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Abstract 

With the rapid growth of the information age, open distributed systems 
have become increasingly popular. The need for protection and 
security in a distributed environment has never been greater. The 
conventional approach to security has been to enforce a system-wide 
policy, but this approach will not work for large distributed systems 
where entirely new security issues and concerns are emerging. We 
argue that a new model is needed that shifts the emphasis from 
“system as enforcer” to user-definable policies. Users ought to be able 
to select the level of security they need and pay only the necessary 
overhead. Moreover. ultimately, they must be responsible for their 
own security. 

This research is being carried out in the context of the Legion project. 
We start by describing the objectives and philosophy of the overall 
project and then present our conceptual model and design decisions. A 
set of technical challenges and related issues are also addressed. 

1 Introduction 

High speed networking has significantly changed the nature of 
computing, and specifically gives rise to a new set of security 
concerns and issues. The conventional security approach has 
been for “the system” to mediate all interactions between users 
and resources, and to enforce a single system-wide policy. 
This approach has served us well in the environment of a 
centralized system because the operating system implements 
all the key components and knows who is responsible for each 
process. 

However, in a large distributed system several things have 
changed: 

l Distributed Kernel: There is no clear notion of a sin- 
gle protected kernel. The path between any two objects may 
involve several machines that are not equally trusted. 

l System Scope and Size: The system is usually much 
larger than a centralized one. It may very well be a federa- 
tion of distinct administrative domains with separate author- 
ities. 

l Heterogeneity: The system may involve many sub- 
domains with distinct security policies, channels that are 

secured in several ways, and platforms with different 
operation systems. 

The intricate nature of distributed system has fundamentalIy 
changed the requirement of system security. We are 
investigating a new model of computer security - a model 
appropriate to large distributed systems in the context of 
Legion - a system described below. 

Users of Legion-like systems must feel confident that the 
privacy and integrity of their data will not be compromised - 
either by granting others access to their system, or by running 
their own programs on an unknown remote computer. Creating 
that confidence is an especially challenging problem for a 
number of reasons; for example: 

l We envision Legion as a very large distributed sys- 
tem; at least for purposes of design, it is useful to think of it 
as running on millions of processors distributed throughout 
the galaxy. 

l Legion will run on top of a variety of host operating 
systems: it will not have control of the hardware or operat- 
ing system on which it runs. 

l There won’t be a single organization or person that 
“owns” all of the systems involved. Thus no one can be 
ttusted to enforce security standards on them; indeed, some 
individual owners might be malicious. 

No single security policy will satisfy all users of a huge system 
- the CIA, NationsBank, and the University of Virginia 
Hospital will have different views of what is necessary and 
appropriate. We cannot even presume a single “login” 
mechanism - some situations will demand a far more 
rigorous one than others. Moreover we cannot anticipate all 
the policies or login mechanisms that will emerge; both will be 
added dynamically. And, for both logical and performance 
reasons, the potential size and scope of Legion suggests that 
we should not have distinguished “trusted” components that 
could become points of failure/penetration or bottlenecks. 

Running “on top of’ host operating systems has many 
implications, but in particular it means that in addition to the 
usual assumption of insecure communication, we must assume 
that copies of the Legion system itself will be corrupted (rogue 
Legionnaires), that some other agent may try to impersonate 
Legion, and that a person with “root” privileges to a 
component system can modify the bits arbitrarily. 

The assumption of “no owner” and wide distribution 
exacerbates these issues, of course. Since L,egion cannot 
replace existing host operating systems, the idea of securing 
them all is not a feasible option. We have to presume that at 
least some of the hosts in the system will be compromised, and 
may even be malicious. 

These problems pose new challenges for computer security. 
They are sufficiently different from the prior pmblems faced 
by single-host systems that some of the assumptions that have 
pervaded work on computer security must be re-examined. 
Consider just two such assumptions. The first is that security is 
absolute; a system is either secure or it is not. A second is that 
“the system” is the enforcer of security. 
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In the physical world, security is never absolute. Some safes 
are better than others, but none is expected to withstand an 
arhitrary attack. In fact, safes are rated by the time they resist 
particular attacks. If a particular safe isn’t good enough, its 
owner has the responsibility to get a better one, hire a guard, 
string an electric fence, or whatever. It isn’t “the system”, 
whatever that may be, that provides added security. 

Note that we said that users must feel “confident”; we did not 
say that they had to be “guaranteed” of anything. Security 
needs to be “good enough” for a particular circumstance. Of 
course, what’s good enough in one case may not be in another 
- so we need a mechanism that first lets the user know how 
much confidence they are justified in having, and second 
provides an avenue for gaining more when required. 

The phrase “the trusted computing base” (TCB) is common 
when referring to systems that enforce a security policy. The 
mental image is that “the system” mediates all interactions 
between users and resources, and for each interaction decides 
to permit or prohibit it hased on consulting a “trusted data 
base”; the Lampson access matrix [] is the archetype of such 
models. Even communications, which is inherently insecure, 
is usually presumed to be inside the perimeter and the system 
is considered to be responsible for implementing secure 
communication on top of the insecure base. 

As with the previous assumption, this one just doesn’t work in 
a Legion-like context. In the first place there isn’t a single 
policy, new ones may emerge all the time, and the 
complexities of overlapping/intersecting security domains blur 
the very notion of a perimeter to be protected. In the second 
place, since we have to presume that the code might be 
reverse-engineered and modified, we cannot rely on the 
system enforcing security - or very much of anything, for 
that matter. 

Moreover, security has a cost in time, convenience, or both. 
The intuitive determination of how much confidence is “good 
enough” is moderated by cost considerations. As has been 
observed many times, one reason that extant computer systems 
have not paid more attention to security is that the cost, 
especially in convenience, is too high. These prior systems 
took the “security is absolute” approach, and everyone paid 
the cost regardless of their individual needs. To succeed, our 
model must scale - it must have essentially zero cost if no 
security is needed, and the cost must increase in proportion to 
the extra confidence one gains. 

The above ohservation calls for rethinking some very basic, 
often stated assumptions - that is, a change in the way of 
thinking and a shift in security paradigm. In the rest of the 
paper, we suggest a new security model that differs from the 
traditional approach. We also illustrate ideas to deal with the 
issues raised above, as well as others. Before proceeding to 
describe our plan of attack, the following describes the Legion 
system to provide context. 

2 Background - The Legion Project’ 

1. We cannot adequately present Legion in the few pages below. 
For more information see our web page a1 http://www.cs.vir- 

ginia.edul-legion/ 

The Legion project at the University of Virginia is an attempt 
to provide system services that create the illusion of a single 
virtual machine, a machine that provides secure shared object 
and shared name spaces, high performance via both task and 
data parallelism, application adjustable fault-tolerance, 
improved response time, and greater throughput. Legion is 
targeted towards wide-area assemblies of workstations, 
supercomputers, and parallel supercomputers. Such a system, 
if constructed, will unleash the integrated potential of many 
diverse, powerful resources which may very well 
revolutionize how we work, how we play, and in general, how 
we interact with one another. 

The potential benefits of Legion are enormous. We envision 
(I) more effective collaboration by putting coworkers in the 
same virtual workplace; (2) higher application performance 
due to parallel execution and exploitation of off-site resources; 
(3) improved access to data and computational resources; (4) 
improved researcher and user productivity resulting from 
more effective collaboration and better application 
performance; (5) increased resource utilization; and (6) a 
considerably simpler programming environment for the 
applications programmers. Indeed, it seems probable to us that 
the NII can reach its full potential only with a Legion-like 
infrastructure. 

2.1 The Legion Object Model and System Phi- 
losophy 

Legion is an object-oriented metasystem’. The principles of 
the object-oriented paradigm are the foundation for the 
construction of Legion; All components of interest in Legion 
are objects, and all objects, including classes, are instances of 
classes. Use of the object-oriented paradigm enables us to 
exploit the paradigm’s encapsulation and inheritance 
properties, as well as benefits such as software reuse, fault 
containment, and reduction in complexity. 

Hand-in-hand with the object-oriented paradigm is one of our 
driving philosophical themes: we cannot design a system that 
will satisfy every users’ needs, therefore we must design an 
extensible system. This philosophy manifests itself 
throughout, particularly in our use of delayed binding and 
what we call “service sliders”. Consider security. There is a 
trade-off between security and performance (due to the cost of 
authentication, encryption, etc.). Rather than providing a fixed 
level of security - with the result that no one will be happy, we 
allow users to choose their own trade-offs by implementing 
their own policies or using existing policies via inheritance. 
Similarly users can select the level of fault-tolerance that they 
want - and pay for only what they use. By allowing users to 
implement their own or inherit services from libmry classes 
we provide the user with flexibility while at the same time 
providing a menu of existing choices. 

2.2 Design Objectives and Restrictions 

We have the following design objectives, against which we 
measure our success; site autonomy; an extensible core; 
scalability; easy-to-use, seamless computational environment: 
high performance via parallelism; single, persistent 

2. This does not imply that Legion supports only ohjert-oriented 
languages. Legion will support traditional languages such as C 
and F&ran as well. 
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namespace; security for both users and resource providers; 
manage and exploit resource heterogeneity, and fault 
tolerance. 

In addition to the goals above, two constraints restrict our 
design - we cannot replace host operating systems, and we 
cannot legislate changes to the interconnection network. 

To accomplish the goals, many technical, political, 
sociological, and economic issues need to be resolved. In this 
paper we attempt to address the security aspect of the Legion 
project. 

3 The Security Model 

In this section we describe a design for the security model in 
Legion. The model, following closely to the Legion 
philosophy, responds to the issues raised in the introduction. 
We first present the design guidelines and principles. We 
discuss the trade-offs and our design decisions. We then 
explain how the model works, in particular how it can be used 
to enforce discretionary policies. 

The premise here is that we cannot, and indeed should not, 
provide a guarantee of security. What we can and should do is 
(1) be as precise as possible about the degree of confidence a 
user can have, (2) make that confidence “good enough” and 
“cheap enough” for an interestingly large selection of users, 
and (3) provide a context that allows the user to gain the 
additional confidence they require with a cost that is 
intuitively proportional to the added confidence they get. 

3.1 Design Principles 

The Legion Security model is based on three principles: 
l first, as in the Hippocratic Oath, do no harm! 
l second, caveat emptor, let the buyer beware. 
l third, small is beautiful. 
. 

Legion’s first responsibility is to minimize the possibility that 
it will provide an avenue via which an intruder can do 
mischief to a remote system. The remote system is, by the 
second principle, responsible for ensuring that it is running a 
valid copy of J..egion - but subject to that, 1,egion should not 
pennit its corruption. 

The second principle means that in the final analysis users are 
responsible for their own security. Legion provides a model 
and mechanism that make it feasible, conceptually simple, and 
inexpensive in the default case, but in the end the user has the 
ultimate responsibility to determine what policy is to be 
enforced and how vigorous that enforcement will be. This, we 
think, also models the “real world”; the strongest door with the 
strongest lock is useless if the user leaves it open. 

The third principle simply means, given that one cannot 
absolutely, unconditionally depend on JEgion to enforce 
security, there is no reason to invest it with elaborate 
mechanisms. On the contrary, at least intuitively, the simpler 
the model and the less it does, the lower the probability that a 
corrupted version can do harm. The remainder of the paper 
describes such a simple, albeit evolving model. The 

description is discursive, but a much shorter, formal detinition 
will be forthcoming. 
As noted above, Legion is an object-oriented system. Thus, 

l the unit of protection is the object, and 
l the “rights” to the object allow invocation of its 

member functions (each member function is associated with 
a distinct right). 

This is not a new idea; it dates to at least the Hydra system in 
the mid 1970’s 161 and is also in some proposed CORBA 
models [lo]. Note, however, that it subsumes more common 
notions such as protection at the level of file systems. In 
Legion, files are merely one type of user-defined object that 
happen to have methods readlwritelseekletc. Directories are 
just another type of object with methods such as lookup/enter/ 
delete/etc. There is no reason why there must be only one type 
of file or one type of directory and, indeed, these need not be 
distinguished concepts defined by, or even known to Legion. 

The basic concepts of the Legion Security Model are minimal; 
there are just four: 

l every object provides certain known member func- 
tions (that may be defaulted to NIL); the ones we will 
describe here are “Mayl,” “Jam,” and “Delegate.“. 

l there is a “responsible agent” (RA) associated with 
each operation. The RA is someone who can be held 
accountable for the particular operation. There are a certain 
set of member functions associated with an RA object. 
User-defined objects can play the role of RA by supplying 
these member functions. 

. every invocation of a member function is performed 
in an environment consisting of a pair of (unique) object 
names - those of the operative responsible agent, and 
“calling agent”, CA. 

l there are a small set of rules for actions that JAgion 
will take, primarily at member function invocation. These 
rules are defined informally here. 

The general approach is that Legion will invoke the known 
member functions (MayI, etc.), thus giving objects the 
responsibility of defining and ensuring the policy. Precisely 
how this happens is detailed in the following sections. 

3.2 Protecting Oneself - Privacy 

In Legion users are responsible for their own security. They 
are the ones who decide how secure their applications ought to 
be, and from there, which policy is to be enforced and how 
rigorous the enforcement should be. 

For example, a truly paranoid user’s object can (and should, if 
they deem it important) include code in every method to 
authenticate the caller and to determine whether that caller has 
the right to make this call. This cautious user most likely will 
not be satisfied unless some elaborate authentication scheme is 
used to identify the caller. 

For many users, however, this degree of caution is 
unnecessary and some delegation to the Legion mechanism is 
appropriate - for example, rather than engaging in an 
authentication dialog with the caller, an object might trust that 
the CA field of the environment is correct. In the following 
we’ll describe how the model facilitates appropriate, situation- 
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specific delegation; for readability we’ll proceed in several 
steps, each of which adds a bit more detail and refinement. 

Our first objective is to have policies defined by the objects 
themselves. At the same time, we don’t want to have to 
include policy-enforcement code in every member function 
unless the object is particularly sensitive. So, instead, we 
require that every class define a special member function, 
“MayI” (this can be defaulted, but we’ll ignore that for now). 
May1 defines the security policy for objects of that class. 
Conceptually at least, Legion will automatically call the May1 
function before every member function invocation, and will 
permit that invocation only if May1 sanctions it (see figure 1). 

We’ll refine this in a moment to be both more efficient and 
more powerful -but note how this simple idea begins to meet 
our objectives. First, it permits the creator of an object class to 
define the privacy policy for objects of that class; there is no 
system-wide policy. Second, it is fully extensible - when a 
user defines a new class its member functions become the 
“rights” for that class and its May1 function/policy determines 
who may exercise those rights. Third, it is fully distributed; 
there is no distinguished trusted data base (each May1 may 
consult a database if it chooses, but there is no “distinguished” 
one(s)). Fourth, it is not particularly burdensome; users can 
default May1 to “always OK”, inherit a May1 policy from a 
class they trust, or write a new policy if the situation warrants 
it. Fifth, the code for implementing the security policy is 
localized to the May1 function rather than distributed among 
the member functions. Finally, the default “always OK” policy 
can be optimized so that there is no overhead at all associated 
with the mechanism. 

,&urel I, 

3.3 Authentication 

The previous discussion left one question unanswered: who or 
what is the “I” that the May1 function grants access to? Indeed, 
the request must first be authenticated to identify the principal 
that uttered it, and then authorized only if the principal has the 
right to perform the operation on the object. The principal 
behind the request could be human users, software programs, 
or compound identities such as delegations, roles and groups. 

Authentication in Legion is aided by the use of Legion 
environment. Recall that the environment contains two object 
identifiers, namely the calling agent (CA) and the responsible 
agent (RA). The CA is the object that initiated the current 
method call. The RA is a generalization of the “user id” in 
conventional systems; for the moment it is adequate to think of 

it as identifying the user or agent who was responsible for the 
sequence of method invocations that lead to the current one. 

In the general spirit of our approach, the authentication of the 
caller and caller’s context can be anything that the May1 
function demands - and in sensitive cases, that is just as it 
should be. In most cases, however, “I” will be simply CA, or 
RA, or any subset of the two. Indeed, by analogy with familiar 
systems where “I” is the user, that subset may be just RA. 

Legion makes a specified level of effort to assure the 
authenticity of the environment IDS; this effort should be 
adequate for most purposes. However, in the spirit of the 
second principle, we expect that May1 functions with 
extraordinary security concerns will code their own 
authentication protocols by, for example, calling back to the 
caller, and/or responsible agent. To make this possible, we 
require every Legion object to supply a special public member 
function - “lam” for authentication purposes. In the same 
principle as “May1 “, “lam” could be optimized to NIL. 

Legion bases authentication on public-key cryptography in the 
default case. Knowledge of the private key is the proof of 
authenticity. In addition, a set of general principle 
authentication protocols will be provided as the system 
standard. Yam” can choose to support all or none of them. 
Other more elaborate protocols could be negotiated between 
objects and made known to the “lam” function. Objects 
unprepared to adequately authenticate themselves are ipso 
facto not to be trusted. The result of “Iam” can be cached for 
future reference, but that is an implementation choice and is 
beyond the scope. of this paper. 

3.4 Login 

The avenue via which Legion users authenticate themselves to 
Legion is the Login procedure. Login establishes user’s 
identity as well as creating a responsible agent object for the 
user. The login procedure is therefore the building block for 
future authentication, delegation and creating of compound 
identities. 

By the same design principle, Legion should not mandate a 
single “Login” mechanism. Typically, there is a login object 
that will be invoked when a user first logs in. This login object 
engages in a login dialog with the user and, if satisfied, 
declares itself to be the responsible agent. Actually, any 
I.egion object may declare itself to be the current responsible 
agent should it choose. It simply does so by executing a “RA = 
me” command (environments are stacked, so that a return 
from an object executing this command will revert to the 
previous RA). 

There are many advantages to why we shouldn’t make this 
“login” mechanism universal. For example, logging on to 
Iegion in UVa may require only a simple password while 
Legion in CIA might demand their users to submit fingerprints 
or retinal scan information. Users can define their own login 
class with varying degrees of rigor in the login dialog, specific 
to their needs. The “login” mechanism can also be easily 
inherited or defaulted to some simple scheme. 

How do we know that a particular login class is to be trusted? 
We don’t, in general. The May1 function of another class need 
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not believe the login! After interrogating the class of the 
responsible agent the May1 function may reject the call if the 
login is either insufficiently rigorous, or simply unknown to 
this Mayl. As in the infamous “real world”, trust can only be 
earned. 

3.5 Delegation 

In all security models one must consider how rights propagate; 
Can a principal hand all or some of its authority to another, 
and how can a principal restrict its authority? For example, a 
user on a workstation may wish to delegate the “read” right on 
her files to the C compiler. The compiler can then access files 
on her behalf as long as the delegation still stands, much in the 
same way the user may wish to delegate. Just as the basic 
security policy is embedded in May1 and not in Legion, our 
model does not answer this question - but it does provide a 
uniform way for the user to answer it. 

We require every Legion object to have another public 
method, “Delegate.” The parameters to Delegate are the ID of 
the object to which rights should be delegated, and a set of 
restrictions that limit those rights. For example, a user object 
A wants to invoke a compiler C and pass the “read-only” right 
on file F to C. To accomplish this, A must invoke the 
“Delegate” function of F to request such a delegation. Using a 
C++ like notation, but prefixing it with the name of the 
executing object and a colon, this is: 

At F.Delegate(C, read)t 

F, upon receiving the above request, can either grant the 
delegation, reject it, or grant delegation of a more restricted 
authority than what is requested. Granting delegation may 
result in storing some information locally or in creation of a 
new entry in some database (for example, an access control 
list) known to May]. 

A then instructs C to compile the file by passing it the ID of F. 
At C.ccqdle(?) 

When C attempts to read F, F’s May1 is invoked. May1 
recognizes this delegated authority either by looking up some 
local information or consulting some external database. The 
operation is thus permitted. However, if C attempts to invoke 
any of F’s other methods, F will disallow this. 

Our philosophy is that delegation policy is a part of the 
discretionary policy which should be defined by the object 
itself. Indeed, delegation policies can be arbitrarily complex or 
light weight. Classes that want to take extreme precautions 
against delegation may choose not to support delegation at all 
- this is the default. Alternatively, users can write their own 
delegation functions or inherit appropriate ones from existing 
classes - for example, by including a time limit as part of the 
access database, delegation can be made to expire after certain 
time period. 

So far we have discussed three security-related functions: 
Mayl, lam and Delegate. They are user-defined functions, 
together, quite elegantly, they form a guard or reference 
monitor upon which any discretionary policy can be defined. 
In addition, 

l “MayI”. “lam” and “Delegate” can be defaulted to 
NIL and hence will impose no overhead. And indeed, many 
classes will favor the default case for performance reasons. 

l when these functions are non-NIL, they enforce 
user-definable policies rather than some global Legion- 
defined one, 

0 these functions can be as simple or as elaborate as 
the user feels necessary to achieve their comfort level - the 
“service slider” approach again. 

3.6 Licenses 

May1 is a relatively costly operation that may involve 
consultation of external databases and extra message 
exchanges for authentication. Invoking May1 for each method 
invocation is both technically and conceptually inefficient; a 
slight modification both removes this inefficiency and expands 
the power of the model. Rather than returning a simple 
boolean, May1 is expected to return a record; this record is the 
key to invoke any member function other than May1 - and 
thus is related to what are called “capabilities” and “tickets” in 
other schemes. We call the record a ‘license’ because it grants 
access to the object under terms and conditions defined within 
it. The conceptual form of a license is: 

RA, CAr UID; 
righter array of boolranj 
tr life tire? 
PI integer; 
fc functioni 
cr,cc,ct,cn,cfs hoolean~ 

The “rights” are bits that map one-to-one onto the object’s 
member functions. To invoke a particular member function, its 
corresponding rights bit must be set - if it isn’t, the attempted 
call is not permitted. The remainder of the fields define the 
conditions under which the license is valid; operationally this 
means: 

if cr is true, the environment’s responsible agent must be equal 
to the license’s RA field. 

if cc is true, the environment’s calling agent must be equal to 
the license’s CA field. 

if ct is true, the current time must be less than tt. 

if cn is true, the number of previous member function 
invocations under this license must be less than n. 

If any of these fail, May1 is reinvoked - that is, a failure does 
not necessarily preclude the method invocation, it just ensures 
that May1 is given another chance to assess the trust in “I”. A 
whole spectrum of choices are given by the terms and limits 
specified in the license. For example, at one extreme, by 
setting cn = true and n = 1, May1 is invoked on every call. At 
the other extreme, if cr = cc = ct = cn = cf = false, and all the 
rights bits are set, everything is permitted to anyone (This is in 
fact a classical capability scheme). Between these extremes 
are a rich variety of options in terms of both who may use rhe 
license and how often May1 is reinvoked. 

I. Both the time of the call and time t stored in the license are 
hased on the clock of the machine hosting the ohjcct being 
invoked. 
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After these checks are made, if they do not fail, the cf bit is 
tested and the function ‘f’ may be invoked: 

if cf is true, call f, which returns one of : OK, NO, or “invoke 
Mayl” 

The function f is a hook for users to define arbitrary 
constraints or checking mechanisms in addition to the ones 
specified in the license. For example, a typical f function can 
restrict access to any member function until, say, after 6 pm. In 
most cases, applications may want to default f to NIL while 
others can implement f to do anything they wish. 

If f is invoked and the OK value is returned, the method 
invocation is permitted. If the returned value is NO, the 
attempted call fails just as though the appropriate rights bit 
were not set. In the third case the current license is revoked 
and May1 is called to create a new one. 

This mechanism permits the user not only to define the 
security policy for an object, but also to make trade-off 
decisions about the cost of that security. As in the real world, 
cost is a legitimate concern, and we expect May1 may be a 
rather costly operation while checking the license will be 
inexpensive. It is easy to posit situations where security is of 
no concern at all - as in reading the system clock - and a 
“heavy” mechanism would be totally inappropriate. 
Conversely more sensitive objects may deserve frequent 
“lightweight” checks, infrequent more thorough checks, or a 
full reauthentication with retinal scan on every access. All of 
these are supported by the model. 

3.7 Cache the licenses 

We would like to briefly discuss what might be considered an 
implementation issue, but in fact has impact on the model’s 
power. In one obvious implementation, licenses would be 
stored in the user’s (caller’s) memory; if precautions aren’t 
taken the user could modify them in illegal ways - adding 
rights, increasing the time limit. etc. The usual way to prevent 
this is to encrypt the licenses so that any modification results 
in garbage, but we are thinking of another alternative. The 
alternative has a number of advantages, including enabling 
revocation (“taking back” rights that were previously granted) 
and better protection. 

The idea is relatively simple. When May1 returns a license, I., 
I.egion will cache the license in the called object’s address 
space, indexed by the RA, and CA UIDs. Subsequent requests 
from the caller will result in a local cache lookup at the site of 
the called object. The method call and the rights presented in 
the license are matched to check the validity of the call. Note 
this’ means that the license is never in the caller’s address 
space and hence cannot be modified by it (if the call4 object 
tramples on the license, well, caveat emptor!). This is not to 
say, the information in the license cannot be disclosed to the 
caller; since it cannot be used in any way, a copy of the entire 
license can be made available upon request. 

Figure 2 illustrates an example in which object A calls B on 
behalf of user Alice. Previously, the user executed “RA = me” 
to set the RA field to Alice. Next, the function call from Alice 
to A has an identical RA and CA field; both are “Alice”. When 
a local cache lookup is performed by A, a license is found and 
subsequently checked. A then calls B. and the RA field 

remains the same while the CA is now “A”. The same cache 
checks are performed by B upon receipt of A’s invocation 
request. 

There are a number of advantages to this scheme: 
l the caller can do no mischief to the license since it 

does not have write access to it 
l revocation of licenses is trivial, and under control of 

the called object -just delete some (or all) of the licenses 
in its local cache 

l the user need not be aware that any of this is happen- 
ing - they can just invoke the appropriate member func- 
tions 

l the default (no protection) case can be optimized - 
no caching or checking needs to be done 

‘: ,I B’s cache 

>, :, * Figure2 
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4 Mandatory Policies 

Mandatory policies, such as multi-level security, presume that 
the parties involved may be conspirators and impose some sort 
of check by a third party - usually “the system” - between 
caller and called objects. Generally this imposition is 
completely dynamic - every call is checked. 

In the Legion context, of course, we eschew the idea of a 
system-wide policy. Thus we need a safe mechanism that 
interposes an arbitrary enforcer of an arbitrary policy between 
caller and called object. Interestingly, when combined with 
inheritance, the May1 function already discussed provides half 
the answer, albeit in a somewhat different way. 
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Imagine that a new mandatory security regime is to be created. 
An obvious consideration is that the enforcer, which we’ll call 
the “security agent” must know about all of the kinds of 
objects in its domain -it cannot enforce “no write down” if it 
doesn’t know what a “write” to a specific object is, for 
example. Thus we’ll begin with the presumption that a good 
security agent simply won’t allow calls on objects of unknown 
pedigree. 

Given that, it is reasonable to presume that the security agent 
can derive subclasses for the objects that it does know about; 
in these subclasses the security agent can inherit a May1 
function of its choosing - and specifically one that invokes 
the security agent to verify the validity of each inward call. All 
the objects, and only the objects that are instances of these 
derived classes will be permitted in this security agent’s 
regime. 

As noted above, this solves half the problem - the security 
agent is invoked whenever an object under its control is called. 
We need to add the symmetric capability for outward calls; 
thus we add a method IWantTo that, if non-null, is invoked by 
Legion whenever an object attempts to make a call on another 
object. Now, by deriving a class that defines both the May1 and 
IWantTo methods, the security agent can be ensured that it 
gets invoked on every call involving one of the objects under 
its control. 

Note that while the usual mechanism for enforcing mandatory 
policies is done completely at run time, the one we have 
described is partially a “compile time” (or “link time”) 
mechanism-that is, the time at which the May1 and IWantTo 
methods are bound into the subclass. Although this seems 
almost required by the rejection of a single system-wide 
policy, it might raise concerns over the possibility of 
intentional corruption of the mechanism. This is a subtler topic 
than can be handled in detail here, but the reader may gain 
some comfort from the observation that we have inverted the 
usual (temporal) relation between defender and attacker. In the 
traditional scenario the defender of security puts out a system 
which the attackers then may analyze and attack at leisure. In 
this case, if the attack is to be mounted from within an object 
that the security agent has “wrapped” with its own May1 and 
IWantTo functions, the attacker must put their code out first 
without knowledge of how it will be wrapped. In this case, the 
security agent has the advantage of examining the purported 
attackers code before deciding whether to allow it into its 
security regime. 

Finally, although we won’t discuss it here, obviously we can 
define a license mechanism for IWantTo that is analogous to 
that for MayI, with the analogous benefit - IWantTo can get 
involved as much or as little as it deems appropriate. 

5 Is There An Imposter In The House? 

In a large distributed system such as we envision, it is 
impossible to prevent corruption of some computers. We must 
presume that someone will try to pose as a valid Legion 
system or object in order to gain access lo, or tamper with 
other objects in an unauthorized way. That is why, in the final 
analysis, the most sensitive data should not be stored on a 

computer connected to any network, whether running Legion 
or not. 

On the other hand, perhaps we can make the probability of 
such mischief sufficiently low and its cost sufficiently high to 
be acceptable for all but the most sensitive applications. We 
have formulated a number of principles that form a basis for 
our ongoing research. They are: 

1. Defense in de@: There won’t be a single silver bullet 
that “solves” the problem of rogue Legionnaires, so each of 
the following is intended as an independent mechanism. The 
chance that a rogue can defeat them all is at least lower than 
defeating any one separately. 

2. Least Privilege: Legion will run with the least privilege 
possible on each host operating system. There are two points 
to this: first, it will reduce the probability that a remote user 
can damage the host, and second it is the manifestation of a 
more pervasive minimalist design philosophy (see below). 

3. No hierarchy (compartmentalize): There must not be a 
general notion of something being “more privileged than” 
something else. Specifically Legion is not more privileged 
than the objects it supports, and it is completely natural to set 
up non-overlapping domains/policies. This precludes the 
notion of a “Legion root,” guaranteeing that no single entity 
can gain system-wide ultimate privileges. 

4. Minimize functionality to minimize threats: The less one 
expects Legion to do, the harder it is to corrupt it into doing 
the wrong thing! Thus, for example we have moved a great 
deal of functionality into user-definable objects - responsible 
agents and security agents were discussed here, but similar 
moves have been made for binding, scheduling, etc. This 
increases the control that an individual or organization has 
over their destiny. 

5. If if quacks like a Legion...: Legion is defined by its 
behavior, not its code. There are a number of security-related 
implications of this. First. it’s possible for several entities to 
implement compatible Legion systems; this reduces the possi- 
bility of a primordial trojan horse; it also permits competing, 
warranteed implementations. Second, it opens the possihility 
of dynamic behavioral checks - imagine a benign worm that 
periodically checks the behavior of a system that purports to 
be a Legion, for example. 

6. Firewalls: It must be possible to restrict the machines on 
which an object is stored or is executed, and conversely 
restrict the objects that are stored or executed on a machine. 
Moreover, the mechanism that achieves this must not he part 
of Legion. It must be definable on a per class basis just like 
May1 and Iam. (Of course, like the other security aspects of 
J,egion objects, we expect that the majority of folks will sim- 
ply inherit this mechanism from a class that they trust). 

7. Punishmcnf vs. Prevention: It will never be possible to 
prevent all misdeeds, but it may be possible to detect some of 
them and make public visible examples of them as a deterrent. 
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It should be noted that there is an informal, but important link 
between physical and computer security that is especially 
relevant to this discussion. Any individual or organization 
concerned with security must control the physical security of 
their own equipment; doing this increases the probability that 
the legion code at their own site is valid. That, coupled with 
the security agent’s ability to monitor every invocation, can be 
used to further increase an installation’s confidence. 

6 Recapping Some Options 

This new security model we presented here is to shift the 
emphasis from “system as enforcer” to user-definable policies 
- to give users responsibility for their own security - and to 
provide a model that makes both the conceptual cost and 
performance cost scale with the security needed. At one 
extreme, the blithely trusting need do nothing and the 
implementation can optimize away 311 the checking cost. At 
the other extreme, ultimate security suggests staying off the 
net altogether. Between these extremes: 

l High security systems might be willing to accept the 
base Legion communication mechanism, but not even trust 
it to May1 or check licenses properly. For these we suggest 
embedding checks in each member function and use physi- 
cal security in conjunction with Legion. For example, 
restrict one’s objects to running on only certain. known-to- 
be-safe computers and accept only a few trustworthy 
responsible agents. 

. Somewhat less sensitive systems might trust the 
local “imposter checking” mechanisms to adequately ensure 
that May1 and license checking is done. However, they may 
still want to invoke May1 on each member function invoca- 
tion to obtain a high degree of assurance. Such systems may 
execute authentication protocols with the responsible- and/ 
or calling agent to ensure that the remote Legion is not an 
imposter. 

l In situations where security is not 3 primary con- 
cern. cnreful systems may feel that a lighter weight check 
with the “f’ function in the license would be appropriate 

and only call May1 every Nth invocation or after some 
amount of time has elapsed. Such a system might clear its 
license cache at random intervals as well. 

l And soon. 

The point of all this is that there is a rich spectrum of options 
and costs; the user must choose the level at which they are 
sufficiently confident. Caveat emptor! 

7 Related Work 

There is a rich body of research on security that spans a 
spectrum from the deeply theoretical to the eminently 
practical, most of which is relevant to this work. In particular. 
all of the work on cryptographic protocols [ll] and on 
tirewalls [18] is directly applicable to the development of 
Legion itself. Other work, such 3s that on the definition of 
access control models [7], on information flow policies[l3] 
and on verification [ 191 will be more applicable to the 
development of MayI functions - which we will lean on as 

we develop a number of bases classes from which users may 
inherit policies. In the same vein we will lean on existing 
technologies such as Kerberos [9] Sesame [21], etc. 

We are not aware, however, of other work that has turned the 
problem inside out and placed the responsibility for security 
enforcement on the user/class-designer. The closest related 
work is in connection with CORBA; indeed many of the 
concerns we raised in the introduction are also cited in the 
OMG White Paper on Securin, [IO]. A credo of this work, 
however, was “no research”, and so they retain the model of 
system as enforcer. Indeed an exemplar of our concern with 
this approach is where they talk about the trusted computing 
base (TCB): 

‘The TCB should be kept to a minimum, but is likely to 
contain operating system(s), communications software 
(though note that integrity and confidentiality of data in transit 
is often above this layer), ORB, object adapters, security 
services and other object services called by any of the above 
during 3 security relevant operation.” 

It’s precisely this sort of very large “minimum” security 
perimeter that caused us to wonder whether there was another 
way. 

8 Technical Challenges and Future Work 

There are many technical issues that we are unable to discuss 
in depth due to limited space. These issues pose challenging 
research questions and greatly impact the design of Legion 
Security. For example, 

l Encryption: Legion does not specify the use of any 
particular encryption algorithm. Applications concerned 
about the privacy of their communication should choose 
any encryption scheme they deem necessary. But that does 
raise one question, namely, how much protection of mes- 
sages should be done by default? Our initial default is to 
send messages in the clear but digitally signed (with an 
option to encrypt) - but is that the right performance-cost 
trade-off? 

l Kq managemenr: Public-key cryptography is the 
basis of authentication in Legion. However, Legion eschews 
any distinguished trusted objects. Name and key manage- 
ment thus need to be handled without any centralized com- 
ponent - no single key certification or distribution server. 
To make the key management simple, we define that every 
object’s unique identitier be the public key of that ob.ject. A 
new key generation scheme is developed to do completely 
distributed, unique key generation. See 122) for more details 
on Legion key generation and management. 

l Communication L.qer Security: The mechanisms 
we have discussed are higher level ones, but we also need to 
worry about lower level ones - notably the privacy and 
authenticity of the messages used to implement the higher 
level concepts. As with the previous mechanisms, we do not 
want a system-wide policy and we especially want to scale 
the cost of these mechanisms to the users’ needs. 

l Rogue Legionnaires: Will our users he comfortable 
enough to use Legion despite the fact that Legion itself 
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could be corrupted? Do the principles we stated in fact help 
enough to make users confident? Can we describe the limits 
of the approach well enough for users to make well- 
informed decisions? 

l Composition of security policies: in a multi-policy 
environment like Legion, what can we say when objects that 
enforce different policies are used together? In particular 
what happens when contlicting, even contradictory, security 
policies operate in conjunction? What can we do to effec- 
tively resolve conflict should it arises and help users evalu- 
ate combined policies? 

l Expressiveness and Robustness: is the model 
expressive enough to be sufficiently useful to a interestingly 
large number of users in spite of its limitations? In addition, 
is it robust enough to engender user confidence7 How can 
we validate the model and effectively demonstrate its 
expressiveness and robustness? 

l There are a host of implementation issues related to 
other functional aspects of a real system - scheduling, for 
example - that have security implications (how better to 
effect denial of service than to simply not schedule the 
task!). 

We will start to test out our ideas and address these questions 
on a “campus wide” Legion prototype which is currently 
operational in the University of Virginia. As the overall 
Legion project proceeds, we will be able to develop the model 
in a more realistic context and scale. 

Our first step, of course, is to complete the model and its 
operational specification, including choice of protocols, 
encryption/signature algorithms, distributed key generation, 
and so on. 

A host of base classes with different security policies, such as 
ACL and Kerberos, will be built in this stage of experiment. 
Similarly we will implement a small number of login 
mechanisms - e.g., a password scheme, a question-answer 
scheme, and a variant of one of these that periodically during a 
session revalidates the user is still the one that logged in. 
While these classes will hardly test the limits of 
expressiveness, they should give us an a handle on the effort 
required to define familiar policies and will provide an initial 
selection from which “real users” can derive new classes. 

To gain confidence that the design is robust we will be 
verifying the protocols with tools developed for the purpose 
here at Virginia. We will also be doing a comparative analysis 
against other proposals. 

The next step is to huild “version zero” of the model. We can 
then compare its performance to distributed systems without 
security concerns (e.g., PVM, PC++, Mentat) as well as to 
security services such as KERBEROS. 

Several design/build/test cycles are needed to revise and 
complete our design. An extensive risk analysis is imperative 
to the procedure. As in other situations, this analysis should 
guide further efforts to first eliminate failures, and then for 
those that remain recover and mitigate their effects. 

9 Conclusion 

The “National Information Infrastructure”, NH, will inevitably 
involve the interaction/cooperation of diverse agents with 
differing security and integrity requirements. There will be 
“bad actors” in this environment, just as in other facets of life. 
The problems faced by Legion-like systems will have to be 
solved in this context. 

The model we have posited, we believe, is both a conceptually 
elegant and a robust solution to these problems. We believe it 
is fully distributed; it is extensible to new, initially 
unanticipated types of objects; it supports an indefinite number 
and range of policies and “login” mechanisms; it permits 
rational, user-defined trade-offs between security and 
performance. At the same time, we believe that it has an 
efficient implementation. 

What we need to do now is to test the “we believe” part of the 
last paragraph. 

10 Reference 

1. 

2. 

3. 

4. 

5 _. 

6. 

7. 

8. 

9. 

10. 

11. 

Andrew. S. Grimshaw, William A. Wulf, James C. 
French, Alfred C.Weaver and Paul F. Reynolds Jr. 
“Legion: The Next Logical Step Toward a Nationwide 
Virtual Computer”, June 8, 1994. CJYA CS Technical 
Report CS-94-21 
Andrew. S. Grimshaw, “Easy to use object-oriented par- 
allel programming with Mentat”. IEEE computer, pp 39- 
51, May 1993 
Andrew S. Grimshaw. J. B. Weissman. and W. T. Strayer, 
“Portable Run-Time Support for Dynamic Object-Ori- 
ented Parallel Processing,“, submitted to ACM Trunsuc- 
lions on Computer Systems, July 1993 
Andrew S. Grimshaw, E. A. West, and W. R. Pearson, 
“No Pain and Gain! - Experiences with Mentat on Bio- 
logical Application,” Concurrency: Practice & Experi- 
ence, pp. 309-328. vol. 5, issue 4, June 1993 
Andrew S. Grimshaw. W. T. Strayer, and P Narayan, 
“Dynamic OBject-Oriented Parallel Processing” IEEE 
Purullel & Disfrihuted Technology: Systems & Applicu- 
lions. pp. 33-47, May, 1993 
William A. Wulf, Roy Levin, Samuel P Harbison, 
“HYDRAICmmp: An Experimental Computer Sys- 
tem “, M&raw-Hiil. New York, 198 1 
B. W. Lampson, “Protection”, Proceedings of the Fifth 
Princeton Symposium on Information Sciences and Sys- 
tems, pp 437-443. March 1971 
H.H. Hosmer, “The Multipolicy Paradigm for ‘Dusted 
Systems” Prvceedings of New Security Purudigms Work- 
shop, pp. 19-32, 1992-1993 
B. C. Neuman, T. Y. Ts’o, “Kerberos: An Authentication 
Service for Computer Networks” IEEE Communications, 
Vol. 32, pp. 33-38, Sept. 1994 
B. Fairthome, “OMG White Paper on Security”, OMG 
Security Working Gmup, April 1994 
Bruce Schneier, “Applied Cryptography”, John Wiley & 
Sons, INC. 1994 

42 



12. Dorothy E. Denmng. “A Lattice Model of Secure Infor- 
mation Flow”, Communications oj the ACM, Vol 19, No 
5, pp 236-242, May 1976. 

13. J. H. Saltzer, “Protection and the Control of Information 
Sharing in Multics”, Communications of the ACM. Vol 
17, No 7, pp 388-402, July 1974 

14. I,, Snyder, “Formal Models of Capability-based Protec- 
tion Systems”IEEE Transactions on Computers, vC-30 
n3, March 1981, pp 172-181 

15. William R. Cheswick and Steven M. Beliovin, “Firewalls 
and Internet Security” Addison- Wesley, 1994 

16. C. Landwehr, “Verifying Security”, Computing Surveys, 
Vo1.13, No. 3, Sept. 1981 

17. G. Benson, Appelbe, I. Akyildiz, ‘The Hierarchical 
Model of Distributed System Security”, 
IEEE, May 1988, pp 122-128 

18. 1. I. Glasgow, G. H. MacEwen. “The Development and 
Proof of a Formal Specification for a Multilevel Secure 
System”&X Transactions on Computer Systems, Vol. 
5, No 2. May 1987. pp 151-184 

19. R. Rivest, A. Shamir, and L. Adleman, “A Method for 
Obtaining Digital Signatures and Public-key cryptosys- 
terns”, Communications of ACM, vol. 21, no. 2 Feb. 
1978. pp. 120-126 

20. Mark Lomas, Bruce Christianson, “To whom am 1 Speak- 
ing”, Computer, January 1995 

21. Tom Parker and Denis Pinkas, “SESAME Technology 
Version 3, Overview,’ 
http:l/www.esat.kuleuven.ac.be/cosiclsesamefdoc-txtt 
overview.txt, May 1995 

22. Chenxi Wang, Wm A. Wulf, “A Distributed Key Genera- 
tion Technique”. UVA CS Technical Report, CS-96-08. 

43 


