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Abstract 
Security, assurance, and risk management in 

sojiiare systeiiis are viewed in t e r m  of three 
historical generations, with sigiuycant 
paradigm ships occurring in each generation. 
The software community is currently on the 
brink of the third generation, and needs 
advances in modeling, risk theory, tools, and 
assurance methods. The third generation is 
characterized by a broader, more integrative 
perspective on risk, and by modeling and 
measurement. This paper presents a third 
generation framework which demonstrates the 
viability of an integrative and quantitative 
approach. 

Introduction 

An historical look at software systems 
reveals a progression of thinking about 
protection and risk management. In this paper, 
three generations are defined. For each, we 
examine the prevalent views of risk, risk 
assessment, and risk mitigation. We also 
examine prevalent strategies for assurance. 
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Many gaps exist in current knowledge of 
how to manage and assess risks in software 
systems. This paper presents a fresh perspective 
which enables comprehensive risk-based design 
and evaluation of systems, spanning a range of 
surety concerns (including correctness and 
safety, in addition to traditional security 
concerns), and addressing multiple system 
aspects. We believe this to be a new and unique 
multidisciplinary approach which transcends 
both traditional security approaches and 
traditional risk analysis methods. It facilitates a 
risk analysis completely tailored to the system at 
hand, instantiating its threats, its barriers, and 
its needs for risk reduction. 

This perspective considers risk states (“data 
integrity lost”, “incorrect output”, “system 
unavailable”, etc.) and how such states might be 
reached given various starting conditions 
(normal operation, maintenance, etc.). Once the 
system is modeled from this viewpoint, barriers 
or risk-mitigators can be inserted into the model 
and their effectiveness can be estimated. The 
model must support a very broad interpretation 
of barriers, from software features, to physical 
protections, to operational procedures, to 

* This work was sponsored by the U. S. Department of Energy under contract DE-AC04-94AL85000. 

66 
0-8186-7318-4/95 $4.00 0 1995 IEEE 

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore.  Restrictions apply. 



software development methodologies, to design 
techniques. The modeling technique must allow 
system risk elements, such as barriers, to exert 
multiple influences throughout the system, so 
that we can deal realistically with complexities 
such as: conflicts between different surety 
objectives, secondary effects of elements, 
multiple uses of a single barrier, multiple 
barriers to a single risk, etc. The modeling 
technique must also allow one to define threat 
agents ancl to move them through the system in 
such a way that the model reacts to the progress 
of the agent. We believe our modeling 
technique provides a firm basis for such 
sophisticated analysis. 

I. 
software! systems 

History of risk management for 

For purposes of discussion, we view the 
progression of thinking about risk management 
and assurance in terms of three “generations.” 
Thesie descriptions are meant to capture the 
prevalent views of the times, although there 
certainly might have been pioneers who were 
ahead of the times. 

The .First generation (rated systems) 

The first generation of risk management was 
compliance-oriented, and required buy-in to a 
predefined, set of risks which was assumed to 
apply to all systems. Risk concerns revolved 
around certain aspects of “ C I A  (confidentiality, 
integrity, and availability). These views evolved 
in an enviironment characterized by mainframe 
computers and protection of classified 
information. 

Not only was the set of risks fixed, but the 
mitigation strategies wcre dictated. These 
strategies included: 
0 access; controls at the system and file levels 

(e.g., passwords, locks, MAC, and DAC) 
0 encryption for network transmissions 
0 tiisastler recovery planning. 

There ‘were several levels of systems defined, 
where a higher level meant more of this security 

model was implemented and/or it was 
implemented with more rigor for correctness. 

In this generation, risk assessment was, for 
the most part, missing. Of course, some form of 
initial risk assessment occurred which defined 
the CIA set of risks for all systems. Beyond 
that, system-specific risk assessment usually 
included only site-specific disaster recovery 
concerns, and determining which security level 
applied. A system either did (compliant) or did 
not (non-compliant) implement the required 
strategies. Moreover, these strategies were 
based on stand-alone architectures where the 
security imposed on one system had little or no 
impact on the security for other systems. There 
was little leeway for customized solutions, never 
mind optimal solutions. 

While restrictive, this approach succeeded in 
its environment. 

The second generation (protecting assets) 

Two things developed in the second 
generation: tool support for risk assessment, 
and a questioning of the universal applicability 
of the first generation view of risk management. 

Risk assessment tools for software systems 
have appeared on the market in recent years. 
However, many of these are simply 
computerized checklists which measure 
compliance with the first generation’s 
prescribed risk mitigators. Others are more 
aligned with the second generation view 
described below; however, many of these take 
the assets-protection viewpoint to an extreme 
and focus on computing Annualized Loss 
Expectancy, converting all assets to dollar 
equivalents. 

The advent of, first, networks, and then, 
distributed processing on those networks, was 
very problematic for the first generation risk 
mitigation approach. The techniques that had 
been adopted did not easily extend into these 
more modern environments. Also at work was 
concern that the first generation CIA risk model 
simply did not fit all applications. A need was 
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felt for system-specific risk assessment. Other 
fields, such as nuclear power, weapons, and 
aviation, were taking a systems view and using 
analytical risk analyses; their S U C C ~ S S  provided 
encouragement for a risk-assessment approach. 
As a result of all this, a new view of risk has 
emerged for software systems, and NIST played 
a prominent role in prompting this view to 
coalesce. [l] This new view is based on the 
following system components: 

vulnerabilities 
threats: active, passive 
assets: data, hardware, software 
impacts: disclosure, destruction, 
modification, unavailability 
types of mitigation: avoid, transfer, reduce 
threat, reduce vulnerability, reduce impact, 
detect & respond, recover 

This emerging view of risk says “A threat is 
realized through a vulnerability, which impacts 
an asset.” This more general view of risk, to be 
applied on a system-by-system basis, represents 
a major advance. Independently, Parker [2] has 
expanded and renamed (to “levels of 
abstraction”) the assets list by breaking software 
into applications and operating systems, and 
adding users. We has also evolved CIA into a 
list of “security attributes” consisting of 
confidentiality, authenticity, integrity, utility, 
availability, and possession. 

Little progress seems to have been made 
beyond these definitions, though, and this is due 
to two major roadblocks. First, the software 
community doesn’t know how to measure the 
risk mitigation achieved by a design, and thus, 
how to draw any conclusions about assurance. 
Second, the community lacks a coherent 
framework for integrating assessment of the 
various aspects of security and safety and 
dependability, and therefore cannot easily assess 
the tradeoffs among these surety domains. 

Positive aspects of the second generation’s 
view of risk management include recognition of 
both passive and active threats, and recognition 
of a range of mitigation strategies. However, 
there are still limitations to this view. It is 
limiting because the concepts of impacts and 

assets don’t encompass all we should care about. 
This view implies the system is operating 
properly to begin with, and we need only 
prevent the threats from being realized. This is 
still a fairly static view of systems; it does not 
lead the analyst to consider the full range of 
system lifecycle activities and states. And, while 
passive threats are acknowledged, they have not 
been fully explored. 

In parallel with the second generation 
activities described above, progress is also being 
made on many fronts which contribute to higher 
integrity software systems. These include 
general software development methodologies, 
software system safety approaches, testing 
methodologies, access control models (e.g., role- 
based, constrained data items), domain specific 
architectures, requirements elicitation, etc. A 
general risk mitigation framework needs to be 
able to factor in the mitigating potential of these 
sorts of things as well. 

The third generation (managing risk) 

The third generation of risk management 
will be characterized by: 

0 A fundamental change of perspective to one 
which more fully facilitates total risk 
management 

0 Emphasis on correct system operation 
through appropriate levels of utility, access 
control, integrity, availability, and safety 

0 Consideration of actual threats, inherent 
vulnerabilities, and the feasibility and 
costhenefit of safeguards as the basis for 
making system decisions. 

This generation will have a dynamic, whole 
system, whole lifecycle perspective: build the 
right thing, build it well, and protect it 
appropriately. This is what we really care about. 

Providing a viable framework is key; we 
must have a useful underlying perspective on 
risk assessment and risk management within 
which to work. It is imperative that enough 
effort be devoted to deriving a good framework, 
for this is the foundation, the view into the 
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problem space, that colors how we are able to 
see sollutions. For example, while a narrow view 
of sabiotage might focus on virus protection in an 
operational system, a whole lifecycle view will 
enconqxss protection throughout design, 
implementation, delivery, and maintenance. 
And while a narrow view of network security 
mighl focus on encrypting communications, a 
whole system view will explore whether network 
nodes have compatible security policies and 
whether they exchange sufficient security 
information to uphold the policies. And while a 
narrvw view of integrity might address 
mech,anisms within a properly operating 
database, a dynamic view will also look at 
shutdlown-startup synchronization issues. 

The framework should not reduce the 
problem to one of protecting assets. This is 
simply too narrow. How would safety be 
assessed? How would credit be given for 
thorough design practices? How would the risk 
of running the software in unplanned 
environments be recognized? How would one 
balance competing desires for availability and 
protection? These are important considerations 
if we wish1 to build the right system, build it 
well, and protect it. The framework especially 
shoulld not reduce the problem to mathematics 
on apples and oranges. Real risks in real 
systems really do not reduce to Annualized Loss 
Expectancy dollars, and a single risk number is 
of little use anyway in improving the system. 

The only alternative to moving into the third 
generation is to try to force a total risk 
management role onto the second generation 
perspective. This is kind of like trying to view 
integrity caist into the nioId of confidentiality (an 
approach that has been suggested, but which has 
not met with a great deal of, or even a little, 
success). It is kludging new ideas into a 
paradigm that is too narrow to do them justice. 
There: is danger in trying to saw with a hammer; 
the time comes to invent a more relevant tool. 

11. Assurance Strategies In The Three 
Generations 

First generation 

The first generation made assurance 
straightforward for the consumer: buy rated 
products. It was also straightforward for the 
vendor: get rated. The picture was compliance- 
oriented. 

Second generation 

For many the answer’s the same: buy rated 
products. This may stiII work where a first 
generation environment holds. A major 
problem being encountered, however, is the 
difficulty of composing rated products into 
today’s more complex systems, which, if it can 
even be done, usually results in overkill 
solutions at unacceptably high cost. 

But developers are increasingly rejecting the 
underlying mindset that simply complying with 
orders actually provides the needed surety. The 
second generation risk model represents a 
positive trend toward assessing a system’s actual 
surety needs. Unfortunately, it does not have a 
sanctioned assurance technique, at least not in 
the US The Federal Criteria (3 J may provide a 
step in the direction of customized risk 
mitigation, but it’s still within the rated product 
approach. 

Many emerging methodologies which 
contribute to high integrity systems are not 
addressed by either the risk model or the Federal 
Criteria. As long as there is not an assurance 
technique that credits good practices, developers 
will unfortunately sacrifice doing things right in 
order to apply scarce resources to doing things 
that are measured. 

Third generation 

The third generation assurance mindset must 
migrate from component assurance to system 
assurance. It must be aligned with a system 

69 

Authorized licensed use limited to: Carleton University. Downloaded on July 18,2020 at 04:04:09 UTC from IEEE Xplore.  Restrictions apply. 



view that is more than the sum of a set of surety 
tools. It must encourage integrating the 
assessment of dependability, security, safety, and 
cross fertilization between approaches for richer 
solutions. It must deal with interdependencies, 
system dynamics, and with the whole lifecycle. 
It must allow for application of cost-effective 
measures commensurate with actual 
requirements. And it must allow for solutions 
which represent real surety as opposed to 
compliance. (Situations can be cited where 
strict compliance is not even functional, much 
less secure. For example, allowing only DES 
encryption leaves no functional way to distribute 
keys.) 

Third generation assurance will not be easy. 
It must begin by developing a common language 
for surety requirements, that is, an ability to 
specify degrees of risk-mitigation required in 
various areas for a system. This gives a 
developer the ability to tailor a surety model for 
the system (or at least select from an available 
set of models). Next, the developer needs 
assistance in selecting risk-mitigating 
techniques, and understanding their 
effectiveness, and dependencies and 
interactions. This leads to a system design, and 
perhaps also to development and operational 
methodologies. Finally, there needs to be some 
accountability in applying the selected 
techniques. This final step is the assurance that 
the expected benefit is actually realized. 

111. An Example Of A Third 
Generation Risk Framework 

We envision a risk management framework 
where surety requirements are determined in 
terms of perceived risk and desired risk 
reduction, within the contest of a risk 
identification matrix. Then, the effectiveness 
and interaction of risk mitigators is explored, 
within the context of a system risk model. 

links them with other elements in the system, in 
order to achieve a realistic picture of the effect 
of using that barrier in the particular system at 
hand. The result of all this is a risk assessment 
and a risk management strategy for the 
system. This, in addition to 
auditinddocumenting the actual application of 
chosen technologies would provide further 
evidence for assurance. 

This vision of software system total risk 
management is explored in more detail in this 
section. A research project at Sandia National 
Laboratories is developing the concepts put forth 
here. [4,5] These concepts form what we feel is 
a viable risk management framework. 

The components of our vision are: 

risk identification matrix 
risk mitigators matrix 
system risk model 
process: 

building the model 
barrier analysis 
threat analysis 
analysis engine 

risk evaluation 
costhenefit evaluation 

The risk identification matrix provides a 
taxonomy of risk sources for software-based 
systems. The rows of the matrix represent 
surety objectives, and the columns represent 
aspects of a system which might give rise to 
risks. The cells of the matrix contain sources of 
risk. The intent is to populate each cell to 
eventually contain all possible relevant sources 
of risk for any system, arranged as pieces of a 
taxonomy. 

The matrix is read: 
“There is a [surety objective] risk relative to 

[system aspect] due to [risk].” 

Technology providers or others may populate a 
risk mitigators matrix with some nominal 
assessments of the risk mitigating potential of 
the technologies. However, moving the 
mitigators into the system risk model 

Examples: 
* “There is an [access control] risk relative to 

[system composition : network] due to 
[passwords exposed on network] .” 

instantiates them in a particular setting and 
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* “‘There is an [integrity] risk relative to 
[information] due to [processing error] .” 

* ‘“There: is a [utility] risk relative to [state 
changes : shutdown] due to [shutdown- 
siiartup~ not synchronized] .” 

* ‘“There is an [availability] risk relative to 
[proce!;ses] due to [system overload] .” 

* ‘“There: is a [safety] risk relative to 
[interfhces] due to [unchecked input].” 

Allthough the traditional impacts-assets are 
acconimodated within this framework, it is 
much broader, giving rise to exploration of 
system dynamics (state changes), architecture 
choices (composition), and correct operation 
(utility). For a particular system undergoing 
analysis, the risk identification matrix will be 
pruned by the analyst to contain and prioritize 
only those risks of sufficient consequence and 
likelihood that they need to be mitigated. 
Consequences that should be considered include 
mission-related, politicalhocial, health & safety, 

environmental, and regulatoryAega1. 

The risk mitigators matrix has the same 
format as the risk identification matrix, but 
contains mitigators corresponding to risks. The 
intent is that the mitigators not be limited to 
hardware and software technologies, but include 
rules and procedures, design and development 
practices, and cover the lifecycle spectrum. 
Thus credit can be given for using a proven real- 
time design architecture, for using a highly rated 
software development methodology, for a trusted 
path delivery mechanism, for a fail-safe design, 
etc. 

A straightforward but simplified way of 
diagramming the system risk model is 
illustrated in Figure 2. 

Elements of the model are system states or 
events, represented by circles; transitions, 
represented by lines between circles; and risk 

hw = hardware 
sw = software 
nw = network 
usr = usedoperator 

op = operational 
mt = maintenance 
sh = shutdown 
ae = abnormal event 

Figure 1. Risk identification matrix 
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Figure 2. System risk graph 

mitigators, represented by the barrier symbol 
along transitions. This type of modeling has 
been applied successfully in other fields, but is 
not commonly used yet in the software field. 
The example illustrates how one mitigator (use a 
reputable application) can mitigate two 
transitions, and how a variety of mitigators 
(visual scan, diff, overwrite check) can be 
considered for mitigating a single transition. 

Broadly, the process consists of first arriving 
at a system risk model, through use of the risk 
identification matrix and risk mitigators matrix, 
then performing threat and barrier analysis 
within the model, and then running an analysis 
engine to compute risk along the various paths. 

In the example shown in the figure, the risk 
being explored is loss of information integrity 

(in a spreadsheet, for example) in an operational 
system. This would be only a part of some 
system’s total risk model. Presumably, the 
analyst has deemed this high enough in 
likelihood and consequence to warrant this level 
of breakdown and analysis. 

Barrier analysis is instantiation and 
refinement of a risk mitigator’s ability to 
mitigate system specific risks. Several 
characteristics of risk mitigators are considered, 
including how much technology vs. how much 
rules-and-procedures (rap) are involved, 
perceived strength, cost to implement, ease of 
use, outside dependencies. In the example, 
preventing the user from accidentally altering 
data by requiring a visual scan is entirely rap, 
not very strong, and hard to use. Providing the 
user a “diff’ tool is a stronger technology, easier 
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to apply, and still has some rap component (the 
user must remember to use it). Providing some 
sort of autoimatic overwrite check is stronger yet, 
has even lerjs of a rap component (the user must 
still respond appropriately), but may be 
implemented in such a way as to have a high 
annoy,ance factor which may cause the user to 
ultimately defeat it. All these considerations 
lead to an estimate of each barrier’s ability to 
reduce: the likelihood of transition to the 
undesired next state. 

Threat agents may be active or passive. 
Active: threat agents may have characteristics 
such ais motivation, skills, knowledge, time and 
other iresources. They are willing to incur some 
amount of cost and risk, in order to gain the 
perceived value of their target. Passive threats, 
represienting unintentional faults in the system, 
may hLave other characteristics. In either case, 
as a threat unfolds into the system, the agent’s 
characteristics and the system’s surety elements 
may both be altered by the interactions. 

The analysis engine must combine transition 
probabilities, threat estimates, barrier estimates, 
and risk reduction requirements to yield 
information on remaining risk. Uncertainty 
analysis must accompany the calculations, so 
that the engine can target highly uncertain 
calculations for refinement. Furthermore, the 
corresiponding costs - monetary and social - that 
come with the reduction in risk must be factored 
into the analysis to provide a complete 
framework for decision making. The 
appropriate mathematics is a current subject of 
investigation. 

AI11 the concepts described here are still 
evolviing. 

IV. Beyond the Framework - Better 
Surety Requirements 

A natural extension to the work described in 
Section I11 i s  to provide for better expression of 
software surety requirements for a system. 
Today, the software coinmunity does not really 
have a clomnionly accepted language for 
expressing the functional requirements of a 

system; in fact, software requirements elicitation 
is an active research topic. [6,7] If we can 
barely do an adequate job with functional 
requirements, we are really lacking in our ability 
to express surety requirements. Unfortunately, 
this is true even for high consequence 
operations, such as in the nuclear power 
industry as it become more software-dependent. 

In light of our risk management framework, 
surety requirements can be viewed as statements 
of the need for risk reduction. An expression 
representing total system risk is one of the 
natural outputs of the analysis engine previously 
discussed. It should be possible, then, to derive 
requirements as a mathematical complement of 
the risk expression. And, since the system risk 
model is designed to accommodate interactions 
and dependencies among risk-related elements 
of the system, we could, theoretically, obtain a 
more optimal set of requirements in which 
redundancy has been reduced by running an 
initial set of requirements through the analysis 
engine. Finally, when coupled with cost-benefit 
analysis, the resultant risk expression offers the 
opportunity to achieve the most risk reduction 
for the resources allocated. Thus, it may be 
possible to adjust the requirement set to reflect 
the desired balance between various surety 
objectives. 

Variations of this approach have been used 
to optimize the design or upgrade of control 
systems and safeguards systems. A fundamental 
property of this type of derivation is that the 
requirements will be complete if and only if the 
risk expression is complete. That is, the 
resultant requirements will be only as good as 
the risk model. While these ideas seem to hold 
promise as a methodology for expressing surety 
requirements, much work needs to be done. 

Summary 

This paper has argued for the need to replace 
the traditional views of computer security and 
risk management with one which is broad, 
integrated, and useful for managing risk 
throughout the life of a software system. The 
evolution of thought in these areas was 
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presented as a set of “generations” in order to 
emphasize the need for significant paradigm 
shifts. We are on the threshold of the third 
generation, which is more encompassing, 
integrated, and tailorable than previous 
generations. Third generation methodologies 
and tools need to be derived for the software 
community-at-large. Challenges for the third 
generation include developing a broad- 
perspective software system risk theory, 
developing effective tools, and re-defining 
assurance to be based on measurable risk 
reduction rather than on compliance. 

This paper presents one possible third 
generation approach. This approach offers the 
ability to explore tradeoffs and interactions 
among various surety objectives and techniques. 
It brings system dynamics and lifecycle concerns 
into an up-front analysis, and produces a record 
of surety requirements and decisions. The 
approach can be used now in a qualitative sense, 
and can become more quantitative as the theory 
is refined and data are collected. 
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