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Abstract

We propose a security paradigm in which software security
controls are implemented as ubiquitous, communicating,
dynamically confederating agents that monitor and control
communications among the components of preexisting
applications. These agents remember events, communicate
with other agents, draw inferences, and plan actions to
achieve security goals. Key features of this paradigm are:
(1) linguistic mechanisms for specifying agents, security
models, and communications, (2) compilation mechanisms
that automatically create and install agents as wrappers
around existing application components, (3) algorithmic
definitions of how agents communicate to increase the
security of systems, and (4) a library of agent code
fragments, used by the compilation mechanism, to build
actual agents. By automating the generation and
administration of security agents, we expect to make it
cost-effective to install enough redundant agents so that
subversion of system software or of some agents can be
detected and responded to eftectively.

Introduction

We propose a paradigm shift in our approach to software-
based computer security controls. In order to guarantee the
integrity of software controls, the traditional focus has been
on controls that are simple, passive, verifiable, and built
into system software. In our new paradigm, software
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controls are:
*» Flexible and context sensitive
 Active in responding to threats
+ Reliable through redundant checking
* Incrementally added to existing systems

We believe the first step toward achieving these goals is to
wrap conventional software components with programs that
analyze communications into and out of applications,
appropriately monitoring and controlling these
communications. To be effective, such programs need
inherent goals, independent processing, communication
facilities, and persistence. This combination of features
defines software agents [Riecken 94, Wooldridge and
Jennings 95). Building on the notions of robots, softbots
(software robots) and safety, we call our system SafeBots™.
Individual security agent programs are called safebots (note
capitalization.)}

While there are many challenges facing the SafeBots
paradigm, ongoing advances in information technology
favor the ultimate success of an agent-based paradigm for
security. This paper addresses three key issues that are
critical to the ultimate success of a SateBots approach to
security:

1. What can safebots do?
2. How can safebots be protected from subversion.

3. How can ubiquitous, redundant, communicating
safebots be created, administered, and controlled so they
are cost effective and commercially viable.

Our SafeBots paradigm emerges from lessons learncd about
previous paradigms and from new technology opportunities.

1 we emphasize that the work described in this paper is
conceptual and is not augmented by actual implementation.
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We begin with a background section that summarizes
lessons learned and a technology opportunities section that
suggests it is time to break away from old assumptions
about how to approach security.

Background

In the early 1970s as the first computer networks emerged,
computer security became a compelling issue. An early
problem was that, while the shared-access operating
systems of that era had mechanisms to prevent one user
from accidentally interfering with the work of others, none
of these mechanisms were effective against deliberate efforts
to violate protection boundaries. Several research efforts
were launched to remedy this problem. Many applied repair
efforts continued through the 70s—and were uniformly
unsuccessful. The research community learned that repairing
existing commercial operating systems against deliberate
intrusions was futile.

Since repairing flaws doesn’t work, attention turned to
designing multi-user secure operating systems using two
approaches:

1. ‘The operating system provides reliable mechanisms
that higher level software can use to enforce various
security models and policies. Most of this research
pursued a generalization of capability-based addressing.
[Needham 72, Lampson et al. 76, Linden 76, Neumann
etal. 77].

2. An operating system kemel enforces a well-defined
security model such as the Bell and LaPadula multi-
level security model [Bell and LaPadula 73]

Examples of each of these approaches eventually reached the
marketplace in commercial products. IBM’s System 38 used
capability-based addressing but did not exploit it
significantly for security. Security kernels that were
certified to enforce security policies also were marketed, but
did not achieve much commercial success. The moral was
that security features that impact time to market or
performance are unlikely to be built into successful
commercial products.

By the 1980s, personal computers were becoming
commonplace. The personal computer temporarily avoided
the problem of shared access by concurrent users, and
surrendered all pretense that any effective security control
was provided by the operating system. Of course, once
personal computers are linked together, the security
concems burgeoned.

Recent work on security controls has centered on
encryption, firewalls, and intrusion and anomaly detection
techniques. These techniques can be implemented with a
manageable level of reliance on software integrity, and the
marketplace for all of these security techniques is
exploding. (Not all products on the market minimize their
reliance on software integrity, and not all are resistant to a
determined intruder.)
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By the late 80s, it seemed that even the research
community had largely given up on the idea of developing
software-based security controls that will resist the attacks
of a determined intruder. Yet many privacy, security, and
availability requirements cannot be satisfied if the only
rigorous tools available are hardware isolation, encryption,
rigid firewalls, and network-watching intrusion detectors.
The key problem with software-based security controls is

that it is very difficult to ensure the inmgri[y of software

when one is concerned about deliberate efforts to bypass and
subvert the controls. A Maginot Line approach does not
work. We need ways to build software-based defenses while
minimizing the danger that a determined intruder will
simply bypass or subvert the controls.

The Technology Opportunities

Several recent trends in computer technology enable new
approaches and new paradigms that have not been practical
in the past.

* Distributed systems. Distribution introduces
additional complexity and vulnerabilities that make
security more difficult. However, as we learn to
manage complexity and use encryption routinely to
protect communications between processors, it
becomes possible to view distribution as an advantage
for security. Hardware isolation and encrypted
communications can be used to protect distributed
software with differing levels of confidence. Even a
complete subversion of controls at one node need not
lead to catastrophic failure. With enough redundancy in
the controls, it is feasible that no single failure will
lead to any significant security lapses.

* Decreasing hardware costs. Large amounts
processor time and communications bandwidth can now
be devoted to security without degrading response.
While it has often been assumed that security should
not consume more than about 10% of the
computational resources, processing is becoming
virtually free. In the future, software controls that
consume 90-99% of the resources can be very cost
effective. (In many current applications, user interface
graphics consume 90% of the resources and no one
complains about that.) Over time, it will also become
increasingly cost-effective to install security controls
on dedicated processors where they are more easily
protected.

* High-level protocol standards. Emerging
standards like HTML and CORBA muke it increasingly
practical for security controls to monitor and understand
component interactions, Securily controls can be
inserted as cextensions of well-defined component
interfaces, and well-defined interfaces make it feasible
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to automate the generation of security wrappers that
protect components.

* Very high level specification languages.
Improving technology for automatically compiling
specifications into operational software allows the
creation of security systems from high-level
requirements. If security controls are going to be
pervasive and redundant, then we will bave to automate
more of the generation, installation, administration,
and validation of these controls.

What SafeBots Do

The SafeBots concept is that software security controls
become active agents that wrap insecure components,
communicate with each other, and are smart enough to
adapt their actions to the local and global context. Since
safebots are agents, they can be programmed to perform
authentication, access control, intrusion detection, or other
security controls. In practice, safcbots are structured either
as wrappers for application components [Genesereth and
Ketchpel 94], or as independent safebot agencies
[Wiederhold 92] that support the coordination of safebot
activities.

Safebots monitor communications by wrapping an
application’s components. A safebot provides a level of
security that is appropriate for the local resource it is
protecting, without imposing local constraints on the
global system.2 When wrapping a component, application,
or computer, X, one replaces it with another component,

2 With networks that cross many independent administrative
domains, security mechanisms based on imposing policies on
others are doomed to failure. With a distributed approach to
security, one can put walls and gates in one’s own territory and
cooperate with (but not completely trust) well-behaved
neighbors.
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application, or computer, Y, such that ¥ receives all
messages to and from X, censors or edits them, and passes
them on to X or to an alternative recipient. Safebots can

* Detect errors or suspicious patterns of activities

« Block inappropriate actions

* Require further authentication before allowing access
¢ Add to the history of the user, session, or component

« Communicate with other safebots about potential
intrusions

* Fix or randomize the duration of the component call to
thwart use of timing covert channels, and

* Check that responses do not leak sensitive information.

Figure 1 shows how SafeBots preserves the structure and
code of a distributed application while extending it into a
highly secure and survivable application. In this figure,
some safebot wrappers run on the same nodes as the
application components they are protecting, and some run
on dedicated processors and intercept all communications to
or from a protected component.

Other safebots are independent agencies that accumulate
information (o be selectively shared among safebots. These
safebot agencies support communication and collaboration
among safebots. Safebot agencies provide common
mechanisms for controlled sharing of information about
users, computers, sites, system status, normal patterns of
behavior, histories of intrusions, recent attack patterns,
corrupt software, and the status of other safebots. Some
safebot agencies are expert assistants supporting security
officers. By being voluntary services with limited trust in
other safebots, agencies respond to open networks
composed of many independent administrative domains. A
given safebot may confederate with different agencies for
different purposes [Filman and Linden 96).

Safebot agencies support different security functions; for
example, different agencies will provide services that
support:

* Authentication of both users and services

+ Security status moniforing

« Behavior proliling.

» Rapid communication about known attack patterns, for
example, safebot agencies may disseminate
dynamically updated information about known viruses.

* Reasoning about the trust to place in communications
from other safebots,

 Sccurity officers.

* Security adininistrators.

Figure 2 illustrates some of the potential safebot agencies.
As an example of the additional flexibility that can be
achieved with safebot agencies, consider their potential role

in supporting very flexible user authentication. Conven-
tional authentication is usuvally a rigid, static decision
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removed from supporting context like the user’s location,
recent terminal idle time, and the session’s recent history of
anomalous or suspicious actions. An authentication agency,
in addition to storing the information needed to authenticate
a user at a remote site, can collect reports about user actions
and dynamically determine a contidence level in the user’s
identity. This information can be shared as a user connects
to multiple sites. A safebot protecting a critical resource
may check with the user’s authentication service before
granting a request for especially sensitive information, and
then may demand redundant authentication. In one approach
to reauthentication, the authentication service maintains a
list of user-provided memories that no one else is likely to
know. The advantage of this approach is that it requires no
special hardware and can be used when the user is al a
location where authentication hardware is missing or
broken.

Protecting Safebots from Bypass and
Subversion

SafeBots builds on, complements, and extends the security
provided by encryption mechanisms. We assume that
encryption protects safebot-to-safebot communications from
eavesdropping and spoofing. The communications of the
application programs being protected may or may not
already be encrypted. If they are, safebot wrappers monitor
the communications before encryption and after decryption.
If the application communications are not encrypted,
safebot wrappers are a convenient way to add encryption,
and safebot agencies are a way to support key management,
Encryption can also help sequester application components
and prevent the safebot from being bypassed.

The overall security controls enforced by safebots must
continue to function reliably even when some of the
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safcbots or the operating system underneath them been
subverted. In a distributed system, approaches for dealing
with this threat include running safebots on dedicated
hardware, employing continuous mutual vetting of
distributed safebots, reasoning about the level of trust to
place in communications from other safebots, and isolating
rogue safebots.

The SafeBots System

Our vision of the SafeBots system (as a software system) is
fancifully illustrated in Figure 3. The system has three
major parts: OntoSec, a language for describing safebot
specifications, component behaviors, and inter-safebot
communications; Swathe, a compiler of specifications and
library components into safebot wrappers, stand-alone
safebots, and installation scripts, and SecLib, a library of
reusable safebot components and code fragments. SecLib
components come with both code and an OntoSec
description of what the code does and how it is to be knit
into a safebot. (Some SecLib elements are purcly OntoSec
description, useful when Swathe knows how to expand such
a description by itself or when the description expands out
into other defined components.) SecLib has two parts: (1)
generic components useful in any application involving
wrapping agents and (2) components that are particularly
suited for security algorithms. Examples of generic
components include inter-safebot communication, database
mechanisms for long-term memory and short-lterm
transactions, pattern-matching, and generic wrappers for
particular protocols (e.g., WWW and CORBA). Examples
of security components include particular implementations
of authentication mechanisms, predefined agencies,
algorithms for computing trust factors and intrusion
detectors.
The user of SafeBots does two things:

¢ Adds components to SecLib. These are code and
OntoSec descriptions of that code.

¢ Develops inputs for Swathe.

Swathe, given (1) an OntoSec specification of the desired
goals and behavior of the new safebots, (2) an OntoSec
specification of the interface of the to-be-wrapped
applications, (3) a SecLib of appropriate code fragments,
and (4) target information about the locations of the to-be-
wrapped applications, produces (1) a set of safebots (both
wrapper agents and agencies) and (2) a script for performing
the wrapping and installing the safebots. Executing the
script performs the wrapping.

The application is now more secure. The systems
generated by Swathe scripts can span several applications
on multiple machines and may be created pieccemeal over
time.

We discuss each component in more detail below,
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Figure 3: Swathe takes user specifications written in
OntoSec, combines them with the library of security
components and produces safebots and installation scripts
Jor these safebots.

OntoSec

Our premise is that safebots communicate. Qur
subpremise is that we will generate safebots from a
specification of their desired properties. We use a common
language for both safebot specification and safebot
communication. We call this language OntoSec, for
“ontology for security.” OntoSec is a language for
representing security requirements, specifications, goals,

Method Item Category

Person Class e.g., Jane Doe

Event Class Something that happens

History Class A record of a session or a

__person

Action Class A program to be run in
response to events

Session Class A login, associated with net
operations

Resource Class A particular file, database or
machine

Operator Class An application program

May Relation Permission

Item Relation A data item within a resource

OnMachine Function [ An operation on a particular
resource

HasPrivilege | Relation Connects privileges with

: _persons or sessions

Knows Modality | Expresses a safebot’s or
person’s knowledge

Goal Modality | Expresses the goal or policy
of a safebat

Probability Modality | Expresses probability of an
assertion

Figure 4. By providing primitives for the conceptual entities
of the security domain, OntoSec enables both formal
specification of systems and inter-safebot communication.
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actions, events, and knowledge of agents. For example,
OntoSec can describe protocols; the security properties of
resources and components; the privileges of users and
sessions; events, actions to be taken on events, and
semantic bindings for implementing those actions; and
histories of users and systems. OntoSec provides a
vocabulary for specifying the security properties to be
enforced by safebots and for safebots to communicate with
each other and with security personnel.
Important dimensions of OntoSec are that:

« It is expressive enough for safebots to express their
policies, status, knowledge, beliefs, and concems. It
must support safebots in determining the level of trust
to place in the messages and requests of other satebots.

» It is directly computable; that is, we want a system
that infers the consequences of a collection of security
statements in a reasonable amount of time.

e It provides a way of unifying programmatic behavior
with reasoning.

Figure 4 lists some typical classes, predicates, and
imperatives that need expression in OntoSec. Security
systems must deal with people, things that happen, both
currently and in the past, actions (o be taken on particular
events, and the properties of individual applications. The
ontology must be able to discuss permissions and
obligations, the physical configuration of elements, and the
knowledge of individuals and their goals and deal with
probabilistic and evidential reasoning. Figure 5 shows
typical OntoSec statements in an informal logic, including
examples of “user predicates” (e.g., TrustedFriends),
permissions for a particular component, the consequences of
allowing execution of an unbounded program, and actions
to be taken on events (e.g., warnings on repeated password
failures and blockages after raised suspicions). Note that the
language has “second order™ or “modal™ aspects. in that it
expresses notions such as goals, knowledge, and
probability.

This notion of ontological specification of desired
behavior is an important theme in current Al research
[Neches et. al. 91]1. Examples of ontological approaches to
security include Yialelis et. al [Yialelis et. al. 96] and the
deontic logic work of Bieber and Cuppens [Bieber and
Cuppens 93]. An important element in the generation of
communicating intelligent agents is an appropriate
underlying communication protocol; KQML [Finin et. al.
94] is one such language.

Wrapping with Swathe

SafeBots is based on the wrappability of applications and
components. We assume that components to be protected
(1) are specified—that is, have a well-defined, formally
representable interface, (2) can be sequestered—that is,
placed where intruders cannot invoke them directly, and



John € TrustedFriends (LockheedMartin)
May(p,Write,DB42,x,y) — May(p,Read,DB42,x,y)
May(p,Read,item(DB42,Salary(q)) —

(p=q | WorksFor (p,q))
May(p,s,OnMachine(k, Shell), x, y) &
UserProgram(m) —»May(p,x,OnMachine(k, m), X, y)
Owner(p,r) - VYm.May(p,m,r,x,y)
FailedPasswordTries(s,h,r) > 5 —

Notify (SessionHolders (s), PasswordHacking(s)) &

Vrx y. ~May(User(s),s, 1, X, ¥)
Goal(Suspicious(p) —» ~May(p,r,a,x,y))

Figure 5. Because OntoSec provides a language for
expressing security concepts, SafeBots systems have a
richer environment of behaviors and responses

(3) can be substituted—that is, a replacement component
can be introduced into the system in their place. This
replacement component supports the specified interface,
performs whatever security actions are associated with the
call, and invokes the sequestered, original function to do the
actual work. Examples of wrapped components range from
network proxy servers through UNIX executable shells on
to tracing in Lisp. _

Manual wrapping is labor-intensive, cumbersome,
error-prone, and inconsistent. We argue for the need for
tools that perform such wrapping automatically. Such a
tool (which we call Swathe) takes as inputs:

» The interface definitions of the application components

» OntoSec specifications of desired security properties

e A library of security algorithms and safebot code
fragments (SecLib)

« The physical organization of the system (e.g.,
locations of existing applications)

and produces

« A wrapped application or component that conforms to
the specified security properties and

 An installation script for that wrapped application.

Note that Swathe is not dealing with the semantics of
application component interfaces—security programmers
will write SecLib routines that can do things with the
information content being passed. Rather, the automatic
programming of Swathe adjusts the safebots code to deal
with the syntax of communications—a more tractable and
quite useful activity.

An important element of this scheme is the existence
of SecLib—Swathe works primarily by selecting
appropriate elements from this library and coherently
knitting them together. The SafeBots algorithms discussed
above would be realized from such components.

When a safebot intercepts a method invocation (o or
from the wrapped component, Swathe makes additional
parameters available to the safebot. These parameters
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identity the calling session, its security context, and the
responsible human source of the call. (Additional
parameters like these are already passed by CORBA remote
procedure call implementations such as Orbix.)

SecLib

SecLib is an extensible collection of algorithms,
mechanisms, and safebot code fragments that understand

OntoSec and can be automatically assembled into safebots.
These fragments enable safebots to:

+ Sense and evaluate their environment to detect security
threats

 Understand and reason about OntoSec specifications
« Communicate with other safebots

+ Reason about actions to best enforce security policy in
the current context
¢ Reason about cominunications received from other

safebots. (For example: Have they been subverted?
What information should 1 send them? Should we

collectively ostracize them? How docs their
communication affect my understanding of my
context?),

Additional safebot fragments implement specific security
algorithms. They focus on redundant user authentication,
data aggregation, statistical analysis, access control, denial
of service due to system overloading, and other specific
threats and controls.

Swathe weaves these safebot fragments into safebots
capable of enforcing OntoSec specifications for the
application component around which they are wrapped.

Safebots dynamically form federations, joined by
interest in the behavior of particular vsers, systems, or
sessions. They check on each other and evaluate the trust
they place in communications from other safebots. Since
safebots are created by the owners (or “partial owners”) of
components, SafeBots technology supports the realization
of systems embodying multiple, overlapping administrative
concerns.

Genetic diversity

By including multiple versions of algorithms and fragments
in SecLib, we enable Swathe to introduce “genetic
diversity” into its space of wrapped organisms. Thus, a hole
in one particular implementation of a component does not
render vulnerable every user of the semantics of that
component. A diverse ecology of security mechanisms is
less vulnerable (o a single-discase catastrophic failure than
is a monoculture of identical organisms. Similarly, a
system composed of security elements that trust each other
less than completely and whose “genetic code™ varies is less
exposed to a single point of failure, much as biological
systems use multiple immune responses (o protect against
a varicety of parasitcs However, aside from work on genetic



algorithms, it is difficult to get interesting, complex
computer programs (o evolve on their own.

Research Concerns and Potential Limitations

While safebots have many advantages for security, they also
have disadvantages—especially in the near term:

» Safebots wrap only application components that have
well-defined application program interfaces (APIs),
specified in a supported interface definition language
(IDL). Applications with complex GUI's or interpreters
(e.g., shells, programming environments) arc not good
candidates for wrapping.

* We need to determine if safebots can detect subversion
of the lower level software running beneath another
safebot that they have trusted in the past.

* Initially, safebots will make security administration
more complex. It will be difficult for the average
security officer to understand everything that is going
on. Conliguring safebots to check on each other will
be complicated. Eventually, the benefits of redundancy,
high-level specifications, and visualization will make
the security officer’s job easier, but it will be some
time before we achieve enough redundancy to cover
mistakes in administering security.

» Safebots themselves can become a source of
catastrophic failure. Subverting a safebot could become
a way to attack systems, and inept security designers
could design safebots that reduce rather than enhance
survivability. SafeBots is designed so safebots can
check on each other and limit their trust in other
safebots. We need to determine the extent to which
these mechanisms are practical.

« Safebots will use computational resources and can
degrade response time. At a time of crisis, heightened
safebot activity could tie up a system just when it is
most needed. Assigning safebots to run on their own
hardware is a partial solution to this concern.
Eventually, safebots can also reason about the effect
they are having on performance. Faster hardware and
careful design are also key to long-range mitigation of
this concern.

Conclusion

SateBots is a vehicle for experiments with the cost-
effectiveness of redundant security agents distributed
pervasively throughout applications. The long term goal of
SafeBots is to make defensive controls dramatically less
expensive and force intruders to breach redundant barriers
turning the advantage to security defense and fundamentally
changing the balance between penetrators and security
personnel.
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