
Software System Risk Management and Assurance*

Dr. Sharon K. Fletcher
Sandia National Laboratories

Albuquerque, NM, 87185-0449, USA

Roxana M. Jansma
Sandia National Laboratories

Albuquerque, NM, 87185-0484, USA

Judy J. Lim
Sandia National Laboratories
Livermore, CA, 94551, USA

Abstract
Security, assurance, and risk management in

sojiiare systeiiis are viewed in t e r m of three
historical generations, with sigiuycant
paradigm ships occurring in each generation.
The software community is currently on the
brink of the third generation, and needs
advances in modeling, risk theory, tools, and
assurance methods. The third generation is
characterized by a broader, more integrative
perspective on risk, and by modeling and
measurement. This paper presents a third
generation framework which demonstrates the
viability of an integrative and quantitative
approach.

Introduction

An historical look at software systems
reveals a progression of thinking about
protection and risk management. In this paper,
three generations are defined. For each, we
examine the prevalent views of risk, risk
assessment, and risk mitigation. We also
examine prevalent strategies for assurance.

Ron Halbgewachs
Sandia National Laboratories

Albuquerque, NM, 87185-0877, USA

Martin D. Murphy
Sandia National Laboratories

Albuquerque, NM, 87185-0449, USA

Dr. Gregory D. Wyss
Sandia National Laboratories

Albuquerque, NM, 87185-0747, USA

Many gaps exist in current knowledge of
how to manage and assess risks in software
systems. This paper presents a fresh perspective
which enables comprehensive risk-based design
and evaluation of systems, spanning a range of
surety concerns (including correctness and
safety, in addition to traditional security
concerns), and addressing multiple system
aspects. We believe this to be a new and unique
multidisciplinary approach which transcends
both traditional security approaches and
traditional risk analysis methods. It facilitates a
risk analysis completely tailored to the system at
hand, instantiating its threats, its barriers, and
its needs for risk reduction.

This perspective considers risk states (“data
integrity lost”, “incorrect output”, “system
unavailable”, etc.) and how such states might be
reached given various starting conditions
(normal operation, maintenance, etc.). Once the
system is modeled from this viewpoint, barriers
or risk-mitigators can be inserted into the model
and their effectiveness can be estimated. The
model must support a very broad interpretation
of barriers, from software features, to physical
protections, to operational procedures, to

* This work was sponsored by the U. S. Department of Energy under contract DE-AC04-94AL85000.

66
0-8186-7318-4/95 $4.00 0 1995 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

software development methodologies, to design
techniques. The modeling technique must allow
system risk elements, such as barriers, to exert
multiple influences throughout the system, so
that we can deal realistically with complexities
such as: conflicts between different surety
objectives, secondary effects of elements,
multiple uses of a single barrier, multiple
barriers to a single risk, etc. The modeling
technique must also allow one to define threat
agents ancl to move them through the system in
such a way that the model reacts to the progress
of the agent. We believe our modeling
technique provides a firm basis for such
sophisticated analysis.

I.
software! systems

History of risk management for

For purposes of discussion, we view the
progression of thinking about risk management
and assurance in terms of three “generations.”
Thesie descriptions are meant to capture the
prevalent views of the times, although there
certainly might have been pioneers who were
ahead of the times.

The .First generation (rated systems)

The first generation of risk management was
compliance-oriented, and required buy-in to a
predefined, set of risks which was assumed to
apply to all systems. Risk concerns revolved
around certain aspects of “ C I A (confidentiality,
integrity, and availability). These views evolved
in an enviironment characterized by mainframe
computers and protection of classified
information.

Not only was the set of risks fixed, but the
mitigation strategies wcre dictated. These
strategies included:
0 access; controls at the system and file levels

(e.g., passwords, locks, MAC, and DAC)
0 encryption for network transmissions
0 tiisastler recovery planning.

There ‘were several levels of systems defined,
where a higher level meant more of this security

model was implemented and/or it was
implemented with more rigor for correctness.

In this generation, risk assessment was, for
the most part, missing. Of course, some form of
initial risk assessment occurred which defined
the CIA set of risks for all systems. Beyond
that, system-specific risk assessment usually
included only site-specific disaster recovery
concerns, and determining which security level
applied. A system either did (compliant) or did
not (non-compliant) implement the required
strategies. Moreover, these strategies were
based on stand-alone architectures where the
security imposed on one system had little or no
impact on the security for other systems. There
was little leeway for customized solutions, never
mind optimal solutions.

While restrictive, this approach succeeded in
its environment.

The second generation (protecting assets)

Two things developed in the second
generation: tool support for risk assessment,
and a questioning of the universal applicability
of the first generation view of risk management.

Risk assessment tools for software systems
have appeared on the market in recent years.
However, many of these are simply
computerized checklists which measure
compliance with the first generation’s
prescribed risk mitigators. Others are more
aligned with the second generation view
described below; however, many of these take
the assets-protection viewpoint to an extreme
and focus on computing Annualized Loss
Expectancy, converting all assets to dollar
equivalents.

The advent of, first, networks, and then,
distributed processing on those networks, was
very problematic for the first generation risk
mitigation approach. The techniques that had
been adopted did not easily extend into these
more modern environments. Also at work was
concern that the first generation CIA risk model
simply did not fit all applications. A need was

67

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

felt for system-specific risk assessment. Other
fields, such as nuclear power, weapons, and
aviation, were taking a systems view and using
analytical risk analyses; their S U C C ~ S S provided
encouragement for a risk-assessment approach.
As a result of all this, a new view of risk has
emerged for software systems, and NIST played
a prominent role in prompting this view to
coalesce. [l] This new view is based on the
following system components:

vulnerabilities
threats: active, passive
assets: data, hardware, software
impacts: disclosure, destruction,
modification, unavailability
types of mitigation: avoid, transfer, reduce
threat, reduce vulnerability, reduce impact,
detect & respond, recover

This emerging view of risk says “A threat is
realized through a vulnerability, which impacts
an asset.” This more general view of risk, to be
applied on a system-by-system basis, represents
a major advance. Independently, Parker [2] has
expanded and renamed (to “levels of
abstraction”) the assets list by breaking software
into applications and operating systems, and
adding users. We has also evolved CIA into a
list of “security attributes” consisting of
confidentiality, authenticity, integrity, utility,
availability, and possession.

Little progress seems to have been made
beyond these definitions, though, and this is due
to two major roadblocks. First, the software
community doesn’t know how to measure the
risk mitigation achieved by a design, and thus,
how to draw any conclusions about assurance.
Second, the community lacks a coherent
framework for integrating assessment of the
various aspects of security and safety and
dependability, and therefore cannot easily assess
the tradeoffs among these surety domains.

Positive aspects of the second generation’s
view of risk management include recognition of
both passive and active threats, and recognition
of a range of mitigation strategies. However,
there are still limitations to this view. It is
limiting because the concepts of impacts and

assets don’t encompass all we should care about.
This view implies the system is operating
properly to begin with, and we need only
prevent the threats from being realized. This is
still a fairly static view of systems; it does not
lead the analyst to consider the full range of
system lifecycle activities and states. And, while
passive threats are acknowledged, they have not
been fully explored.

In parallel with the second generation
activities described above, progress is also being
made on many fronts which contribute to higher
integrity software systems. These include
general software development methodologies,
software system safety approaches, testing
methodologies, access control models (e.g., role-
based, constrained data items), domain specific
architectures, requirements elicitation, etc. A
general risk mitigation framework needs to be
able to factor in the mitigating potential of these
sorts of things as well.

The third generation (managing risk)

The third generation of risk management
will be characterized by:

0 A fundamental change of perspective to one
which more fully facilitates total risk
management

0 Emphasis on correct system operation
through appropriate levels of utility, access
control, integrity, availability, and safety

0 Consideration of actual threats, inherent
vulnerabilities, and the feasibility and
costhenefit of safeguards as the basis for
making system decisions.

This generation will have a dynamic, whole
system, whole lifecycle perspective: build the
right thing, build it well, and protect it
appropriately. This is what we really care about.

Providing a viable framework is key; we
must have a useful underlying perspective on
risk assessment and risk management within
which to work. It is imperative that enough
effort be devoted to deriving a good framework,
for this is the foundation, the view into the

68

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

problem space, that colors how we are able to
see sollutions. For example, while a narrow view
of sabiotage might focus on virus protection in an
operational system, a whole lifecycle view will
enconqxss protection throughout design,
implementation, delivery, and maintenance.
And while a narrow view of network security
mighl focus on encrypting communications, a
whole system view will explore whether network
nodes have compatible security policies and
whether they exchange sufficient security
information to uphold the policies. And while a
narrvw view of integrity might address
mech,anisms within a properly operating
database, a dynamic view will also look at
shutdlown-startup synchronization issues.

The framework should not reduce the
problem to one of protecting assets. This is
simply too narrow. How would safety be
assessed? How would credit be given for
thorough design practices? How would the risk
of running the software in unplanned
environments be recognized? How would one
balance competing desires for availability and
protection? These are important considerations
if we wish1 to build the right system, build it
well, and protect it. The framework especially
shoulld not reduce the problem to mathematics
on apples and oranges. Real risks in real
systems really do not reduce to Annualized Loss
Expectancy dollars, and a single risk number is
of little use anyway in improving the system.

The only alternative to moving into the third
generation is to try to force a total risk
management role onto the second generation
perspective. This is kind of like trying to view
integrity caist into the nioId of confidentiality (an
approach that has been suggested, but which has
not met with a great deal of, or even a little,
success). It is kludging new ideas into a
paradigm that is too narrow to do them justice.
There: is danger in trying to saw with a hammer;
the time comes to invent a more relevant tool.

11. Assurance Strategies In The Three
Generations

First generation

The first generation made assurance
straightforward for the consumer: buy rated
products. It was also straightforward for the
vendor: get rated. The picture was compliance-
oriented.

Second generation

For many the answer’s the same: buy rated
products. This may stiII work where a first
generation environment holds. A major
problem being encountered, however, is the
difficulty of composing rated products into
today’s more complex systems, which, if it can
even be done, usually results in overkill
solutions at unacceptably high cost.

But developers are increasingly rejecting the
underlying mindset that simply complying with
orders actually provides the needed surety. The
second generation risk model represents a
positive trend toward assessing a system’s actual
surety needs. Unfortunately, it does not have a
sanctioned assurance technique, at least not in
the US The Federal Criteria (3 J may provide a
step in the direction of customized risk
mitigation, but it’s still within the rated product
approach.

Many emerging methodologies which
contribute to high integrity systems are not
addressed by either the risk model or the Federal
Criteria. As long as there is not an assurance
technique that credits good practices, developers
will unfortunately sacrifice doing things right in
order to apply scarce resources to doing things
that are measured.

Third generation

The third generation assurance mindset must
migrate from component assurance to system
assurance. It must be aligned with a system

69

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

view that is more than the sum of a set of surety
tools. It must encourage integrating the
assessment of dependability, security, safety, and
cross fertilization between approaches for richer
solutions. It must deal with interdependencies,
system dynamics, and with the whole lifecycle.
It must allow for application of cost-effective
measures commensurate with actual
requirements. And it must allow for solutions
which represent real surety as opposed to
compliance. (Situations can be cited where
strict compliance is not even functional, much
less secure. For example, allowing only DES
encryption leaves no functional way to distribute
keys.)

Third generation assurance will not be easy.
It must begin by developing a common language
for surety requirements, that is, an ability to
specify degrees of risk-mitigation required in
various areas for a system. This gives a
developer the ability to tailor a surety model for
the system (or at least select from an available
set of models). Next, the developer needs
assistance in selecting risk-mitigating
techniques, and understanding their
effectiveness, and dependencies and
interactions. This leads to a system design, and
perhaps also to development and operational
methodologies. Finally, there needs to be some
accountability in applying the selected
techniques. This final step is the assurance that
the expected benefit is actually realized.

111. An Example Of A Third
Generation Risk Framework

We envision a risk management framework
where surety requirements are determined in
terms of perceived risk and desired risk
reduction, within the contest of a risk
identification matrix. Then, the effectiveness
and interaction of risk mitigators is explored,
within the context of a system risk model.

links them with other elements in the system, in
order to achieve a realistic picture of the effect
of using that barrier in the particular system at
hand. The result of all this is a risk assessment
and a risk management strategy for the
system. This, in addition to
auditinddocumenting the actual application of
chosen technologies would provide further
evidence for assurance.

This vision of software system total risk
management is explored in more detail in this
section. A research project at Sandia National
Laboratories is developing the concepts put forth
here. [4,5] These concepts form what we feel is
a viable risk management framework.

The components of our vision are:

risk identification matrix
risk mitigators matrix
system risk model
process:

building the model
barrier analysis
threat analysis
analysis engine

risk evaluation
costhenefit evaluation

The risk identification matrix provides a
taxonomy of risk sources for software-based
systems. The rows of the matrix represent
surety objectives, and the columns represent
aspects of a system which might give rise to
risks. The cells of the matrix contain sources of
risk. The intent is to populate each cell to
eventually contain all possible relevant sources
of risk for any system, arranged as pieces of a
taxonomy.

The matrix is read:
“There is a [surety objective] risk relative to

[system aspect] due to [risk].”

Technology providers or others may populate a
risk mitigators matrix with some nominal
assessments of the risk mitigating potential of
the technologies. However, moving the
mitigators into the system risk model

Examples:
* “There is an [access control] risk relative to

[system composition : network] due to
[passwords exposed on network] .”

instantiates them in a particular setting and

70

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

* “‘There is an [integrity] risk relative to
[information] due to [processing error] .”

* ‘“There: is a [utility] risk relative to [state
changes : shutdown] due to [shutdown-
siiartup~ not synchronized] .”

* ‘“There is an [availability] risk relative to
[proce!;ses] due to [system overload] .”

* ‘“There: is a [safety] risk relative to
[interfhces] due to [unchecked input].”

Allthough the traditional impacts-assets are
acconimodated within this framework, it is
much broader, giving rise to exploration of
system dynamics (state changes), architecture
choices (composition), and correct operation
(utility). For a particular system undergoing
analysis, the risk identification matrix will be
pruned by the analyst to contain and prioritize
only those risks of sufficient consequence and
likelihood that they need to be mitigated.
Consequences that should be considered include
mission-related, politicalhocial, health & safety,

environmental, and regulatoryAega1.

The risk mitigators matrix has the same
format as the risk identification matrix, but
contains mitigators corresponding to risks. The
intent is that the mitigators not be limited to
hardware and software technologies, but include
rules and procedures, design and development
practices, and cover the lifecycle spectrum.
Thus credit can be given for using a proven real-
time design architecture, for using a highly rated
software development methodology, for a trusted
path delivery mechanism, for a fail-safe design,
etc.

A straightforward but simplified way of
diagramming the system risk model is
illustrated in Figure 2.

Elements of the model are system states or
events, represented by circles; transitions,
represented by lines between circles; and risk

hw = hardware
sw = software
nw = network
usr = usedoperator

op = operational
mt = maintenance
sh = shutdown
ae = abnormal event

Figure 1. Risk identification matrix

71

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

intruder
alters data

\\
intrusion V

removable .application\
media damages data \

,:.:::;:.;
......... .:.:.>: ::::::::i:::::::.
......... .. A\

repu mithnrized ._ 1: - \

data
‘1tY

Figure 2. System risk graph

mitigators, represented by the barrier symbol
along transitions. This type of modeling has
been applied successfully in other fields, but is
not commonly used yet in the software field.
The example illustrates how one mitigator (use a
reputable application) can mitigate two
transitions, and how a variety of mitigators
(visual scan, diff, overwrite check) can be
considered for mitigating a single transition.

Broadly, the process consists of first arriving
at a system risk model, through use of the risk
identification matrix and risk mitigators matrix,
then performing threat and barrier analysis
within the model, and then running an analysis
engine to compute risk along the various paths.

In the example shown in the figure, the risk
being explored is loss of information integrity

(in a spreadsheet, for example) in an operational
system. This would be only a part of some
system’s total risk model. Presumably, the
analyst has deemed this high enough in
likelihood and consequence to warrant this level
of breakdown and analysis.

Barrier analysis is instantiation and
refinement of a risk mitigator’s ability to
mitigate system specific risks. Several
characteristics of risk mitigators are considered,
including how much technology vs. how much
rules-and-procedures (rap) are involved,
perceived strength, cost to implement, ease of
use, outside dependencies. In the example,
preventing the user from accidentally altering
data by requiring a visual scan is entirely rap,
not very strong, and hard to use. Providing the
user a “diff’ tool is a stronger technology, easier

72

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

to apply, and still has some rap component (the
user must remember to use it). Providing some
sort of autoimatic overwrite check is stronger yet,
has even lerjs of a rap component (the user must
still respond appropriately), but may be
implemented in such a way as to have a high
annoy,ance factor which may cause the user to
ultimately defeat it. All these considerations
lead to an estimate of each barrier’s ability to
reduce: the likelihood of transition to the
undesired next state.

Threat agents may be active or passive.
Active: threat agents may have characteristics
such ais motivation, skills, knowledge, time and
other iresources. They are willing to incur some
amount of cost and risk, in order to gain the
perceived value of their target. Passive threats,
represienting unintentional faults in the system,
may hLave other characteristics. In either case,
as a threat unfolds into the system, the agent’s
characteristics and the system’s surety elements
may both be altered by the interactions.

The analysis engine must combine transition
probabilities, threat estimates, barrier estimates,
and risk reduction requirements to yield
information on remaining risk. Uncertainty
analysis must accompany the calculations, so
that the engine can target highly uncertain
calculations for refinement. Furthermore, the
corresiponding costs - monetary and social - that
come with the reduction in risk must be factored
into the analysis to provide a complete
framework for decision making. The
appropriate mathematics is a current subject of
investigation.

AI11 the concepts described here are still
evolviing.

IV. Beyond the Framework - Better
Surety Requirements

A natural extension to the work described in
Section I11 i s to provide for better expression of
software surety requirements for a system.
Today, the software coinmunity does not really
have a clomnionly accepted language for
expressing the functional requirements of a

system; in fact, software requirements elicitation
is an active research topic. [6,7] If we can
barely do an adequate job with functional
requirements, we are really lacking in our ability
to express surety requirements. Unfortunately,
this is true even for high consequence
operations, such as in the nuclear power
industry as it become more software-dependent.

In light of our risk management framework,
surety requirements can be viewed as statements
of the need for risk reduction. An expression
representing total system risk is one of the
natural outputs of the analysis engine previously
discussed. It should be possible, then, to derive
requirements as a mathematical complement of
the risk expression. And, since the system risk
model is designed to accommodate interactions
and dependencies among risk-related elements
of the system, we could, theoretically, obtain a
more optimal set of requirements in which
redundancy has been reduced by running an
initial set of requirements through the analysis
engine. Finally, when coupled with cost-benefit
analysis, the resultant risk expression offers the
opportunity to achieve the most risk reduction
for the resources allocated. Thus, it may be
possible to adjust the requirement set to reflect
the desired balance between various surety
objectives.

Variations of this approach have been used
to optimize the design or upgrade of control
systems and safeguards systems. A fundamental
property of this type of derivation is that the
requirements will be complete if and only if the
risk expression is complete. That is, the
resultant requirements will be only as good as
the risk model. While these ideas seem to hold
promise as a methodology for expressing surety
requirements, much work needs to be done.

Summary

This paper has argued for the need to replace
the traditional views of computer security and
risk management with one which is broad,
integrated, and useful for managing risk
throughout the life of a software system. The
evolution of thought in these areas was

73

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

presented as a set of “generations” in order to
emphasize the need for significant paradigm
shifts. We are on the threshold of the third
generation, which is more encompassing,
integrated, and tailorable than previous
generations. Third generation methodologies
and tools need to be derived for the software
community-at-large. Challenges for the third
generation include developing a broad-
perspective software system risk theory,
developing effective tools, and re-defining
assurance to be based on measurable risk
reduction rather than on compliance.

This paper presents one possible third
generation approach. This approach offers the
ability to explore tradeoffs and interactions
among various surety objectives and techniques.
It brings system dynamics and lifecycle concerns
into an up-front analysis, and produces a record
of surety requirements and decisions. The
approach can be used now in a qualitative sense,
and can become more quantitative as the theory
is refined and data are collected.

References

1. Proceedinm of the 4th International
Computer Security Risk Management Model
Builders Workshop. August 6-8, 1991.
Sponsored by NIST and the University of
Maryland.

2. Parker, D., “Restating the Foundation of
Information Security,” Proceedings of the 14th
National Computer Security Conference,
October, 199 1, Washington, DC.

3. Federal Criteria for Information Technology
Security, Published by NIST and NSA.

4. Fletcher, S. K., “The Risk-Based Information
System Design Paradigm,” Proceedings of the
IFIP SEC’94 Conference, May 23-27, 1994,
Curacao, NA.

5 . Jansma, R. M., et. al., “Risk-Based
Assessment of the Surety of Information
Systems,” Proceedinm of the 1 lth International
Symposium on the Creation of Electronic Health
Record Systems and Global Conference on
Patient Cards, March 13-18, 1994, Orlando, FL.

6. Kang, K. C. and M. G. Christel, Issues in
Requirements Elicitation, SEI-92-TR-012.
Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA.

7. Lubars, M., et. al., A Review of the State of
the Practice in Requirements Modeling, MCC
Technical Report Number RQ-169-92.
Microelectronics and Computer Technology
Corporation, Austin, TX.

74

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore. Restrictions apply.

