
Developing and Using a “Policy Neutral” Access Control Policy

Duane Olawsky, Todd Fine, Edward Schneider and Ray Spencer
Secure Computing Corporation

2675 Long Lake Road,
Roseville, Minnesota 55113-2536

Email: olawsky@sctc.com. fine@sctc.com, spencer@sctc.com

December 2.1996

ABSTRACT

The foundation for security enforcement is access control. Re-
sources must be protected against access by unauthorized entities.
Furthermore, authorized entities must be prevented from accessing
resources in inappropriate ways. A major challenge to the devel-
oper of an access control policy is to provide users the flexibility
to protect their resources as they see fit; system policies that am
inconsistent with user needs are inadequate. In particular, systems
that enforce a single, hard-coded policy cannot satisfy the needs of
all users.

As part of the Distributed Trusted Operating System (DTOS)
program, we have developed and implemented a flexible security
architecture using the Mach microkemel. In this architecture, the
security rules enforced by the system are defined by a system com-
ponent outside the microkemel. This reduces the problem of sup
porting other security policies to redefining this system component;
the same microkemel can be used to support a wide range of policies.

Formal methods were used to provide a rigorous approach for
the development of the policy. Recognizing that most people are
uninterested in reading security requirements stated in formal speci-
fication languages, an approach was developed for representing and
maintaining the policy in a tabular format. This paper describes the
flexibility of the DTOS security architecture and the approach used
in developing the access control policy for this flexible architecture.
It also gives examples of how to detine a component that makes
security decisions for the microkernel.’

1 INTRODUCTION

One of tbe goals of the Distributed Trusted Operating System
(DTOS) program is to investigate an approach for developing au
operating system microkemel that supports a wide range of secu-
rity policies. Rather than simply following the guidelines in the
Trusted Computer Security Evaluation Criteria (KSEC) [121 and
implementing Discretionary Access Control (DAC) and Multilevel
Security (MIS), the DTOS microkemel must provide a framework

‘This work was suppxted in patt by the Maryland F’mcurement Office, contract
MDA904-93C-4209 and was performed in cooperation with mscarchers at the Infor-
mation Security Computer Science Rcseaxh Division of the Department of Jkfense.

that encompasses these policies as well as others. The DTOS pro
gram is exploring this framework through prototyping and study
efforts.

Given that secure system developments have traditionally fo-
cused on implementing a particular security policyp a natural ques-
tion to ask is why we think supporting a wide range of policies is
important. One reason is that different sites need to protect against
different threats. A site controlling a nuclear reactor needs to pro-
tect the integrity of the processes and data used to run the reactor.
A site containing proprietary or confidential data needs to protect
that data from unauthorized disclosure. A site managing medical
records needs to protect the records both from unauthorized disclo-
sure and inappropriate modification. While access control policies
are appropriate for each of these examples, a different type of ac-
cess control policy might be desired for each. Policies such as Type
Enforcement [3] and Clark-Wdson [S] can be used to address in-
tegrity concerns. Other policies such as MIS, Chinese-Wall [4],
and ORCON [lo] can be used to address confidentiality concerns.
However, no single policy is appropriate for all cases.

A second reason for supporting a wide range of policies is that
the set of threats against which each site must protect is constantly
evolving. Some threats that am of concern today might not be of
concern next year. Furthermore, the system must protect against new
threats that exploit previously unknown security flaws in existing
applications and security flaws introduced through new applications.
A system that is hard coded to enforce a single security policy will
have much more trouble adapting to the evolving set of threats than a
systemsupporting a flexible security architecture. This is especially
tme when high assurance is a goal. Then, time is required to model
the system, state the policy, and perform the assurance analysis. By
basing the assurance for a specific site on assurance performed on
a policy neutral system. the time required to assure the final system
can be greatly reduced.

Without policy flexibility, users must either make due with a
system that does not provide exactly the type of protection they
would like or must wait until someone develops a system that does.
Given that the development of a secure system takes a significant
amount of time, the threats against which a user needs protection
typically will have changed between the time that development
begins and the time a new system is completed. Thus, users are
constantly forced to make due with the policies provided by existing
systems.

In Section 2 we describe the DTOS architecture for a policy
flexible system, and in Section 3 we describe the method used in
DTOS to develop a flexible, policy-neutral access control policy.
Section 4 presents two examples of the use of the architecture to
implement a high-level policy (MIS and Clark-Wdson), and Sec-
tion 5 discusses the range of policy flexibility supported by DTOS.

%he Data Secure Unix system desclibed in mfemnce [17’j is an exception

60

Request

-I-

Manager

MGR-DATA

p+jjF-q

Access
Decision
Request

Access
Vector

Security Server

S&DATA

piii&q

Figure 1: DTOS Architecture

Section 6 describes the use of composability analysis [l] to deduce
properties of the system. Section 7 notes some related research.
Finally, Section 8 summarizes results and open issues.

2 AN ARCHITECTURE FOR POLICY
FLEXIBILITY

The DTOS security architecture [111, depicted in Figure 1, supports
policy flexibility by separating the making of policy decisions from
the enforcement of those decisions. The policy decisions are made
by security servers. A security servera is simply a process execut-
ing in the system that makes decisions based on a set of security
rules. The enforcement of these decisions is performed by each
system component managing the objects protected by the policy. A
manager is the only subject able to directly access some collection
of objects that it manages. It receives a sequence of requests from
various client subjects to perform actions on its objects and must
decide, based on its current state (possibly augmentedby new access
decisions received from a security server), whether or not to carry
out tbat request.

The manager receives requests from other subjects,including the
Security Server, and it sends accessdecisionrequests to the Security
Server. The Security Server sends responses to the access decision
requests to the manager. The manager and Security Server each
have internal data that records their processing state. The Security
Server’s data includes adecisionpoiicy which is the data and/orcode
governing the Security Server’s policy decisions. The manager’s
data includes an enforcementpolicy specifying the required access
decisions that the manager associates with each manager request
and a set of retained decisions specifying access decisions that the
Security Server has previously made which have been cached by the
manager.

When requesting a security decision, the manager must provide
information indicating the subject that is requesting the service and
the object upon which the service is to operate. Thus, it suffices
for an object manager to associate security information with each
object that it manipulates as a result of client requests. The process
manager4 manages the subjects and therefore associates security
information with each subject. In addition to providing the security
information for the accessing subject and for the entity acted upon,
the manager also provides the type of operation that is desired. The
operation type is specified by a permission name. In response, the
Security Server provides a set of decisions, called an access vector,
indicating which operations the accessing subject may perform on

3Wc use “a security s.erver” when referring to security scrve~~ in general and “the
Sccutity Server” when xfening to the security ~crver pnxent in a given instance of
DTOS.

?he pmcess managerin DTDS is the Mesh microkernel.

the entity. Although the Security Server could simply respond with
a yes/no answer as to whether the requested operation is permitted.
WC return an access vector for efficiency. By caching the returned
access vector and consulting the cache before requesting decisions
from the Security Server, the manager can avoid interactions with
the Security Server when the necessary information is in the cache.5

The security information that a security server needs in order to
make access decisions depends on the particular policy implemented
by that security server. For example, a security server enforcing an
MLS policy makes its decisions based on the security levels of the
accessing subject and the accessed entity. However, having the
manager provide security levels to the Security Server would be
incorrect since it would hard code into the manager that each entity
has a security level. To be truly policy flexible, the manager cannot
contain any policy specific iuformation. Thus, the manager asso-
ciates a label called a security identifier (SID) with each manager
object. The Security Server defines a mapping between SIDs and
securily contexts. This mapping defines the meaning of each SID.
In the case of an h4LS policy. a security context might consist of
simply a security level. In the case of a Type Enforcement [3] pal-
icy, the security context associated with a subject SID might contain
only a domain while the securit context associated with an object
SID might contain only a type. % The level of indirection provided
by SlDs allows the same manager to he used regardless of how the
Security Server interprets SlDs and makes access decisions. The
Security Server provides an interface allowing managers and other
tasks to map SlDs to their associated contexts and vice versa.7 Of
course, a security server may restrict access to this information if
this is required by its policy goals.

There are several types of policy involved in a systemusing this
architecture. The first is the high-level system policy. Some exam-
ples are MIS, Clark-Wilson and ORCON. This is the policy that
would be hard-ceded into a system using a traditional architecture
not designed for policy flexibility. In the DTOS architecture this
policy emerges from the interaction of the manager and the Security
Server, each of which is implementing its own policy.

%c interaction between the manager and Security Server in DlTX is slightly
morccomplicated than that described hae. Forexample. there are also f&lit& for&e
Security Serverto instruct tbc manager not to cache certain parts of the returned access
vectors and to flush vectors from tbc cache. Such features are nexssaty to support
policies in which BCCCBSCS can be twoked.

65pe JZ?nfor.xmentconImls subject-to-subjacte on a domain-todonuinbtis
and subject-toabject BCCCSS on adorn&-to-typebasis. Thus. the secuity information
needed to make decisions consists of domains and types.

‘The developerof any puticularsccurity server must d&de whether it is important
to the goals of the policy that SlDs be cryptographically pmtectcd (or even opaque)
fmm interpretation by other taska Such protection is not quinxJ by the architecture.
However. to maintain policy-neutrality, all managers should be written with the BS-
sumption that SIDs are opaque. If this guideline is violated. the manager will not work
correctly with any security server that dow not supply transparrnt SlDs with the same
strucbJm.

61

The manager’s enforcementpolicy defines the security require-
ments goveming when the manager provides service. In particular,
this policy identifies the points in the manager processing at which
a security decision needs to be obtained. It also indicates which
security decision is needed at each point. This policy defines what
it means for the manager to enforce policy decisions made by the
Security Server. It will be the same no matter what decision policy is
supplied by the security server. Each manager is trusted to correctly
implement its enforcement policy.

The Security Server’s decision policy defines the security m-
quirements on how the security server makes access decisions.
Since the intent is to allow different security servers to make se-
curity decisions differently, them is no single security server policy.
However, there is a welldefined interface that the managers expect
each security server to implement. The main requirement on the in-
terface is simply that whenever the Security Server sends the results
of a security decision, the results am consistent with the decision
policy that the Security Server is imp1ementing.s

Although a manager could be any of a variety of components
including a hle server enforcing access decisions made on files and
an application enforcing access decisions on application specific
data, the remainder of this paper considers only the enforcement
by the DTOS microkernel of access decisions made on microkernel
subjects and objects.

3 DEVELOPING THE DTOS
MICROKERNEL ENFORCEMENT POLICY

To explore the use of the DTOS architecture, a primary focus of
the DTOS program has been to modify the Mach microkernel to
serve as a manager in that architecture. In doing so, we have added
suplxat to Mach for a wide range of access control policies. This
has been accomplishedby inserting control logic in the microkernel.
The processing of each microkemel request has been modified to
request a security decision by a security server before providing a
service. We have also implemented a prototype user-space security
server that makes these security decisions for the microkernel. The
security-enhanced microkemel and the prototype Security Server
have been released to a number of sites for use in research on secure
systems. Some sites am developing their own security server while
others are developing additional policy-flexible applications. Addi-
tional information on the implementation of both the microkemel
and the Security Server can be found in [111.

Although the work described hem deals with enhancing Mach
to function as a policy-neutral object manager, this is merely an
example. The architecture is general enough to be applied not only
to other microkemels but to a wide variety of managers.

3.1 APPROACHES TO POLICY
DEVELOPMENT

Traditionally, there have been two related but distinct approaches to
developing security policies. The first approach, the threat-based
approach, is to identify the system threats that are of concern and
developrequirements that address the threats. The second approach,
the criteria-based approach is to interpret a set of requirements
specified by an evaluation criteria document (such as [12]) for the
target system. The relation between the two approaches is that in the
second approach it is assumed that the developers of the evaluation
criteria have already identified all of the relevant threats.

The criteria-based approach is infeasible for DTOS due to the
goal to support a wide range of policies. Regardless of whether
an evaluation criteria document contains MIS, integrity, or avail-
abiity requirements, there is always the possibility that the user of

‘A security server may also provide specialized interfaces for use by particular
managers.

a DTOS system will want to enforce some other type of security.
Consequently, the DTOS policy must provide a framework in which
a variety of policies can be supported rather than simply interpreting
requirements in au existing evaluation criteria.

Thus, the DTOS policy development is threat-based. However,
the threats identified are of a different nature than those traditionally
identified. When developing the policy for a system that is intended
to enforce a single policy, the identified threats typically are specific
to that policy. For example, while covert channels [12] are a threat
with respect to MIS policies, they are typically not a threat with
respect to integrity policies. Since the DTOS policy is intended to
provide a framework that supports a wide variety of policies, the
threats identified for DTOS must be policy independent.

The intent is for usem to be able to counter threats to their
systems by appropriately conliguring DTOS. Furthermore, as the set
of threats against which a site must protect evolves, administrators
shouldbe able toreconfigureDl7X toaddressthenew set of threats.
This requires controls to be placed on essentially all services. For
example, DTOS must control the setting of the scheduling priority
for a thread since some users will want to protect against service
denial to user threads. Although the denial of service threat might
be of little concern to most users, the possibility that some users
might be concerned suggests viewing it as a real threat. Since
providing protection against every conceivable threat is impossible,
a judgement call must be made on the set of threats that am of
concern.

The approach taken in defining the enforcement policy for the
DTOS microkernel is to view any access of the microkernel state
as being a potential threat. By viewing each access as a potential
threat and providing appropriate control mechanisms, the goal of
supporting multiple policies can be achieved.g

3.2 POLICY DEVELOPMENT

Although developing a policy for a system intended to be “policy
neutral” seems paradoxical, the “paradox”is largely resolved by the
separation of security enforcement from security decision making.
In this section we describe a process for defming the hardcoded
enforcement policy in the manager. We use the DTOS microkernel
enforcement policy as an example. In Section 4 we give examples
of how to de6ne a decision policy in a security server to achieve a
given high-level policy.

The process we have used for defming the enforcement policy
of the DTOS microkernel consists of the following primary steps:

1. Identify the services that are provided by the microkemel,

2. Relate each microkemel service to one or mom access deci-
sions that must be obtained for the service to be performed.

3.2.1 IDENTIFYING SERVICES

To perform the lirst step we determine the following information
about the system:

l the microkernel data structums, and

0 the requests that clients may make to access those structures.

Wtth this information in hand we proceed to identify the services
provided by the microkernel that need to be controlled. We dii-
tinguish the following two classes of service: transformation and
invocation. A iransfomation service is one that is defined in terms
of a change to one or mom of the data structums that comprise
the system state. For example, one component of the DTOS
system state is ezisting-tasks, the set of existing tasks. Since
any change to a set involves adding or removing elements (or

‘See the DlDS Gcnerali2u.l Security Ftalicy Specification [141 formomon support-
ing multiple policies

62

both), these are two natural services to associate with this com-
ponent. Consideration is then given to whether a threat is posed
by the ability to add or remove elements from this set. The abil-
ity to remove an element poses a denial of service threat. Thus,
we define a service, TerminatesTaak(task) to be any modifi-
cation to the contents of the system state that results in task
being removed from ezisting-tasks. Any system transition in
which an element is removed from etisting-tasks is an instance
of this transformation service. As another example, each task
has au associated priority that determines the initial priority of
its threads. The service SetsTaakPriority(task) is de&4 as a
modification to the system state that results in the priority of task
changing. The AllocatesReadRegion(task, page-index) service
is delined as a state change in which a new page is allocated
at page-index for task and the protectious of that page include
read access. The Allocates WriteRegion(task,page-index) and
AllocatesExecuteRegion(task,page-index) services denote the
allocation of pages with write and execute access, respectively.

In all of these examples, a service is equated with a charactexiz-
ing property of state transitions. Any state transition satisfying the
characterizing property is considered to have provided the service.
Conversely, a state transition that does not satisfy the characterizing
property is considered not to have provided the service.”

Not all microkemel requests alter the modeled state of a mi-
crokemel entity. Some of them only observe the modeled state
of some entity, and these requests cannot easily be characterized
as performing transformation services. For example, consider the
Mach taskinfo request which returns information on the state of a
specified task. Since this operation simply observes data, no trace is
left in the contents of the system state to indicate when the operation
has beenperfonned. For each such request we define an invocation
service.’ Any system transition in which one of these requests is
invoked is au instance of the corresponding invocation service.

Unlike a transformation service, which may be performed by
multiple requests, au invocation service is associated with exactly
one Equest. Since transformation services address the ways in
which subjects can modify the system state, they address primarily
denial of service and integrity concerns. In contrast. invocation
services address ways in which subjects can observe objects, thus
focusing on confidentiality concerns.

3.2.2 STATING THE POLICY

The second step in the development of an enforcement policy is
to deiine the relationship between the manager’s services and the
accessdecision computations that must be requested of the Security
Server by the manager. The manager enforcement policy must
indicate which accessdecisionsneed tobe checkedbefore providing
each scrvicc.” Thus, the enforcement policy must map each service
to a triple consisting of the SIDs of the subject and object involved
together with the permission requested.

For example, the DTOS microkemel’s enforcement pol-
icy maps the service SetaTaakPriority(taak) to the permis-

“One issue that might be taken with the t& priority example is that a request
that sets a task’s priority to the same value BS the task% current priority will not be
recognizedasa SetsTasWriority setvice. As tbercqucstiseff~tivelyano~p,we
maintainthattbercisnoncedtoviewthercquestasp~vidingascrvicc. Ofcoutse.there
SIX also covert channel issues that must be addwazd when the permission checks are
being implemented. Cam must be taken that if the service is disallowed an “insticient
pctission” status is rctumcd even when the operation would be a no-op. Otherwise. if
aclient c doesnot havepennissiontoobtainaserYice SetsTcsLPriority(t,). then
c could determine the priority of tl by attempting to set tl ‘s priority and observing
whether the ram status indicates “success”or”insuflicient petition’: (Rrmition
checks in DTOS arc implemented in a way that prevents this channel.)

“Them are B few Mach rquwts (e.g.. task+zL~pe&Lport) for which multiple
invocationscrvicesarcdefined.Thisallowsfiner-grainadcontroldependinguponwhich
system state informationis mquested as specified in the parametersof the Fcquest.

‘2Rccell that we allow the possibility that the result of an asa decision requestis
cached. If the msult of a required wxss decision can be obtained from tbe cache. then
the microkernel will not make a new request for that access decision.

Requirements on client to task Accesses

‘lkansibrmation Service Required Permission

SetsTaakPriority(task) Change-task-priority
TerminateaTask(taak) Terminate-task

Table 1: Tabular Policy Example

sion Change-task-priority and the SIDs for the client13 and
task (the target). In other words, the microkemel policy re-
quixes that the client have Change-taakqriority permission
to task before providing the service SetaTaakPriority(task)
to the client. Similarly, the DTOS enforcement pol-
icy maps the service TerminateaTask(task) to the per-
mission Terminate-task and the SIDs for the client and
task. The services AllocateaReadRegion(taak,page-index),
Allocates WriteRegion(taak,page-index)
and AllocateaExecuteRegion(task,page-indez) are mapped to
Have-read, Have-write and Have-execute permission, respec-
tively, and to the SIDs for task and the indicated page.

The DTOS enforcement policy is stated in two different forms.
To provide a clear, precise statement, the policy is formal&d
in the Z specification language [la]. This requires formaliz-
ing the system state and the transformation services. Then
the enforcement policy can be formalized as a relation between
the services, the permissions and the SIDs. The expression
kernelAllows(taaksid(client), task-portsid(task)) denotes
the set of permissions allowed from the SID of the client to the
object SID of the target task. It thus models the access vector asso-
ciated with the pair of SLDs. The formalization of the requirements
on SetaTaakPriority is as follows:

V Transition; task : TASK
l SetsTaakPriority

+ Change-task-priority
E kernel-alZows(tasksid(client),

Bask-portlrid(task))

Experience has shown that most people are uncomfortable read-
ing such mathematical statements. Consequently, formal security
policies are to a great extent ignored by all but formal methods ad-
vocates. This is unfortunate since people such as systemdevelopers,
evaluators. accrediters, andusersneed tounderstandthe system pol-
icy. After all. the distinguishing characteristic of a secure system is
that it has a policy that it is assured to satisfy.

The DUOS enforcement policy addresses this by providing a
tabular representation of the policy as well as the formal Z state-
ment. Tables 1 and 2 contain brief excerpts that illustrate the tabular
representation of the policy.

The heading of a table indicates the SIDs that should be used
for the permission checks specified in the table. Each row of a
table identifies a binding between a service and a permission. One
such table is de6ned for each pair of entity types for which there
are associated permission checks. A similar approach is used for
invocation services. The only difference is that the tables associate
permissions with DTOS requests instead of transformation services.
The system developers have found the tables to be a convenient
representation of the policy. This has allowed the people coding
the security checks to obtain a better understanding of the security
checks than if the policy was documented only in the Z specification
language.

“lhe client is the tzxk that initiated a tquest for service.

63

Requirementson task to pagesid(task,page-indez) Accesses

lhnsformation Service Required Permission

AllocatesReadRegion(task,page-indez) Have-read
Allocates WriteRegion(task,page-indes) Have-write
AIIocatesEzecuteRegion(task,page-indez) Have-execute

Table 2: A Second Example

To help maintain consistency between the enforcement policy,
the design documents and the microkemel itself, we have written
tools that automatically extract information on services and permis-
sions from underlying data tables. These tools analyze the data
tables to produce the following:

The policy requirements (both the formal Z versions and
the tables shown above) included in the enforcement policy
document,

The lists of permissions needed to invoke each request (there
may be several),

The list of permissions associated with each class of object,
and

C files defining the permissions used in the microkemel and
the checks to be performed.

These tools have proved useful in maintaining consistency between
the assurance and implementation efforts as the system evolved.

Although the tabular representation of the policy has been quite
useful, it is incomplete without the definitions of each of the services.
In the DTOS approach, the service definitions are given informally
in English and formally in Z. Although the Z formalization could be
omitted, some benefits have been achieved from the formalization.
First, the formal dehnitions are much mom precise than the informal
ones. This additional precision is especially useful in capturing
some of the more subtle aspects of the system such as the transfer
of capabilities. The lack of precision in informal detinitions can
lead to inconsistencies between how the security requirements am
interpreted by the people implementing the systemversus the people
analyzing the system. Second, the formalization of the policy has
allowed other tools to be used in the development of the policy. For
example, a parser can be used to check the syntax and typing of the
mquimments. In particular, referencing a service that has not been
formally defined results in an undefjned function being reported
when the formal policy statement is generated and parsed. This has
actually cccurred on the DTOS program when systemimplementors
have added new services to the tables. In these cases, parsing the
formal policy identifies that the new services still need to be formally
defined.

3.2.3 EVALUATION OF THE APPROACH

The two-step process described here was relatively straightforward
to apply to DTOS. The microkemel documentation describes the
system data structures and microkemel requests from which the
service definitions are derived. The approach worked well for the
initial development of the policy as well as for the incorporation of
system components that were added later. Having a well-defined
process for identifying the services is much more desirable than
using an ad hoc approach. Since there is nothing Mach-specific
to this approach, it is of use to other secure system developments,
too. This includes operating system and application developments
as well as other microkernels. The only assumption made by the
approach is that the systemuses the client-server paradigm.

We note that it would be possible to define one or more invoca-
tion services for each system request and not dehne any transforma-
tion services. This would eliminate the need to model the system
state in the enforcement policy specification. However, we prefer
the use of transformation services whenever possible because re-
quirements based on them provide general enforcement statements.
A transformation service defines a state transition that might be
provided by multiple system requests. For these cases, detining the
security requirements in terms of a common transformation service
ensures a more coherent policy. Rather than a separate permis-
sion checkbeing specified for each individual request providing the
service, a single permission is globally associated with the service
regardless of what requests ate implemented in the system. This
has the following advantages:

Robustness - If the system interface is modified, we only need
analyze what services are performed by the modifiedladded
system calls.

Support of High-Level Reasoning -
Transformation services allow general high-level reasoning
about permission checking without repeated analysis of all
the requests that perform a given service.

In contrast, the invocation services control the invocation of requests
rather than the providing of services. A requirement that a client
have get-task-info permission to a task in order to invoke the
task-info request on that task places no restrictions on other ways in
which the client can obtain information about the task. To perform
higher level reasoning about which tasks “know” a given piece
of information for a particular task, one must first identify all of
the requests that return that information. Then, the permissions
associated with each of these requests must be analyzed to ensure
that the policy is satisfied.

However, even for transformation services, it is still necessary
at some point to determine which requests provide the transfor-
mation service. In particular, the system developers will need to
determine which portions of the code provide a given service so that
the access decision requests requited by the enforcement policy can
be included. Thus, while transformation services have advantages,
they might complicate arguments that the implementation obeys the
enforcement policy.

The number of permissions detined in DTOS is much greater
than those defined for other systems. For example, most MLS
systems reduce the set of permissions to read and write. In DTOS,
there am currently about 150 different microkemel permissions.
Not coincidentally, there are approximately 150 tnicrokemel calls
in Mach. Thus, the large set of permissions is necessary to support
tine-grained control. For example, there are different types of “read”
accesses in Mach that a given policy might wish to differentiate. limo
such read accesses are

a read a task’s address space, and

l read a task’s IPC name space by copying a port right from the
task.

64

Since the goal of DTOS is to support a wide range of policies, a
large set of permissions is necessary. Otherwise, DTOS will not be
able to support system policies that require fine-gramed control.

Fine-grainedcontrol is very closely linked to the concept of least
privilege. An enabling design principle for secure systems is to limit
the privileges held by each subject to the minimum required. Then,
the system decision policy can be relied upon to prohibit the subject
from performing unwanted operations. Thii allows the majority of
the assurance analysis for the subject to focus on demonstrating that
the subject correctly performs the operations that it is permitted to
pXf0l-Jl-l.

The large number of permissions raises two concerns:

l the complexity of inserting code to check so many permis-
sions, and

l the effect on performance of checking so many permissions.

In DTOS, most microkernel calls require only a single permission
check, andmost of these permissionchecks can be done at the same
point in the code before processing of the request is dispatched to
the individual processing routines. This resolves the first concern
to a large extent

To address the second concern, we implemented an access vec-
tor cache in the microkernel. To reduce cache searching, pointers
from key data stmctures to associated cache entries am maintained
by the microkernel. Heavy use of Mach send-once rights reduces
the effectiveness of this secondary caching mechanism (the point-
ers). A few preliminary timing studies have been performed, but
they are not sufficient to draw solid conclusions. They suggest that
the impact on performance is determined largely by the effective-
ness of the caching scheme. That is, if access vectors am easily
available, permission checking does not have a significant effect on
performance. The data are probably obscured by other factors such
as paging performance and page alignment of microkemel code
as well as disk fragmentation and contention. See [ll] for more
information on the implementation and the performance tests.

4 EXAMPLE SECURITY SERVERS

A security server has complete freedom to make each security deci-
sion in whatever manner it wants. The particular high-level policy
enforced by the system is a function of the decision policy im-
plemented by the Security Server and the enforcement policy im-
plemented by a manager. One possible decision policy grants all
permissions. If we combine such a security server with the Mach
microkemel, the resulting system would be essentially equivalent
to vanilla Mach. This is, of course, not very interesting from a
security standpoint. In this section we give a brief sketch of two
decision policies for DTOS that are mom interesting with regard
to security. When combined with the DTOS microkemel, the first
example implements a high-level policy consisting of MLS with
Typ Enforcement, and the second implements the Clark-Wilson
integrity policy [5]. We have also investigated the ORCON policy
[lOI.

4.1 MLS WITH TYPE ENFORCEMENT

The only security server currently included in Secure Computing’s
DTOS release is one that performs level-based and type enforcement
security checks [7]. This security server

l maps each subject SlD to a leveldomain pair,

l maps each object SID to a level-type pair, and

l makes security decisions based on the levels, domains, and
typs associated with the SlDs provided by the microkernel
according to the usual level dominance and type enforcement
conventions.

4.2 CLARK-WILSON

The Clark-W&on integrity policy [S] is concerned with the correct-
ness of data and the prevention of fraud rather than the prevention
of disclosure. The data items that are to be protected are called
constrained da& items (CDIs). The primary way in which CDL
comctness is protected is by allowing CDIs to be modified only
by certain programs, called transformation procedures (TF’s), that
have been certified to take the set of CDIs from one valid state to an-
other. (Validity is defined in some application-specific way.) Each
TP is certified to manipulate only certain sets of CDIs in a single
execution.

Prevention of fraud is furthered by providing mechanisms for
the separation of duty. A user u is allowed to modify a CDI, c, only
if there exists a set of CDIs, S. and a TP, t, such that

0 c is an element of S,

l u modifies c by executing t,

l u is certified to execute t to modiiy the CDls S.

Consider a check-writing program that requires a purchase order
to be entered into the system before a check will be printed. With
the above requirement, we can prevent the person who can run the
check-writing program from also running the equipment purchasing
program. In this way no single person can produce a purchase
order, discard it, and then write a check to pay for an item which is
never ordered. Fraud then requires at least two people conspiring
t0gether.l’

In defining the decision policy of a Clark-Wdson security server
the primary consideration is the maintenance of a history for each
Tp execution. Each process is assigned a unique subject SlD (and
thus a unique subject context).” A subject context indicates the
user in whose name the process is executing and the TP that the
process is executing. Every time a process p, executing a TR t,
is granted write access for the first time to any CD1 cl, this event
is recorded iu the Security Server. Let CDI-history(p) denote
the set of all CDIs for which p has been granted write permission.
When p requests write access to a CD1 ca, the Security Server
checks the CD1 history associated with p. Write. permission for ca
is granted only if { ca} U CDI-history(p) is a subset of some set
5’1 of CDIs that TP t is certified to manipulate and some set Sa
of CDIs that the user is certitied to manipulate via t. In this way
the Security Server ensures that granting p write access to ca will
not allow p to manipulate a set of CDIs in violation of the Clark-
Wilson constraints. This example decision policy shows that the
architecture can suppon dynamic policies.

5 RANGE OF POLICY FLEXIBILITY

The example decision policies in Section 4 demonstrate some of
the flexibility of the DTOS microkemel enforcement policy. In
this section we discuss in more general terms the capabilities and
limitations of the enforcement policy in supporting high-level policy
flexibility.

We have aheady seen an example of a decision policy that pro
vides a dynamic policy that is sensitive to the history of granted
permissions. DTOS can also support dynamic policies that are
environment-sensitive. For example, DTOS could be used to im-
plement a time-of-day policy in a bank where different decision
policies are used during banking and non-banking hours. This can
be achieved by writing a security server that monitors the system

“For brevity, we have omitted some of the rcquinmentsof Clark-Wilson. Tkse
reouirementsareconsidendin 1141.

‘aThecumntvemionof D?DSdownotadequa~lysupportthiaone-lo6nerelation-
ship between subjects and SIh It can be obtained but may require modifications to
many plograms. include some that are not secwity wxre. Of course. the inadequate
support is not a concern if it is acceptable to view all pmc- with tbc same SID as
king the same. logical “p-“.

65

clock and alters its method of making decisions at the appropriate
times. DTOS also supports both transitive and intransitive decision
policies. A transitive policy is one where if a subject A can modify
an object dA and if a subject B can detect the modifications made
by A to dA and can itself modify a data item dB. then A can ako
modify dB . Any policy that does not satisfy this constraint for all
subjects and objects is intransitive.

As observed in Footnote 15, DTOS does not adequately support
a one-to-one relationship between processes and SIDs. A second
limitation is that the DTOS microkemel does not send the parameters
of a request to the Security Server. This prevents the implementation
of certain policies. For example, suppose someone wishes to imple-
ment a policy that allows each task ti to set the priority of a task ta
to any value p such that min-pri(tr, t2) 5 p < maz-pri(tl, t2)
where min-pri and maz-pri am functions that map a pair of tasks
to a priority. To support this type of high-level policy, the microker-
nel would have to send the desired priority to the Security Server
as part of the access decision request. This effectively defines a
unique permission (and service) for each possible value of a task’s
priority. The DTOS enforcement policy does not support this level
of granultity.

Another limitation results from the fact that all access decision
requests are in terms of a pair of SIDs. It would probably be useful
to allow access decision requests with mom than two SIDs. For
example, we might want to control port requests in Mach based
upon a SID-triple containing the client, the target port and the task
receiving from the target port. As another example, a Clark-Wdson
decision policy could probably be implemented with much less
history information if the Security Server interface allowed a process
to request access to an entire set of CDIs in one interaction.

DTOS allows the Security Server to specify that an access deci-
sion is non-cachable and to request that a decision be removed from
the microkemel’s cache. However, in the first several releases of
DTOS. because of the way in which memory access is controlled in
Mach, both of these abilities had no effect on read, write and execute
permissions. This limited the ability of DTOS to support policies
that must retract permissions that have already been granted.‘6 We
note that this does not make the system insecure, it only limits the
policy flexibility supported by the DTOS microkernel.

Obviously, this permission retraction problem applies only to
the DTOS microkernel and does not affect any other manager that
might be used in a DTOS system. Furthermore, the other limitations
discussedin this section really only apply to the microkernel and the
current Security Server. A new security server could allow an arbi-
trary number of SIDs or additional parameter information to be sent
in a decision request. If Clark-Wilson CDIs were managed by a file
server rather than the microkernel, then the file server could request
access to a set of CDL5 in a single interaction. We also point out
that each manager is responsible for dehning and enforcing its own
policy. A security server can be written or extended to make policy
decisions for any such manager. Thus, an MIS DBMS acting as the
manager for database objects can have its own enforcement policy
dealing with tuples, attributes and relations. A security server could
be defined to supply access vectors instructing the MIS DBMS on
which operations are to be allowed and which rejected.

6 COMPOSABILITY

A question to be answered in any system with the DTOS amhi-
tecture is whether the interaction of a manager and security server,
each following its own policy, guarantees that the system as a whole
enforces the high-level system policy. We are using composability

t%x problem is that Mach caches pmtcctions in the page table, and removing
permisionsfmm the axes-s vactorcachc hss no effect on the page. table. This problem
was lrcmedied in the October 1!3!36DlDS release by having the micmkemel walk the

theory [l, 151 to perform this analysis [6]. To do so we first specify
for each component (i.e., the manager and the Security Server) the
component’s behavior and the assumptions the component makes
about the actions of its environment including the other compo
nents of the system and the environment of the entire system. In
both cases, we focus on safety properties. After showing that no
component violates the environmental assumptions of any other
component, we compose the two specifications by taking their con-
junction. Using this method we can analyze access control policies
such as simple security, the *-property and integrity.

The advantage of applying composability analysis to the system
is that we need demonstrate the correct implementation of tbe en-
forcement policy in the manager only once. When a new Security
Server is developed, its decision policy and the composition of this
Security Server with the manager must be analyzed. However, any
analysis that has aheady been performed on the manager can be
reused. We expect the manager to normally be much larger and
more complicated than the Security Server, so most of the analysis
is in fact reused.

7 SOME RELATED WORK

Page et al. [131 proposes the use of rule-based policies to obtain pol-
icy flexibility. Lie the DTOS separation of manager and security
server, this allows the system policy to be altered without changing
the manager. The way in which the rules in a rule-based policy are
interpreted by an object manager is roughly equivalent to what we
call an enforcement policy. Abrams et al. [2] presents a framework
(GFAC) for studying and constructing access control policies. An
access control policy is viewed as rules expressed by authorities
in terms of access control information and context. Much of the
information in Section 5 regarding the range of policy flexibility in
DTOS came from an effort similar to the GFAC work to categorize
policies according to what they require of the enforcement policy
and the interface between the manager and security server. Hosmer
[8,9] considers a Decider-Enforcer architecture in which the De-
cider may incorporate multiple policies. These policies are related
via metapolicies which capture the similarities between policies and
the ways in which their decisions may be combined when they are
being used in the same Decider.

8 CONCLUSIONS

This paper describes the approach used to develop a policy-neutral
enforcement policy for the DTOS microkemel. The approach is
clarified through small examples of its application to DTOS. This
paper also provides examples of the combination of that enforce-
ment policy with a decision policy to implement a system with a
desired high-level system policy. Overall, the approach seems quite
effective. The policy developed provides a fine degree of control
which can be used for both confidentiality and integrity policies.
The approach has also allowed the policy development to be mom
closely integrated with the system implementation by using a tabular
representation of the policy. Tools have been developed to maintain
consistency between the assurance and implementation efforts as
the policy evolves.

Although we have presented a process for systematically de-
veloping an enforcement policy for a policy-neutral system, this
process is not entirely objective. Choices must frequently be
made regarding the level of granularity of the services. For ex-
ample, others might choose to split the SetsToskPriority(tasl;)
service into two services: IncreasesTaskPriority(task) and
Decreases TaskPriority(task). This would provide fmer control
by allowing, for example, a task to have permission to increase a sec-
ond task’s priority but not decrease the priority. Some users might

66

want even tiner-grained control such as that described in Section 5
with regard to specific ranges of allowed priorities.

At the other end of the spectrum is the question of whether
other parts of the DTOS enforcement policy have an unnecessarily
fiue grain. That is, are there service distinctions in DTOS that no
policy will ever need to use? Artificial examples can be created of
policies that require each of the permissions that we have defined.
However, the real question is what permissions wiJl people actually
need to support the policies they want to implement. Our current
approach for selecting the granularity is stih rather ad hoc and is
based upon our perceptions of the likelihood that a policy will need
to make different decisions with respect to the sub-services. Further
analysis is required to determine which of the currently de&ted
permissions are really necessary to support the policies of interest
to users.

Finally, the DTOS architecture has the advantage that a system
with a new high-level policy may be implemented merely by sub-
stituting a security server that implements a new decision policy. In
assuring this new system policy we do not need to redo analysis that
has already been Performed upon the manager for the assurance of
other policies.

REFERENCES

[I] Martin Abadi and Leslie Lamport. Composing Specifications.
ACM Transactions on Programming Languages and Systems,
15(1):73-132, January 1993.

[2] Marshall D. Abrams, Kenneth W. Eggers, Leonard J. La
Padula. and Ingrid M. Olson. A Generalized Framework for
Access Control: An JnformaJ Description. In 13th National
Computer Security Conference, pages 135-143, Washington,
D.C., October 1990.

[3] W. E. Boebert and R. Y. Kain. A practical alternative to hier-
archical integrity policies. In Proceedings 8th National Com-
puter Security Conference, pages 18-27, Gaithersburg, MD,
October 1985.

[4] David F. C. Brewer and Michael J. Nash. The Chinese wall
security policy. In IEEE Symposium on Security and Privacy,
pages 206-214, Oakland, CA, May 1989.

[5] David D. Clark and David R. Wilson. A comparison of com-
mercial and military computer security policies. In IEEE Sym-
posium on Security and Privacy, pages 184-194, Oakland,
CA, April 1987.

[6] Todd Fine. A Framework for Composition. In Proceedings
of the Eleventh Annual Conference on Computer Assurance,
pages 199-212, Gaithersburg, Maryland, June 1996.

[7] Todd Fine and Spencer E. Minear. Assuring Distributed
Trusted Mach. In Proceedings IEEE Computer Sociev Sym-
posium on Research in Security and Privacy, pages 206-218,
Oakland, CA, May 1993.

[8] Hilary H. Hosmer. MetapoliciesIl. In 15th National Computer
Security Conference, pages 369-378. Baltimore, MD, October
1992.

[9] Hilary H. Hosmer. The Multipolicy Paradigm. In 15th Na-
tional Computer Security Conference, pages 409-422, Balti-
more, MD, October 1992.

[IO] Catherine JensenMcCollum, Judith R. Messing, andLouAnna
Notargiacomo. Beyond the pale of MAC and DAC - defining
new forms of access control. In IEEE Symposium on Security
and Privacy, pages 190-200, Oakland, CA, May 1990.

[ll] Spencer E. Minear. Providing Policy Control Over Object
Operations in a Mach Based System. ln Proceedings of the
Fijh lJSENlXUNlXSecuritySymposium,pages 141-156,Salt
Lake City, Utah, June 1995.

[121 NCSC. Trusted Computer Systems Evaluation Criteria. Stan-
dard, DOD 5200.28-STD, US National Computer Security
Center, Fort George G. Meade, Maryland 207556000, De-
cember 1985.

[131 John Page, Jody Heaney, Marc Adkins, and Gary Dolsen. Eval-
uation of Security Model Rule Bases. In 12th National Com-
puter Securiy Conference, pages 98-l 11, Baltimore, MD,
October 1989.

[14] Secure Computing Corporation. DIGS Generalized Secu-
rity Policy Specification. Technical report, Secure Computing
Corporation, 2675 Long Lake Road, Rceevihe, Minnesota
551132536, January 1995. DTOS CDRL A019.

[15] N. Shankar. A lazy approach to compositional verification.
Technical Report TSL-93-08, SRI International, December
1993.

[161 J.M. Spivey. The Z Notation: A Reference Manual. Prentice
Hall International, 1992.

[17] Bruce J. Walker, Richard A. Kemmemr, and Gerald J. Popek.
Specificationand Verification of the UCLA Unix Security Ker-
nel. Communications of the ACM, 23(2): 118-l 3 1, February
1980.

67

