3 bits per
character [16,3], 43 characters of English text are
required to generate a random 56-bit key, 49
characters are required to generate a random 64-bit
key, and 98 characters are required to generate a
128-bit key.

Most applications do not bother to implement a
one-way hash function in conjunction with an
encryption algorithm, and it is unwise to assume
that they will do so in the future. A better solution
would be to design this hashing process into the
encryption algorithm. In addition to accepting a
binary key, an encryption algorithm should just as

easily accept a longer natural-language key.
Blowfish [15] accepts these sorts of keys.

Poorly-Chosen Keys:

As if poor key management techniques don't do
enough damage, end users make things even worse.
Users do not choose keys uniformly from the
keyspace provided to them. They are far more
likely to choose words or near-words as keys [5].
A brute-force keysearch machine that first tries
words and near-words will have an excellent chance
of finding encryption keys quickly.

Pass phrases, described above, help. Still, there is
no way to prevent this problem. Many end users
will choose weak keys as long as they are allowed
to. However, the problem can be mitigated.

In some applications it may be wise to reserve 16
or more key bits for an application-specific or
system-specific key. This is a random bit string
appended to the user key, designed to make brute-
force keysearch more difficult. Depending on the
system, these key bits can be common among a
group of users, or individual to each specific
instance of encryption. The bits do not have to be
secret; their security lies in the fact that an attacker
cannot build a single dictionary that can attack all
implementations of a given algorithm. If the
encryption algorithm has more key bits than strictly
required for security, this can easily be done.

Programming Errors:

While most commercial software implementations
execute DES encryption in accordance with NIST
specifications [9], some do not [14]. The two most
common mistakes are to ignore the distinction
between big-endian and little-endian computer
architectures, and to incorrectly index the S-boxes.
DES is susceptible to subtle changes in the design
of the algorithm [2]: changing the data in the S-
boxes, the manner in which they are accessed, or
even their order greatly reduces the security of the
algorithm.

This illustrates the problem with not completely
specifying the algorithm. It is essential that any
algorithm specification be completely unambiguous.
It should include sample source code and, at the
very least, test encryptions and decryptions.

Modes of Encryption:

99

Block encryption algorithms can be implemented in
one of several modes. Most software
implementations of block ciphers use Electronic
Code Book mode, because it is the fastest and
easiest. However, any of the feedback modes--
CBC, OFB, or CFB--are more secure in that they
prevent the compilation of a code book. For bulk
encryption applications, it is prudent to design
algorithms with built-in feedback mechanisms.

Stream ciphers can have similar problems.
However, their bit-wise granularity makes them a
poor choice for software encryption, and they are
hardly ever used for those reasons.

Size of Secret Information:

Computers are not very good at keeping secrets.
Deleted files remain on disks, temporary files litter
disks, and whole chunks of RAM are occasionally
saved to disk at the whim of the operating system.
All of these are potential implementation problems.
A good algorithm will limit the amount of secret
information that the computer must deal with.
DES, with 103 bytes of secret information (7-byte
key plus sixteen 6-byte subkeys) is easier to
implement than Blowfish [15], with 4224 bytes of
secret information (56-byte key plus 4168 bytes of
subkeys).

Another possible solution for bulk encryption is an
algorithm where the key modifies itself during
encryption and decryption. This would serve to
erase secret information on the fly, and would limit
the amount of information a cryptanalyst who
breaks into a computer could get.

Variable Parameters:

Some algorithms have variable parameters. Khufu
and Khafre have a variable number of iterations
[8]. The HAVAL one-way hash function has a
variable number of iterations and can produce
variable-length hash value [17]. Variable
parameters such as these invite mistakes. Often the
algorithms are implemented by programmers who
do not understand the cryptographic reasons behind
these variations, and will invariably choose the
parameters that make the algorithm run the fastest.
An algorithm should be secure even if all variable
parameters are set to their minimum. Better yet,
an algorithm should not have any variable
parameters.

Implementers will try to vary parameters anyway.
DES has no variable parameters, but some
encryption products offer an 8-round DES option
[14]. One product has an option for single-round
DES, even though this variant leaves half the
plaintext unencrypted [14].

Key length is the only exception to the above.
Implementers always have the option of using keys
smaller then the algorithm is designed for. Users
often choose keys of lengths shorter than the
maximum allowed keylength. Cryptographers
should assume that this kind of thing will happen,
and ensure that using a short key does not affect
the security of the algorithm to a greater degree
than the reduction in key size.

DESIGN DIVERSITY

In today's cryptographic world, DES is by far the
most common algorithm. This is good, because
DES is the most cryptanalyzed of today's public
algorithms. On the other hand, a single
breakthrough in the cryptanalysis of DES will have
broad ramifications for security; there are just too
many eggs in a single cryptographic basket. Better
would be for different software applications to use
different encryption algorithms, or for software
applications to give users a choice of encryption
algorithms. This would minimize the catastrophe if
a common algorithm is ever successfully
cryptanalyzed.

Recently, other algorithms have begun to see
limited use. IDEA [6] has been used in several
applications. Special workshops devoted to
algorithm design have been organized [1].

CASCADING MULTIPLE ALGORITHMS

One way to increase an algorithm's resilience is to
cascade multiple algorithms in sequence. A multi-
algorithm cascade with independent keys has been
proven to be at least as strong as the first or, in the
case of stream ciphers, at least as secure as the best
[7]. Even so, it does seem that a cascade of
algorithms is better than individual algorithms,
provided that the second and subsequent algorithms
are secure against chosen ciphertext attacks, and
provided all the algorithms' keys are independent.

The real benefit of cascading algorithms is to take
advantage of design diversity; it makes the overall
implementation less vulnerable to a programming

100

error or new cryptanalytic attack. If there are two
or even three algorithms in a cascade, each strong
enough on its own to satisfy the security
requirements of the entire system, than security
holes in one or two will not breach overall security.
Successful attacks against all three would be
required to break the cascaded system.

CONCLUSIONS

I have shown how misguided programmers can
inadvertently subvert the best intentions of
cryptographers. While it is impossible to
completely shield programmers from their own
ignorance, it is possible to design encryption
algorithms to be resilient against some of their most
common mistakes.

ACKNOWLEDGMENTS

Steve Bellovin and Matt Blaze both provided
numerous helpful comments on an earlier version
of this paper. Any mistakes are wholly my own.

R E F E R E N C E S

. R. Anderson, ed., Fast Software Encryption,
Lecture Notes in Computer Science 809,
Springer-Verlag, 1994.

. E. Biham and A. Shamir, Differential
Cryptanalysis of the Data Encryption
Standard, Springer-Verlag, 1993.

. T.M. Cover & R.C. King, "A Convergent
Gambling Estimate of the Entropy of
English," IEEE Transactions on
Information Theory, v. IT-24, n. 4, Jul
1978, pp. 413-421.

. NBS FIPS PUB 46-2, "Data Encryption
Standard," National Bureau of Standards,
U.S. Department of Commerce, Jan 1988.

. D.V. Klein, "'Foiling the Cracker': A Survey
of, and Implications to, Password
Security," Proceedings of the USENIX
UNIX Security Workshop, Aug 1990, pp.
5- 14.

. X. Lai, J. Massey, and S. Murphy, "Markov
Ciphers and Differential Cryptanalysis,"
Advances in Cryptology--EUROCRYPT '91

Proceedings, Springer-Verlag, 1991, pp.
17-38.

. U.M. Maurer and J.L. Massey, "Cascade
Ciphers: The Importance of Being First,"
Journal of Cryptology, v. 6, 1993, pp. 55-
61.

. R. Merkle, "Fast Software Encryption
Functions," Advances in
Cryptology--CRYPTO '90 Proceedings,
Springer-Verlag, 1991, pp. 476-501.

. National Bureau of Standards, Data Encryption
Standard, U.S. Department of Commerce,
FIPS Publication 46, Jan 1977.

10. NIST FIPS PUB 46-2, "Data Encryption
Standard," National Bureau of Standards,
U.S. Department of Commerce, Dec 1993.

11. NIST FIPS PUB 180, "Secure Hash
Standard," National Institute of Standard
and Technology, U.S. Department of
Commerce, Apr 1993.

12. J.-J. Quisquater and Y.G. Desmedt, "Chinese
Lotto as an Exhaustive Code-Breaking
Machine," Computer, v. 24, n. 11, Nov
1991, pp. 14-22.

13. R. Rivest, "The MD5 Message Digest
Algorithm," RFC 1321, Apr 1992.

14. B. Schneier, "Data Guardians," MacWorld,
Feb 93, 145-151.

15. B. Schneier, "Description of a New Variable-
Length Key, 64-Bit Block Cipher
(Blowfish)," Fast Software Encryption,
Lecture Notes in Computer Science 809, R.
Anderson, ed., Springer-Verlag, 1994, pp.
191-204.

16. C.E. Shannon, "Prediction and entropy of
printed English," Bell Systems Technical
Journal, v. 30, n. 1, Jan 1951, pp. 50-64.

17. Y. Zheng, J. Piepryzk, and J. Siberry,
"HAVAL--One-Way Hashing Algorithm
with Variable Length of Output," Advances
in Cryptology~A USCRYPT '92
Proceedings, Springer-Verlag, 1994.

101

