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Abstract: 

There is a wide disparity between cryptographic 
algorithms as specified by researchers and 
cryptographic algorithms as implemented in 
software applications. Programmers are prone to 
implement poor key management, make mistakes 
coding the algorithm, and use the algorithm in 
ways and for periods of time not originally 
intended. I propose design heuristics for designing 
algorithms in the "hostile" implementation 
environment of  real-world software development. 

In the real world, it is easy to choose a secure 
encryption algorithm. There are several, all 
designed by respected cryptographers, all described 
in the open literature, and all implemented in 
public-domain software. It is much harder to 
implement the algorithm properly in a software 
application. 

As a result, implementations of the algorithm are 
often far less secure in practice than its creators 
envisioned them. While it is not strictly the job of 
an algorithm designer to concern himself with 
implementation details, it is important to realize 
how algorithms are used in the real world. Armed 
with this knowledge, a cryptographer can make his 
algorithms resilient to the kinds of abuses that they 
will most likely face in the hands of naive 
programmers. 

This paper concerns itself with software 
implementations of cryptographic algorithms. 
Traditionally strong encryption was almost 
exclusively found in special-purpose and embedded 
hardware. Since these hardware devices were self- 
contained, it was easier to design them securely and 

force secure implementations. Today, the 
increased demand for cheap encryption combined 
with the increased power of  personal computers has 
made software encryption more ubiquitous. 
Mistakes are far more common in software 
cryptographic systems, because programmers have 
far more control over the details of a software 
system. They have more opportunities to make 
mistakes in programming, implement bad key 
management processes, ignore memory 
management issues, and cut corners to improve 
performance. 

PROBLEMS AND C O R R E C T I O N S  

There are several real-world problems that a 
cryptographer should take in account and, if 
possible, protect against when designing an 
algorithm. These problems range from the 
entrenchment of standards, the ignorance of users, 
and the fallibility of implementers. 

Algorithm Entrenchment: 

Encryption algorithms are used for a long time, 
generally far longer than any original requirements 
specified. DES was originally approved as a five- 
year standard to be reviewed every five years [9]. 
Fifteen years later, it was approved for another five 
years [4, I0], despite its increased vulnerability to 
cryptanalytic attack. The entrenchment of DES 
within communities such as banking will make it 
difficult to switch to a different encryption 
algorithm, even if NIST does not recertify DES in 
the future. 

Any algorithm developed today will not see 
widespread use for at least five years. If it 
becomes part of a standard, it will probably still be 
in use 25 years later, encrypting data that might 
need to remain secure for another 50 years. 
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Therefore, any algorithm developed today should 
be designed to be secure against cryptanalytic 
attacks mounted in the year 2075. 

Since it is impossible to estimate computing power 
that far in the future, theoretical arguments have 
been used to justify security lengths. The Chinese 
lottery, the whimsical DESosaur, and genetically- 
engineered algae have all been proposed as brute- 
force cracking machines against cryptographic 
algorithms [12]. Results from these thought 
experiments indicate that an algorithm should be, at 
the very least, secure against an attack whose 
complexity is on the order of 21z8. 

Bad Key Management: 

Although most encryption algorithms are designed 
to accept a random binary key, certain key 
management practices can make this difficult or 
impossible. Many software implementations of 
DES use ASCII input from the user directly as the 
key [14]. Instead of a 56-bit random key, the 
actual key is limited to 8 printable ASCII 
characters. One implementation on MS-DOS 
computers--Symantec's Norton Discreet version 
8.0--limits the key choice even further, allowing 
converting lower-case letters to upper-case and 
ignoring the low-order bit of each byte. The result 
is a keyspace of only 40 bits. 

One way to correct this problem is to give users the 
option of using long easy-to-remember keys: pass 
phrases. It is possible to hash a long password, 
using a one-way hash function like MD5 [13] or 
SHA [11], into a shorter encryption key. This 
technique allows end-users to choose easy-to- 
remember passwords without succumbing as easily 
to dictionary attacks, and ensures that the 
encryption key has the maximum possible entropy. 
Assuming that the entropy of English is 1.3 bits per 
character [16,3], 43 characters of English text are 
required to generate a random 56-bit key, 49 
characters are required to generate a random 64-bit 
key, and 98 characters are required to generate a 
128-bit key. 

Most applications do not bother to implement a 
one-way hash function in conjunction with an 
encryption algorithm, and it is unwise to assume 
that they will do so in the future. A better solution 
would be to design this hashing process into the 
encryption algorithm. In addition to accepting a 
binary key, an encryption algorithm should just as 

easily accept a longer natural-language key. 
Blowfish [15] accepts these sorts of keys. 

Poorly-Chosen Keys: 

As if poor key management techniques don't  do 
enough damage, end users make things even worse. 
Users do not choose keys uniformly from the 
keyspace provided to them. They are far more 
likely to choose words or near-words as keys [5]. 
A brute-force keysearch machine that first tries 
words and near-words will have an excellent chance 
of finding encryption keys quickly. 

Pass phrases, described above, help. Still, there is 
no way to prevent this problem. Many end users 
will choose weak keys as long as they are allowed 
to. However, the problem can be mitigated. 

In some applications it may be wise to reserve 16 
or more key bits for an application-specific or 
system-specific key. This is a random bit string 
appended to the user key, designed to make brute- 
force keysearch more difficult. Depending on the 
system, these key bits can be common among a 
group of users, or individual to each specific 
instance of encryption. The bits do not have to be 
secret; their security lies in the fact that an attacker 
cannot build a single dictionary that can attack all 
implementations of a given algorithm. If the 
encryption algorithm has more key bits than strictly 
required for security, this can easily be done. 

Programming Errors: 

While most commercial software implementations 
execute DES encryption in accordance with NIST 
specifications [9], some do not [14]. The two most 
common mistakes are to ignore the distinction 
between big-endian and little-endian computer 
architectures, and to incorrectly index the S-boxes. 
DES is susceptible to subtle changes in the design 
of the algorithm [2]: changing the data in the S- 
boxes, the manner in which they are accessed, or 
even their order greatly reduces the security of the 
algorithm. 

This illustrates the problem with not completely 
specifying the algorithm. It is essential that any 
algorithm specification be completely unambiguous. 
It should include sample source code and, at the 
very least, test encryptions and decryptions. 

Modes of Encryption: 
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Block encryption algorithms can be implemented in 
one of several modes. Most software 
implementations of block ciphers use Electronic 
Code Book mode, because it is the fastest and 
easiest. However, any of the feedback modes-- 
CBC, OFB, or CFB--are more secure in that they 
prevent the compilation of a code book. For bulk 
encryption applications, it is prudent to design 
algorithms with built-in feedback mechanisms. 

Stream ciphers can have similar problems. 
However, their bit-wise granularity makes them a 
poor choice for software encryption, and they are 
hardly ever used for those reasons. 

Size of Secret Information: 

Computers are not very good at keeping secrets. 
Deleted files remain on disks, temporary files litter 
disks, and whole chunks of RAM are occasionally 
saved to disk at the whim of the operating system. 
All of these are potential implementation problems. 
A good algorithm will limit the amount of secret 
information that the computer must deal with. 
DES, with 103 bytes of secret information (7-byte 
key plus sixteen 6-byte subkeys) is easier to 
implement than Blowfish [15], with 4224 bytes of 
secret information (56-byte key plus 4168 bytes of 
subkeys). 

Another possible solution for bulk encryption is an 
algorithm where the key modifies itself during 
encryption and decryption. This would serve to 
erase secret information on the fly, and would limit 
the amount of information a cryptanalyst who 
breaks into a computer could get. 

Variable Parameters: 

Some algorithms have variable parameters. Khufu 
and Khafre have a variable number of iterations 
[8]. The HAVAL one-way hash function has a 
variable number of iterations and can produce 
variable-length hash value [17]. Variable 
parameters such as these invite mistakes. Often the 
algorithms are implemented by programmers who 
do not understand the cryptographic reasons behind 
these variations, and will invariably choose the 
parameters that make the algorithm run the fastest. 
An algorithm should be secure even if all variable 
parameters are set to their minimum. Better yet, 
an algorithm should not have any variable 
parameters. 

Implementers will try to vary parameters anyway. 
DES has no variable parameters, but some 
encryption products offer an 8-round DES option 
[14]. One product has an option for single-round 
DES, even though this variant leaves half the 
plaintext unencrypted [14]. 

Key length is the only exception to the above. 
Implementers always have the option of using keys 
smaller then the algorithm is designed for. Users 
often choose keys of lengths shorter than the 
maximum allowed keylength. Cryptographers 
should assume that this kind of thing will happen, 
and ensure that using a short key does not affect 
the security of the algorithm to a greater degree 
than the reduction in key size. 

DESIGN DIVERSITY 

In today's cryptographic world, DES is by far the 
most common algorithm. This is good, because 
DES is the most cryptanalyzed of today's public 
algorithms. On the other hand, a single 
breakthrough in the cryptanalysis of DES will have 
broad ramifications for security; there are just too 
many eggs in a single cryptographic basket. Better 
would be for different software applications to use 
different encryption algorithms, or for software 
applications to give users a choice of encryption 
algorithms. This would minimize the catastrophe if 
a common algorithm is ever successfully 
cryptanalyzed. 

Recently, other algorithms have begun to see 
limited use. IDEA [6] has been used in several 
applications. Special workshops devoted to 
algorithm design have been organized [1]. 

CASCADING MULTIPLE ALGORITHMS 

One way to increase an algorithm's resilience is to 
cascade multiple algorithms in sequence. A multi- 
algorithm cascade with independent keys has been 
proven to be at least as strong as the first or, in the 
case of stream ciphers, at least as secure as the best 
[7]. Even so, it does seem that a cascade of 
algorithms is better than individual algorithms, 
provided that the second and subsequent algorithms 
are secure against chosen ciphertext attacks, and 
provided all the algorithms' keys are independent. 

The real benefit of cascading algorithms is to take 
advantage of design diversity; it makes the overall 
implementation less vulnerable to a programming 
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error or new cryptanalytic attack. If there are two 
or even three algorithms in a cascade, each strong 
enough on its own to satisfy the security 
requirements of the entire system, than security 
holes in one or two will not breach overall security. 
Successful attacks against all three would be 
required to break the cascaded system. 

CONCLUSIONS 

I have shown how misguided programmers can 
inadvertently subvert the best intentions of 
cryptographers. While it is impossible to 
completely shield programmers from their own 
ignorance, it is possible to design encryption 
algorithms to be resilient against some of their most 
common mistakes. 
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