
MANAGING TIME FOR SERVICE AND SECURITY 
Ruth Nelson 

Information System Security 
48 Hardy Ave. 

Watertown, MA 02172 

Elizabeth Schwartz 
University of Massachusetts at Boston 

Department of Math and Computer Science 
100 Morrissey Blvd. 
Boston MA 02125 

Abstract 

Most security policies and mechanisms ure concerned with 
controlling the dissemination of information or assuring its 
integrit.v. System management policies emphusize allocating 
resourcesfairly. Combining techniques from security and 
management can allow us to develop countermeasures 
aguinst many of the network attucks on our systems. In 
particular, security policies and mechanisms need to be 
extended to manage resources quantitatively, as well as in a 
binary manner. The question is not whether access to service 
is allowed or not, but how to pruvide all the uuthorized 
services to the limit allowed by the cupucity of the system. 
This paper explores the idea of ullocating time-limited 
resources to deter or counter attucks that can cause the 
system to overload or crash. These overloads can cause not 
only loss of system availubility to legitimate, well-behaved 
users, but also loss of system integrity und information 
security. 

Introduction 

Most security policies and mechanisms are concerned with 
controlling the dissemination of information or assuring its 
integrity. System managers are also concerned about 
protecting information, but they put a lot of their effort into 
managing time-consumable resources: processing capacity 
and communications access. Combining techniques from 
security and management can allow us to develop 
countcrmcasures against many of the network attacks on our 
systems. Security policies and mechanisms need to be 
extended to manage resources quantitatively, as well as in a 
binary manner. Avoidance of system overloads through 
quantit?tive resource management will provide better system 
service, regardless of whether the overloads are the result of 
deliberate attacks or accidents. Since denial of service attacks 
can exploit security features and mechanisms to shut the 
system down or even to compromise some of the system 

security, system security can be improved by including fair 
allocation of service as a security goal. 

Access control policies usually are binary: a user either is allowed 
access to a given resource or not. The resource is treated as a 
unitary object, with no attribute of quantity. This binary, non- 
quantitative quality of access control persists even in systems with 
refined security policies. The objsts may become smaller, and the 
conditions for granting access may include conditions such as time 
of day, but eventually, access is either granted or denied. 

System management policies, on the other hand, emphasize 
allocating resources fairly. The processing and storage resources are 
treated as finite consumables, and their capacity is critical. The 
question is not whether access to service is allowed or not, but how 
to provide all the authorized services to the limit allowed by the 
capability of the system. These policies address denial of service 
prevention: they try to prevent resources from being consumed 
unfairly and made unavailable for authorized use. 

Attacks on system availability typically consume limited system 
resources and deny their fair use. We will examine some of these 
unfair uses and some ways of detecting and limiting them. Attacks 
on limited system resources can also cause systems to lose control 
over their information resources because they can undermine the 
mechanisms that manage access. 

In last year’s paper, “Unhelpfulness as a Security Policy,” Nelson 
talked about using time and quantity control as an aid to protecting 
access to information. The idea was that some information could be 
released in a slow and unhelpful manner, thus deterring users from 
acquiring too much of it. This year’s paper explores the idea of 
allocating time-limited resources to deter or counter atldcks that can 
cause the system to overload or crash. These overloads can cause 
not only loss of system availability to legitimate, well-behaved 
users, but also loss of system integrity and information security. 

Characterizing the Resources 

Most security models are concerned with data or information as the 
relevant resource. Information has some unique characteristics that 
make it particularly difficult to control. The most interesting of 
these is that information in a system is not consumed or conserved. 
“Sending” information or “giving” information does not take it away 
from the sender or giver. Instead, the information is copied and both 
parties have it. If a user is given access to some information, and 
then the access is later revoked, there is no way to tell whether the 

101 



For New Security Paradigms Workshop, September 1996 

user has kept some or all of the information. Once you know 
something, no one can be sure that you have forgotten it. 

Processing and communications capacity have very different 
characteristics. These are functions of time. They are limited 
in any particular system by the configuration of the system. If 
they are not used, they are lost. They cannot be duplicated or 
copied, nor do they grow with system demand. 

Physical storage is also a limited resource that is a function of 
the system. It is also not shareable. If it is in use, it is not 
available until it is released. 

Examples 

The following examples illustrate the non-binary, complex 
nature of resource management. We have included examples 
of malicious actions and also examples of unintentional 
damage caused by legitimate use and unusual circumstances. 
We believe that the system must control the results of 
overuse, whether intentional or not. Analysis of the event 
after the fact may yield evidence of malicious intent, and this 
is helpful for prosecution and deterrence strategy. However, 
there generally is no inherent way to determine intent at the 
time of an event, and attackers have been known to exploit 
the same system limitations experienced by “normal” users 
and to mimic “normal” usage in their attacks to hide their 
intent. 

The intention of the examples is to highlight ways in which 
system service can be compromised due to overload, and to 
bring up some questions of appropriate policies and 
mechanisms for managing time-limited resources. 

I. Death and the WELL 

The WELL is an on-line conferencing system in Sausalito, 
California. It has received some attention in the security 
community recently in connection with the arrest of Kevin 
Mitnick. The WELL has many on-line “virtual communities,” 
but it may be best known as the on-line home of the Grateful 
Dead community. The Grateful Dead conference is one of the 
most active conferences on the WELL. 

In a conferencing system, users are allowed to access the 
system and post messages. On the WELL, messages are 
grouped into topics which are then grouped into conferences. 
Each topic is stored in a single tile. As with any database 
system. multiple users can access the file to read, but only one 
user at a time can lock the tile for write access. On a normal 
day, many users will be logged in simultaneously, but they 
will be distributed across various topics and conferences. 

The day that Grateful Dead guitarist Jerry Garcia died was 
not a normal day at the WELL. Grateful Dead fans from all 
over the country heard rumors of Garcia’s death and rushed to 
the WELL, tirst hoping for a denial, and then gathering to 
mourn and reminisce. As the news spread, hundreds of users 
tried to log on simultaneously, and all of them were accessing 
the same tile. The WELL experienced a load far above 

normal, becoming almost unavailable because of delays. The 
overload of demand in one area nearly made the entire system 
almost unavailable for many users for many hours for any purpose at 
all. 

A conferencing system does have some special requirements. It 
might be a reasonable policy decision for a conferencing system to 
continue to provide conferencing service up to the point where 
system capacity is swamped. This is an example of how a service 
that a system wants to provide (users accessing resources that they 
have a right to access) can cause a denial of services to other users. 

2. Too Much Mail 

E-mail allows users at any site to command network computing 
resources. It is a many-to-many service; users at any site on the 
Internet can by default send mail to any user on the receiving site. A 
remote machine makes a request to transmit a message; the 
receiving site runs a process to receive the message, and writes the 
message to one or to many files. The receiving machine may also 
send the message to another site on the internal network, or if the 
message is addressed to a mailing list, send the message on to a list 
of users, possibly requiring starting multiple processes to send the 
message on to multiple sites. Finally, increased mail activity can 
increase the size of the system logs. If the disk storage is full, 
system programs may either fail to log, or they may shut down if 
logging is essential to continued operation. 

There are several ways that electronic mail can be exploited to deny 
service, and mail attacks are common on the Internet. Multiple 
large mailings can fill up the directory on which mail is stored, so 
that no new mail can be received. if users are given individual mail 
quotas, their quotas can be consumed. so that they can not receive 
wanted mail. Repeatedly sending a message to a large list can 
consume large amounts of CPU time and other per-process 
resources. It is possible for users on many systems to mail very 
large files, or to write scripts to mail a large number of files in a 
very short time. The following example illustrates the USC of 
management to avoid mail overload. 

Popular Presidency 

The United States White House has created e-mail addresses for the 
President and Vice President of the United States. This makes their 
system vulnerable to all sorts of excesses, both deliberate and 
accidental. Very few on-line users have to pay for electronic mail by 
the message, and a tremendous number of people arc often urged to 
send mail to the President. Any world event could lead to a Rood ol 
messages. Furthermore, some people find it amusing to attempt to 
interfere with such a prominent site. 

The White House has a security problem: prevention of denial of 
service for its mail system. Failure of the White House mail system 
could be cause embarrassing media coverage, and it could frustrate 
and anger voters. They must protect themselves from attempts IO 
drown them in email, while continuing to allow any user on any site 
to get a message through. If one user on a large site is causing 
trouble, the White House probably does not want to cut off access to 
all other users on that site. 

The White house has announced that their solution is to keep track 
of how much mail is coming from each site, and gradually throttle 

Information System Security - Draft 

102 



For New Security Paradigms Workshop, September 1996 

mail from troublesome sites. No site will be completely cut 
off, but no one site will be allowed to monopolize the 
resources. They have not announced the details of how they 
are throttling but they have guaranteed that all mail from 
every site will eventually get through. This is a beautiful 
example of quantitative access control. 

3. Giving Us the Finger 

Finger was designed to offer useful information in a friendly 
network. It can provide a match of real name to user name or 
vice versa. Finger provides standard services like information 
about when a user has last logged on, whether they have mail 
and whether they have read their mail. It also allows the user 
to provide optional information in a .plan tile. 

Finger presents both technical and social problems. On the 
technical side, as with the other services discussed above, 
finger allows remote users to take up resources at network 
sites. Some users will run a script that repeatedly, or even 
constantly, connects to your site, looking to see whether a 
particular user has logged on. This can eat up CPU and other 
per-process resources. 

With a little user cooperation, finger can become a serious 
bandwidth problem. Users can create a .plan tile to display 
information to any requester. There are not limits on the size 
or contents of the .plan tile. A user who decides to include, 
for example, a nude made up of ASCII art, or a pornography 
story, and offer it to the world, can create a situation where 
the server will be swamped with requests. Users can also, at 
least on UNIX, exploit a feature called “named pipes” to get 
information about where the finger request is coming from, 
and to run a program whenever finger is run against their 
.plan tile. Sotne users have devised ways to deliver large 
amounts of information, enough to affect network traffic 
bandwidth and CPU load. 

Finger is Too Helpful 

The default UNIX finger, with no parameters, will offer a 
complete list of who is logged on, where they are logged on 
from, and whether they are idle. This is much too helpful 
[see “Unhelpfulness...“] and can pose serious security 
problems. Over time, a would-be intruder can build a 
complete picture of who is using the system, what their 
normal hours are, and when they are likely to be idle. This 
also give a would-be cracker a list of user names, whose 
passwords might be guessable (especially if user passwords 
contain information from their .plan file!). The intruder can 
also tell whether the system administrator is at work, at home, 
or idle. There are also some off-line considerations: knowing 
cxactly,when a user has logged off and might be about to 
leave the building could be useful to a stalker or mugger. 

Finally, allowing users to offer data off-site, to any unverified 
requester, can have data security implications. 

Limiting Fingering 

Many sites disable tingcr entirely as a risk, or disable viewing 
of user information files off-site. Other sites run moditied 

programs that allow matching user name with real name and office 
phone number but give out no other information. Finger can be run 
from a wrapper that logs connections. However, finger is a useful 
program. It is useful for many sites to allow the outside world to be 
able to check user name - real name pairings. It is useful, perhaps, 
to see user activity in moderation. To preserve this useful service, 
the system needs a quantitative solution, which allows SOME access 
to user information, SOME number of accesses to each user’s 
information, SOME amount of data to be sent in return. 

Questions for the designer 

Designing a system that manages its time-and-space limited 
resources effectively requires consideration of appropriate sizing, 
priorities, limitation of access, detecting overuse, throttling, cutting 
off inappropriate or malicious use, etc. Many of these 
considerations require balancing the openness of the system against 
the effectiveness of the security controls. Users of a university 
system, especially faculty and research staff, may not tolerate 
mechanisms that restrict their use at all. Corporate and government 
users may tolerate more limitations, but probably not peacefully. 
Designers and policy-makers must consider the social questions as 
well as the technical issues. If the service definition for the system 
can be examined and defines, then the service/security tradeoffs can 
be made in a fairer, clearer, and less confining manner. Here are 
some of the resource management issues: 

What services is the system providing? To whom? How much and 
at what rate? 

What are the priorities of the system? What services and which 
users need to be guaranteed and which can be sacrificed when the 
system becomes overloaded? 

What mechanisms does the system (usually the operating system) 
provide for measuring usage and detecting overload or probable 
attack conditions? What mechanisms does it have for detecting the 
source of an overload? Can it recognize that the overuse is from a 
particular user‘? A particular site on the network? 

What mechanisms are available for slowing down or stopping 
service in times of overload or probable attack? Can these be 
applied to particular sources of trouble? Can they be applied to all 
services including those that do not require password login? 

Can the system record usage for auditing? Is the audit and recording 
mechanism subject to overuse attacks (whether or not users can 
access it directly)? How does the system behave if the log file space 
fills up? 

Conclusions 

Management policies for information need to concentrate on its 
propagation properties. Policies for managing limited resources 
need to define how these resources are allocated to users in a fair 
manner. This allocation is not a matter of yes-or-no privilege; it 
involves priorities, ordering, and quantity. The quantitative security 
policies must be supported by system mechanisms that can detect 
and respond to overloads in a consistent and secure manner. 

Information System Security - Draft 

103 



For New Security Paradigms Workshop, September 1996 

Attacks on systems often exploit vulnerabilities caused by the 
system’s finite resources. It is crucial that the security 
policies and models recognize this fact. These policies cannot 
be effective if they are limited to yes/no determination of 
privilege; they must consider the amount of usage and the 
allocation of time-limited resources among active users of a 
system. Too much of a good thing can be a security problem; 
overuse may signal a denial of service attack or a fishing 
expedition to gain information for breaking into the system. 

It is important that security policies and mechanisms address 
both access to information and use of the physical resources of 
the system. The policies cannot be perfect or rigid; they must 
deal with complexities of system usage as well as more static 
characteristics of data or users. The mechanisms that detect 
problems and enforce security policies cannot be perfect 
either. As we have learned in intrusion detection, almost any 
pattern of unusual usage can represent a deliberate attack, 
unintentional misuse, or a legitimate but unanticipated use of 
the system. Our security concerns cause us to stop the 
offending usage, but sometimes we have lo apologize later. 
With clear policies and effective mechanisms for quantitative 
control, we will be able to offer secure service, not just 
security of information. We will be able to explain rather 
than apologize. 

Information System Security - Draft 

104 


