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Abstract 

This paper presents a new formal approach to the defini- 
tion of confidentiality in multilevel logic databases. We 
regard a multilevel secure database as an extension of 
an open database which preserves the database-seman- 
tics. We give four definitions of confidentiality which 
capture various degrees of information on secrets. Three 
of them are relevant in the presence of the Closed World 
Assumption. We present their formalisation within 
standard predicate logic and their interpretation for 
multilevel databases. From this viewpoint, the defini- 
tions lead to a formal semantics of the Simple-Security- 
Property and the *-property. In particular, we demon- 
strate that the traditional interpretation of these proper- 
ties represents just a special case of our formalism. 

1 Introduction 

In this section we give an informal definition of an 
ordinary and that of a multilevel logic database, we 
motivate our approach and, finally, discuss previous 
works and related approaches. 

1 .1  Ove rv i ew 

A state of the world as seen by a logic database (LDB) 
consists of facts, rules and general laws. The LDB 
maps a state of the world into a set of data and a set of 
integrity constraints. The LDB uses clauses for the 
uniform representation of data, constraints and que- 
ries. The symbols which can occur in a clause are 
stored in the LDB's signature. A LDB is valid if the 
data satisfy the integrity constraints, viz the data allow 
the derivation of the constraints. 

In a multilevel state of the world, a set of security 
levels is assigned to each piece of information. Ac- 

cording to Thuraisingham (1991), information in a 
multilevel state of the world is the knowledge of the 
truth value of a statement with respect to a particular 
security level. A multilevel database (MLDB) consists 
of two components: a database and a partially ordered 
classification scheme, where a set of security levels is 
assigned to each element of the signature, data item 
and integrity constraint. The classification in the mul- 
tilevel database is assumed to correspond to the clas- 
sification in the multilevel world. The handling of in- 
tegrity constraints and the relationship of information 
at different levels are controversial issues; they are 
discussed in the next section. 

A security policy regulates the access of processes 
to a MLDB. The security policy encountered most 
often is Bell and LaPadula's (BLP) interpretation of 
the mandatory access control, which is described in 
Landwehr (1981). BLP assigns a maximum security 
level to each process (or equivalently, the user on 
whose behalf the process executes) which is allowed 
to have access to the database. The security policy of 
BLP is formulated in terms of explicit primitive read- 
and write-operations, but its two most important prop- 
erties are usually translated for MLDB in the follow- 
ing way: 

• The Simple-Security-Property requires that a 
process is only allowed to select a data item if the 
process' security level is greater than or equal to 
the item's level. 

• The *-property requires that a process is only 
allowed to modify the database in such a way that 
for each data item involved in the modification, ie 
insert-, delete- or update-operation, the item's 
security level is greater than or equal to the 
process' level. 

Without going into details, we note that in order to 
avoid some of its implications, the *-property is often 
simplified to allow a modification only for data items 
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which have the same security level as the acting proc- 
ess. 

The  Simple-Security-Property implicitly expresses 
a MLDB's confidentiality requirements. It is under- 
stood that an object must  be kept secret  from a user if 
the object 's security level is greater  than or incompa- 
rable with the user 's  level. 

1.2 Rationale 

The  use of standard predicate logic for the description 
of databases has a number  of widely accepted advan- 
tages. To us, the two most  important ones are the 
unambiguous semantics and the uniform representa- 
tion of data and constraints. The  most important se- 
mantical task of an ordinary, open LDB is to watch 
over the validity of the data with respect to the con- 
straints. This is obviously not the only task of a LDB, 
but  if the constraints are removed from a database, 
then, in our opinion, this is no longer a database. It is 
rather an arbitrary set of data with some sophisticated 
methods which can answer queries and modify the 
contents of this set. 

The  original definition of BLP expresses the confi- 
dentiality requirements  of a multilevel system through 
read- and write-operations. This is appropriate in a file- 
and record-orientated environment in which the only 
(direct or indirect) way to  obtain the contents of a 
record or file is by reading it itself. This view assumes 
that if only non-confidential information is transmitted 
to a user, then the confidential information is kept 
secret  from him. 

The  situation changes when we move to a logic- 
based environment. To be able to read a clause from a 
set of clauses means to be able to derive it from the 
set. Here the read-operation should be replaced by 
the process of deriving a clause. 

Now two problems emerge.  Firstly, it is possible 
that a user can gain knowledge of a clause even if it is 
not transmitted to him. Secondly, in the original envi- 
ronment,  the allowance and prohibition of a read- 
operation are complementary actions, and the confi- 
dentiality of, eg, a record is based on this fact. It is 
kept secret  if it cannot be read. For a clause, the prop- 
erties of being or not being derivable from a set of 
clauses are not the only possible relationships be- 
tween a clause and a set of clauses. Therefore  the 
precise meaning of the statement 'A clause is secret  if 
it is not derivable' is ~I~e secrecy of a clause is pre- 
served in any other  case except when it is derivable'. 
Does this match our intuition? We argue that it does 
not and that in a definition of confidentiality, it is nec- 

essary to name explicitly the relationship that must 
hold between a clause and a set of clauses. 

Let us at last assume that such a definition of confi- 
dentiality is given. From the viewpoint of logic, the 
only difference between any set of clauses and a set 
forming a database state is that the former 's  contents 
may be arbitrary, while the latter 's must  satisfy some 
(static) integrity constraints. Thus, to affect a clause's 
derivability or confidentiality, or in the broadest  
sense, its relationship to the data of a state, it may no 
longer suffice to modify just these data. From now on 
we must take also the integrity co.~straints into con- 
sideration, eg whether  they allow a particular modifi- 
cation of the data, or whether  they themselves can be 
modified. We are in no case allowed to ignore them-  
they form an integral part of a database. 

In summary, the derivability or confidentiality of a 
clause depends on the data of a state. The  contents of 
a state are in turn fixed up to a degree  of freedom 
which is determined by the integrity constraints. 

In this light we think it incorrect to speak of a fun- 
damental conflict between confidentiality and integ- 
rity. It is possible that the degree  of f reedom is insuf- 
ficient to keep a particular secret, but  can we simply 
assume that a secret  can always be kept? As in real life 
itself, if there are some known boundary conditions 
which uniquely identify a thing, then it is useless to 
try to keep it secret. 

The  main objective of this paper is to give an inter- 
pretation of the BLP appropriate to multilevel logic 
databases. 

1.3 Related work 

The relevant works most often concentrate either on a 
formal definition of confidentiality or a practical con- 
struction of multilevel relational databases. 

According to Gougen /Meseguer  (1984), a confi- 
dentiality requirement  expresses that 'under certain 
conditions, certain individuals should not have access 
to certain information". Its formalisation as non- 
interference is specifically intended to model trusted 
processes, but the authors also introduce a simple 
model of a multilevel-secure database. In this context, 
they interpret non-interference as non-derivability. 

Morgenstern (1987) notes that in order  to keep a 
piece of information in a deductive database secret, it 
may not be sufficient to make it directly inaccessible. 
The author speaks of deductive databases in an in- 
formal manner and uses them mainly to accentuate 

Gougen/Meseguer (1984):75. 
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some new problems which arise during the transition 
from relational databases. 

The first basic attempt of a formal treatment of con- 
fidentiality is presented in Thuraisingham (1991). The 
author's main idea is to formalise the multilevel secu- 
rity properties in NTML, a non-monotonic logic. Al- 
though this approach points to the right direction, 
NTML has been shown to be not sound.* 

Berson/Lunt  (1987a) and Berson/Lunt  (1987b) in- 
vestigate the possibility of the application of the MAC- 
model to deductive databases. They point out many 
new problems and suggest an approach to tackle 
them, but, due to the initial nature of these works, no 
solutions are offered. 

Meadows/Jajodia (1987), Burns (1990) and 
Wiseman (1990) are examples of early approaches 
which consider a multilevel relational database in 
which primary key and foreign key constraints are the 
only classes of integrity constraints. Burns (1990) and 
Wiseman (1991) note that there is a fundamental con- 
flict between secrecy and integrity, since each of them 
can only be enforced at the expense of the other. 

The handling of polyinstantiation has also received 
a lot of attention, eg in Jajodia/Sandhu (1990), 
Sandhu/Jajodia/Lunt (1990) and Lunt (1991). Many 
of the proposed solutions are of a syntactical charac- 
ter, thus each solution solves one problem while open- 
ing the way for another. 

Denning et al (1988), Jajodia/Sandhu (1990) and 
Jajodia/Sandhu (1991) are three of the first papers 
which recognise that not every tuple in a multilevel 
relational database (ML-RDB) corresponds to a true 
fact in the real world. To exclude the unwanted tuples 
from a security level, they introduce the notion of a 
filter function. However, their definition does not pre- 
vent the database from violating integrity. 

In the approach of Smith/Winslett  (1992), a tuple is 
only believable to a user if both have the same secu- 
rity level. This highly conservative assumption seems 
to be neither practically relevant, nor theoretically 
clear since the authors speak of believability in an 
informal manner. 

The most recent paper on ML.RDB is Qian (1994). 
The author claims that integrity should be enforced at 
every security level only on those tuples which are 
believable at this level. However, to determine a tu- 
pie's believability, she uses purely syntactic filtering 
functions. Lastly, the author believes t that ML-RDB 
with general integrity constraints unavoidably intro- 

cf Garvey et al (1992):160. 
1 Qian (1994):213, line 15. 

duce functions with random choice, ie a random se- 
mantics-a standpoint which in our opinion is defi- 
nitely wrong. 

2 Basic definitions 

Following Cremers/Griefahn/Hinze (1993) we con- 
sider databases from the viewpoint of predicate logic. 
Thus the discussion and the results are also valid for 
relational databases in proof-theoretical representa- 
tion.* 

2 . 1  P r e d i c a t e  log ic  

A signature is a pair Z = (FS, PS).  The set FS con- 

rains ranked function symbols and PS  ranked predi- 
cate symbols. Both sets, FS and PS, are non-empty, 
finite and disjunct. 

The set of terms over a signature Z, TE z, is the 
smallest set with the following properties: each vari- 
able is a term; each constant, ie a function symbol of 
rank 0, is a term; l e t f b e  a function symbol of rank k 
and t 1 ..... tk terms, then f ( t  1 . . . . .  tk) is a term. A term 

is ground if it does not contain any variable. 
Let r be a predicate symbol of rank k and t 1 ..... t k 

terms, then r ( t  I . . . . .  tk) is an atomic formula or for 

short an atom. Let a be an atomic formula, then a is a 
positive literal and - , a  a negative literal. We denote 
the set of atomic formulae over Z by AF x and the set 
of literals over Z by LI'I ¢. A literal is ground if it com- 
prises only ground terms. 

A clause is a formula of the form 
alV...vct m <-- .,~1 ̂ . . .^ ) .n  

in which all variables are assumed to be universally 
quantified. Each o: i in the head of the clause is an 
atom and each 27. in its body a literal. A clause is 
range-restricted if each of its variables occurs also in a 
positive literal in its body; indefinite or disjunctive if 
m > 1 ; normal if m = 1 ; a query if m = 0 ; and ground 
if it comprises only ground literals. A normal clause is 
called a rule if n > 1 and a fact if n = 0. 

We assume that all clauses are range-restricted. 
We denote the set of all these clauses over E by CL z 
and its subset of normal clauses by NCLZ. § 

Let I c_ CL be a set of clauses, then Th(I) _c CL 

* cf Reiter (1984). 
§ We omit the superscript whenever the respective signa- 
ture is evident. 
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denotes all clauses which can be (logically) derived 
from I (for a clause ~o, ~o ~ Th(I) is also denoted as 

It-~o). We denote the set of all atomic formulae in 

Th(I) by F(I ) ,  ie F ( I ) =  Th(I)[nv . 

Let I c_ N C L  ~ be a set  of normal clauses. The  

completion of I as defined in Cremers /Gf ie fahn / -  

Hinze (1993)* is denoted by f .  We assume that the 
declarative semantics  of a set I __ N C L  z is given by 

its completion. 

2 . 2  L o g i c  databases  

A scheme is a pair D B = ( Z , C ) ,  where Z = ( F S ,  PS)  

is a signature and C c_ CL z a set  of clauses. Z deter- 

mines the set  CL z , which is the language of DB. The 
elements  of C are called static integrity constraints; 
they represent  invariable propert ies  of the world. 

A valid state of DB is a set I c N C L  z the comple- 

tion of which is consistent and which satisfies the 

static integrity constraints, viz C c_ Th([) holds. The  

present  state of DB, db = I ,  can be any valid state I. 
Let e - A  be a query, where  A = 21^.. .^ ~ . The  

answer-set of db = I to +-- A is the set  of all ground 

substitutions, YI = {zl .... }, for the variables of A such 

that Axi ~ Th(i).  

We assume that a transaction can change the pres- 
ent state of a database. However, its formal definition 
is not needed in this paper. 

2 . 3  D a t a b a s e s  with  user s  and  rights 

The  database presented above is an open one because 
it cannot tell one user  from another- i t  answers any 
query and follows any valid transaction in the same 
manner.  A database mus t  be able to recognise the 
users if it is expected to treat  them differently. There-  
fore we add to our database a set P of all users  or per- 
sons who have access to it. We also introduce for each 
user  p e P the following rights: 

• RS a c_ CL zpt determines  the clauses a person 

Cremers/Griefahn/Hinze (1993):60. 
* For the moment it suffices to know that the sets of sym- 
bols of Ep, the signature of p, are subsets of the respective 
sets of Z. The motivation for the removal of a symbol from 
Zp is given later. 

may see as an e lement  of I or C. 
• RD a c_ RS a determines  the clauses a person is 

allowed to delete. 

• R/a _ CL ~p determines  the clauses a person is 

allowed to insert. 
Now we have arrived at a database which recognises 
different users  and is able to behave in accordance 
with the stated fights. We call it a database with 
rights. 

2 . 4  Persona l  database  profi les  

Let DB be a database with the scheme DB = (E,C) 

and the state db = I .  The application of RS, the right 
to see, to DB provides for each user  p his profile DBp 
with the scheme DBp=(Ep,Cp)  and the state 

dbp = Ip. 

One of the requirements  to the profile is that it sat- 
isfies the confidentiality requi rements  for the user  p. 
But there is more  than this. Our starting point has 
been an open database. Then  we have added users  
and fights to it. If a user possesses  all fights, then his 
profile is identical to the whole database. Otherwise, 
his profile is different from it. Should the database 
semantics of the whole database or of a profile be 
allowed to vary depending on the actual settings of the 
rights? We maintain that the desirable answer is in 
both cases 'No'. We would like to look on a profile as 
an independent  open database which respects  the 
validity of the whole database. Thus  we must  deter- 
mine the relationships between the original database 
and a profile, and between profiles. 

First of all we must  require that DB should always 
be  valid and that validity of a state db = I depends 

only on the constraints C, ie C c_ Th(i). 

Secondly, a state dbp = Ip of the profile DBp should 

also be always valid, and since DBp should behave as 
if it were an autonomous database, its validity must  
not depend on anything else but the constraints of 

DBp = (Ea,C p). Thus  we require that C a c_ Th(i  a). 

Thirdly, a use r ' s  transaction can never  violate C a, 
but since DB is the ultimate authority on integrity, it 
must  not happen that a transaction violates C, ie 

Ca Th(71 a) and C cZ Th(I). Formally this can be E 

translated into the requi rement  

or equivalently 
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Finally, we require that the validity of two profiles is 
independent from each other. This means that a valid 
transaction executed by one user may not invalidate 
the profile of another  user. The  formal interpretation 
depends on the relationship between the data of two 
profiles. They  are obviously independent if they do 
not share any data. We later investigate the case when 
one is a subset of the other, which is usually consid- 
ered to hold in multilevel databases. 

3 Formal semantics of confidentiality 

In this section we present  a summary of the results of 
Spalka (1994). An object of protection in a logic data- 
base is either a symbol of the signature, an atomic 
formula, ie a fact, or a clause, ie a rule. However, 
atomic formulae play here  a central role. 

3 . 1  C o n f i d e n t i a l i t y  o f  symbols 

Symbols of the signature cannot be directly manipu- 
lated. A symbol is only a part of a clause. To keep a 
symbol secret  from a user  can thus only mean that: 

• This symbol does not appear in any clause of the 
user 's  data or constraints. 

• The  database responds with 'I don' t  understand', 
viz B y n t a x  e r r o r ,  to a query or transaction of 
the user  if it comprises this symbol. 

Both points are immediately linked to the signature of 
the user-profile. They  can be satisfied when the secret  
symbol is removed from it. One should however keep 
in mind that the removal of just one symbol from the 
signature can reduce the language by a considerable 
number  of clauses. 

3 . 2  C o n f i d e n t i a l i t y  o f  f a c t s  

Let 6 be a fact, I a set of clauses and 6 is derivable 
from I, ie 6 • Th(I). Let us also assume that 6 should 

be kept  secret  from the user  p with regard to I. As 
long as p does not mention 6, its secrecy is preserved. 
But what should the database answer when the user 
asks 

Does 6 • Th(I) hold? 

The re  are (at leas0 five possible answers: "Yes', 
'Maybe', 'No', 'I don ' t  know' and 'I don' t  understand'. 

The  first answer tells the whole truth and obviously 
does not preserve secrecy. But which of the remain- 
ing four possibilities preserve secrecy? The  second 

answer is not a lie, but  it is also not the whole truth. 
The  database admits that it knows the truth but  it is 
not going to tell it. The  'No'-answer is a blunt lie. In 
the fourth case, the database admits to understand the 
question, but it pretends not to know the answer. Fi- 
nally, in the last case, the database pretends not even 
to understand the question. 

In general, each answer except  "Yes' is suitable to 
keep the secret. However, depending on the circum- 
stances, an answer can be too weak in a particular 
situation. We see that there  is no unequivocal defini- 
tion of secrecy. Some things can be more  secret  than 
other. Each of the five answers gives the user  a differ- 
ent amount of information on the secret. Since the 
amount of information is gradually decreasing with 
each point, we can say that each answer represents  a 
degree  of confidentiality. 

We take the view that the decision on the real se- 
crecy of a secret  or on the amount  of information 
about a secret  which a user  may acquire must  be 
made by an application. Thus  it is necessary to assign 
a degree of confidentiality to a confidentiality re- 
quirement. But first we translate the informal answers 
into formal expressions in the context  of a logic data- 
base: 

co:  rh(7) 
o1: ' " ~ v ~  v 6  V . . . E  

G2:6 rh(i) 
G3: 6 ~ Th(i) and ~ a  ~ Th(i)  

G4: a ~ A F  
A confidentiality requirement  for an atomic formula is 
now a statement of the form ' 6  should be kept  secret  
from p at the degree  G' where G is one of G1 to G4. 

G1 is the only degree  of which we can say that it 
does not allow the database to lie to conceal a secret. 
It only provides him with a weaker information than it 
is capable of, but  this information is still true. If we 
contemplate the possible consequences  of a lie from a 
practical and ethical point of view, then it seems pref- 
erable to give imprecise rather  than false information. 
This preference is also underlined by the effort 
needed to enforce G2, which may require the mainte- 
nance of a consistent set of lies. 

Finally, we note that the traditional definition of 
confidentiality as non-derivability is equivalent to the 
Gl-degree in our formalism. 

3.3 Confidentiality of rules 

In principle, it would be possible to define the confi- 

68 



dentiality of a clause in the same way as for an atomic 
formula. We believe that this is inappropriate. In our 
opinion, a reason for keeping a rule confidential is that 
it is used to derive confidential data. To give an exam- 
ple, let s(X)e-- r (X)  be a confidential rule and r(a) a 
fact. Then s(a) should also be kept secret. 

We thus say that the requirement to keep a rule 
confidential, means that: 

i) This rule is not among the stored data or integ- 
rity constraints. 

ii) The data which can be derived by this rule 
should also be kept secret. 

Since a fact is a rule with an empty body, this defini- 
tion is a proper extension of the definition of confiden- 
tiality of a fact. 

4 Confidentiality in multilevel databases 

This section discusses the adaptation of BLP based on 
the MAC-model to multilevel logic databases. 

4 . 1  T h e  M A C - m o d e l  

The MAC-model can be defined as 
=(O,S, SC, L) 

0 is a set of objects, ie units of protection. The set S 
contains subjects which represent users that work 
with the objects. SG is a partially ordered set" the 
elements of which are interpreted as security levels. 
L:S u 0 ~ SG is a function which places a security 
mark on every subject and object. The value of L(o), 
o ~ O, is interpreted as the object's degree of confi- 
dentiality, and the value of L(s), s e S,  as the subject's 

degree of trustworthiness. 
The MAC-model is assumed to satisfy two proper- 

ties. The Simple-Security-Property states for a file- 
orientated environment that L(s)> L(o) is necessary 

and sufficient in order that s may read o, and it is un- 
derstood that any object which s may not read must 
be kept secret from him. The *-property states that 
L(o)> L(s) is necessary and sufficient in order that s 

may create or write o. 
Now we give an interpretation of the MAC-model 

for logic databases. The objects of 0 are identified 
with symbols of the signature, facts and clauses. The 
subjects of S are identified with the users in P and the 
database commands. SG and L are adopted as new 
components of DB. The interpretation of the two 

Some authors define SG as a lattice. 

properties depends on the object. Before we go into 
details, let us take a look at the original intention of 
both properties. 

4 .1 .1  The Simple-Secur i ty-Proper ty  

The function L enables us to relate an object and a 
subject. The Simple-Security-Property uses this rela- 
tionship to express two points. Firstly, the property 
itself is the following implicit, generic confidentiality 
requirement: an object o should be kept secret from a 
subject s, if L(s)>__L(o) does not hold. Secondly, this 

property shows us how to satisfy this confidentiality 
requirement in a file-orientated environment: if o 
should be kept secret from s, then s should not be 
given read-access to o. 

In its original definition, both points are merged 
into one statement. This is appropriate for a file- 
orientated environment, but for a logic database we 
must consider both points separately. 

4.1.2 The *-property 

A subject can actively or passively acquire knowledge 
either by executing read-operations or by waiting until 
other subjects execute write-operations which a r e  
addressed to him. The Simple-Security-Property is 
concerned with the first case. The *-property worries 
about other subjects' write-operations. Is this really 
something we need to worry about in a model? 

The *-property limits a user 's  ability to perform 
modifications of a system. It prevents him from modi- 
fying an object the security level of which is lower 
than his own. This restriction is hard to understand 
when we keep in mind that a user is only assigned a 
specific security level if he is trusted to behave prop- 
erly. Since the *-property does not state anything 
about a user 's trustworthiness, we must try to give a 
different interpretation to it. 

If this property is concerned about a situation in 
which a user may be misled to use an untrustworthy 
command which pretends to be trustworthy, then it 
can be safely abandoned if the implementation of the 
commands can be trusted. In this case the *-property 
does  not belong to the model, but is rather an imple- 
mentation requirement. If, on the other hand, its in- 
tention is that a system itself may not write-down any 
information not approved of by the Simple-Security- 
Property while it is processing a read-operation, then 
it is evidently not concerned about the possibility that 
the system will deliberately and intentionally violate 
the Simple-Security-Property. In our opinion, explicit 
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modifications which violate the *-property should be 
admissible on account of their implied trustworthi- 
ness. 

To us the *-property has only one meaningful in- 
terpretation: if two subjects, who may be users or 
commands, are able to communicate with each other, 
then a communication must  be conducted in such a 
way that neither party will be provided with any im- 
plicit knowledge on information which should be kept  
secret  from it and which is visible to the other party. If 
both subjects are users, then we can do nothing but  to 
rely on their trustworthiness. If on the other hand a 
user is communicating with a database, then we must 
establish instructions for its behaviour. Yet in both 
cases we are forced to define the kind of implicit 
knowledge which may not be written down. 

We advocate to choose an interpretation for the *- 
property which agrees to the assumptions about a 
subject 's trustworthiness expressed by the function L. 
In particular, we do not regard the *-property as a re- 
striction on explicit modifications, but only as a re- 
quirement  to confine specific kinds of implicit infor- 
mation transfers. 

In this light, in a theoretical model the *-property is 
subsumed by our interpretation of the Simple- 
Security-Property, since the kind or degree of infor- 
mation which a subject is allowed to have on a secret  
can be expressed within a confidentiality requirement  
in our formalism. 

4 . 2  C o n f i d e n t i a l  symbols 

When symbols of the signature are objects of protec- 
tion, the situation resembles  very much that in a file- 
orientated environment. 

Let a and b be two symbols and ph and pl two users 
such that L(ph)>L(pl), L(pl)=L(a) and 

L(ph)= L(b). The signature of ph comprises both a 

and b, while according to section 3.1, b is not an ele- 
ment ofp l ' s  signature. 

Thus  for the users ph and pl, the Simple-Security- 
Property induces an inclusion-relation on their signa- 
tures. 

4 . 3  C o n f i d e n t i a l  f a c t s  

Let ph and pl be two users with their database profiles 
DBph and DBpl so that L(ph)> L(pl). Let moreover a 

be a fact from the data of the state dbph = Iph and 

L(ph)=L(tz). The Simple-Security-Property tells us 

that a should be kept secret  from pl with regard to 
DBt~. In section 3.2 we have shown that this require- 
ment  must be qualified with a degree  of confidential- 
ity, which can be G1, G2, G3 or G4. 

4 . 3 . 1  G1 

This weakest  confidentiality-degree allows pl to have 
indefinite information on t~. Let us consider the follow- 
ing example. Let 

Z = (FS= {a},PS = {q,r,s}) 
C={q(X)vr(X)+- s(X)} 

be a LDB-scheme visible to the user  pl. Let moreover  

Y(Tph)= {r(a),s(a)}, and r(a) should be kept  secret  

from pl at Gl-degree. pl must not be able to derive 
r(a). Thus we reduce pl's set of positive data to 

F ( /p t )=  {s(a)}. Now the trouble is that Ipt does not 

satisfy C, and we owe the user  an explanation. We 
suggest  to tell him that his profile is weakly consis- 
tent, that is: 

• the integrity constraints in C are always satisfied 
by the data in db = I 

• his data may seem to violate C due to some se- 
crets 

Now the user is able to identify the violated con- 
straint, and through a simple substitution he can find 

out that q(a)v  r(a)~ Th(i) holds, viz ei ther q(a) or is 

r(a) true. Maybe r(a)is true, or maybe not. 

We see that the interpretation of G1 in a LDB in- 
volves some interactions and new conventions. The  
general enforcement of G1 is based on the following 
method. Firstly, reduce the data in a user ' s  profile so 
that he can not derive the secret  fact from it. Sec- 
ondly, observe how the reduction affects the user 's  
integrity constraints. If all constraints are satisfied, 
then the user  cannot use them to derive any further 
information. If a constraint is violated, then we should 
hope that it is an indefinite clause, viz it will only tell 
the user that a disjunction of some facts is true. How- 
ever, if this constraint is a definite clause, then it may 
not be possible to enforce G1. 

Since Gl-requirements  only reduce the data of a 
profile but do not introduce any data, the data of a 
profile are always a subset of the global database's 
data. For our users ph and pl, the Simple-Security- 
Property induces an inclusion-relation on their posi- 
tive data, ie facts: 

F(i,I)c--F(i,h)" 
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Does the same relationship also hold for their sets of 
integrity constraints? The  answer is a definite 'No'. 
The  properties of Th as a hull-operator, the validity of 
a profile and the subset relation on the sets of data 
yield only the following inclusions: 

Ctn ~ Th(It, t ) 
C,i c-- Th(i,h ) 
C,h c-Th(Iph) 

The  relationship Cpl c_ Cph , or more general 

Th(fpt)cTh(fph), does not follow from the above 

inclusions. In our opinion, to state it as a requirement  
would only limit the database's expressiveness. 

We believe that integrity constraints must only sat- 
isfy the semantics-preserving properties of a personal 
database profile. Here the independence of the pro- 
files of pl and ph has two consequences. Firstly, the 
construction of C~l and C~h must  ensure that pl's valid 
transactions do not invalidate ph's profile. Secondly, 
the transactions of ph are guaranteed to respect the 
validity ofp l ' s  profile if they only affect data of his own 
level. However, based on ph's trustworthiness, he can 
be allowed to execute any transaction which leads 
even to a weakly consistent profile of pl as long as no 
secret  fact at Gl-degree is disclosed. 

4.3 .2  G2 

Let c~ be a fact which should be kept secret  from the 
user pl at G2-degree. The  database is required to en- 

sure that c~ ~ Th(lpt ) and Cpl c Th(Ipl). 
The  difference between G1 and G2 is that G1 al- 

lows a profile to become weakly consistent, whereas 
G2 does not. This is necessary in order to avoid the 
derivation of any information which cannot be derived 
from I~, ie the database must  always answer with a 
convincing 'No'. Let us consider a variant of the ex- 
ample of the previous section. 

Z = (FS= Ia},PS = Iq, r,s}) 
C={q(X)vr(X)+--s(X)} 

Y(I)={r(a),s(a)} 
We require that r(a) should be kept secret  from pl at 

G2-degree. Now we are not allowed to set 

F(Ipl)={s(a)} since this gives pl indefinite informa- 

tion on the secret. 
We see that there  are two reasons for weak consis- 

tency: 
• the secret  r(a) is not derivable from I~ 

• q(a), which is not secret, is not present  F(D. 
Consequently there  are two ways to make pl's profile 
consistent: 

• Show pl the secret, viz insert r(a) into I/~ 

• Insert something else into I~ which makes it con- 
sistent, ie insert q(a). 

This example shows that q(a) represents  from the 

database's viewpoint a plausible lie for r(a), ie it may 

serve as a cover story* for a secret  fact. We say that 
q(a) is an alias for r(a). In general, each fact from the 

violated constraint's head except the secret  is a plau- 
sible lie. t However, if this constraint is a definite 
clause, then it offers no aliases for the secret. In this 
case the constraint uniquely identifies the secret, and 
confidentiality at G2-degree cannot be enforced. 

Since the alias is a member  of F(i~t ) but not of 

F(i), F(ipt ) is no longer a subset of F ( i ) .  For our 

users ph and pl, the Simple-Security-Property does not 
imply an inclusion of the sets of integrity constraints 
for the same reasons as for G1. Moreover,  it can be no 
longer interpreted even as an inclusion on the sets of 
their data because G2-requirements may lead to a 
deliberate inclusion of false information into a user 's  
profile. G2 provides a higher  degree  of confidentiality 
than G1, but aliases do not come without problems. 

The  next example motivates the interpretation of 
the Simple-Security-Property for G2-degree. Let us 
assume that the fact c~ must  be kept  secret  from pl 
and that G2-secrecy can only be enforced if the alias fl 
is inserted for ~ in pl's data. pl cannot recognise fl as 
an alias (it is placed in the light grey zone in the dia- 
gram on the next  page). Let us assume that ot is not 
Secret to the user ph (it is located in his white zone). 
Now ph sees two different facts, which represent  two 
different names for the same fact. How can ph recog- 
nise which of them is the true one, and which is an 
alias? If ph is considered trustworthy to see the truth, 
he must  not be confused by false aliases. 

We see that an alias inserted for a user  at a low 
level can disturb the profile of a user  at a higher  level. 

cf Garvey/Lunt (1991). 
t Briiggemann (1993) aptly points out that a good cover 
story is also expected to play down the covered secret as far 
as possible. Thus it would be advisable to measure the qual- 
ity of a cover story with respect to a secret. Although we do 
not do it in this paper, our database can use some special 
predicates to express it, eg as an order on the possible 
plausible lies. 
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Thus  we must  provide for the possibility to move an 
alias from the light grey into the dark grey zone, viz 
out of the profile's data. 

For a user  p, the set of facts a which satisfy the 
condition L(p)>_L((z)can be partitioned into three 

subsets: 
i) true facts 

ii) aliases which are not recognisable as such at p 's  
security level L(p) 

iii) recognisable aliases at L(p) 
Thus for G2-degree the Simple-Security-Property in- 
duces between two users with adjacent security levels 
an inclusion-relation on the true facts and on the ali- 
ases which are not recognisable at both levels. For 
users with any two comparable security levels, the 
inclusion-relation holds only on the true facts. 

4 . 3 . 3  G3 

A confidentiality requirement  at G3-degree can be 
expressed in standard predicate logic. However, it is 
trivially not satisfiable in databases with completion- 
semantics, viz, in which the Closed World Assumption 
is made. It tells us that for each atom a, either a or its 
negation - ~  is derivable. This obviously contradicts 
the formal G3-requirement. 

4.3 .4  G4 

G4 is the strongest  degree of confidentiality. It re- 
quires a database to give a user no information on a 
secret. According to section 3.2, this means that a is 
not a valid fact in the user profile's language, ie 

at ~ AF zp* . The  only way to achieve it is to remove at 

least one symbol from the user 's  signature which he 
would need to construct the confidential fact. We see 
that confidentiality of facts at G4-degree can be re- 
duced to confidentiality of symbols. 

4 . 4  Confidential rules  

The  definition of confidentiality of a rule reduced to 
the rule itself requires that the rule should be neither 
an element of the data nor of the integrity constraints. 
Here further investigation is necessary in order  to find 
out when and how this can be done without violating 
the database semantics. 

5 Conclusion 

In this paper we have presented a new approach to the 
definition of confidentiality in multilevel logic data- 
bases. An open deductive database has served as our 
starting point. With the introduction of users and 
rights we have defined the notion of global consis- 
tency and that of a personal database profile. 

We have shown that secrecy has no unique mean- 
ing. We have given four possible definitions of se- 
crecy, G1 to G4, which have been motivated by real- 
life situations. They  correspond to the information 
which is contained in the informal answers 'Maybe', 
'No', 'Don't  know' and 'Don' t  understand',  that is, they 
capture the various degrees  of implicit information 
which a user  may obtain on a secret. All definitions 
have been formalised within standard predicate logic. 
Three  of them, G1 for indefinite, G2 for negative, and 
G4 for no information on secrets, are relevant in the 
presence of the Closed World Assumption. From the 
viewpoint of multilevel security, G1 to G4 provide a 
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formal semantics of the Simple-Security-Property and 
the *-property. In particular we have demonstrated 
that the traditional interpretation of these properties 
represents just a special case of our formalism. 
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