
A New Model of Security for

Distributed Systems

Wm A. Wulf
Chenxi Wang

Darrell Kienzle

Abstract

With the rapid growth of the information age, open distributed systems
have become increasingly popular. The need for protection and
security in a distributed environment has never been greater. The
conventional approach to security has been to enforce a system-wide
policy, but this approach will not work for large distributed systems
where entirely new security issues and concerns are emerging. We
argue that a new model is needed that shifts the emphasis from
“system as enforcer” to user-definable policies. Users ought to be able
to select the level of security they need and pay only the necessary
overhead. Moreover. ultimately, they must be responsible for their
own security.

This research is being carried out in the context of the Legion project.
We start by describing the objectives and philosophy of the overall
project and then present our conceptual model and design decisions. A
set of technical challenges and related issues are also addressed.

1 Introduction

High speed networking has significantly changed the nature of
computing, and specifically gives rise to a new set of security
concerns and issues. The conventional security approach has
been for “the system” to mediate all interactions between users
and resources, and to enforce a single system-wide policy.
This approach has served us well in the environment of a
centralized system because the operating system implements
all the key components and knows who is responsible for each
process.

However, in a large distributed system several things have
changed:

l Distributed Kernel: There is no clear notion of a sin-
gle protected kernel. The path between any two objects may
involve several machines that are not equally trusted.

l System Scope and Size: The system is usually much
larger than a centralized one. It may very well be a federa-
tion of distinct administrative domains with separate author-
ities.

l Heterogeneity: The system may involve many sub-
domains with distinct security policies, channels that are

secured in several ways, and platforms with different
operation systems.

The intricate nature of distributed system has fundamentalIy
changed the requirement of system security. We are
investigating a new model of computer security - a model
appropriate to large distributed systems in the context of
Legion - a system described below.

Users of Legion-like systems must feel confident that the
privacy and integrity of their data will not be compromised -
either by granting others access to their system, or by running
their own programs on an unknown remote computer. Creating
that confidence is an especially challenging problem for a
number of reasons; for example:

l We envision Legion as a very large distributed sys-
tem; at least for purposes of design, it is useful to think of it
as running on millions of processors distributed throughout
the galaxy.

l Legion will run on top of a variety of host operating
systems: it will not have control of the hardware or operat-
ing system on which it runs.

l There won’t be a single organization or person that
“owns” all of the systems involved. Thus no one can be
ttusted to enforce security standards on them; indeed, some
individual owners might be malicious.

No single security policy will satisfy all users of a huge system
- the CIA, NationsBank, and the University of Virginia
Hospital will have different views of what is necessary and
appropriate. We cannot even presume a single “login”
mechanism - some situations will demand a far more
rigorous one than others. Moreover we cannot anticipate all
the policies or login mechanisms that will emerge; both will be
added dynamically. And, for both logical and performance
reasons, the potential size and scope of Legion suggests that
we should not have distinguished “trusted” components that
could become points of failure/penetration or bottlenecks.

Running “on top of’ host operating systems has many
implications, but in particular it means that in addition to the
usual assumption of insecure communication, we must assume
that copies of the Legion system itself will be corrupted (rogue
Legionnaires), that some other agent may try to impersonate
Legion, and that a person with “root” privileges to a
component system can modify the bits arbitrarily.

The assumption of “no owner” and wide distribution
exacerbates these issues, of course. Since L,egion cannot
replace existing host operating systems, the idea of securing
them all is not a feasible option. We have to presume that at
least some of the hosts in the system will be compromised, and
may even be malicious.

These problems pose new challenges for computer security.
They are sufficiently different from the prior pmblems faced
by single-host systems that some of the assumptions that have
pervaded work on computer security must be re-examined.
Consider just two such assumptions. The first is that security is
absolute; a system is either secure or it is not. A second is that
“the system” is the enforcer of security.

34

In the physical world, security is never absolute. Some safes
are better than others, but none is expected to withstand an
arhitrary attack. In fact, safes are rated by the time they resist
particular attacks. If a particular safe isn’t good enough, its
owner has the responsibility to get a better one, hire a guard,
string an electric fence, or whatever. It isn’t “the system”,
whatever that may be, that provides added security.

Note that we said that users must feel “confident”; we did not
say that they had to be “guaranteed” of anything. Security
needs to be “good enough” for a particular circumstance. Of
course, what’s good enough in one case may not be in another
- so we need a mechanism that first lets the user know how
much confidence they are justified in having, and second
provides an avenue for gaining more when required.

The phrase “the trusted computing base” (TCB) is common
when referring to systems that enforce a security policy. The
mental image is that “the system” mediates all interactions
between users and resources, and for each interaction decides
to permit or prohibit it hased on consulting a “trusted data
base”; the Lampson access matrix [] is the archetype of such
models. Even communications, which is inherently insecure,
is usually presumed to be inside the perimeter and the system
is considered to be responsible for implementing secure
communication on top of the insecure base.

As with the previous assumption, this one just doesn’t work in
a Legion-like context. In the first place there isn’t a single
policy, new ones may emerge all the time, and the
complexities of overlapping/intersecting security domains blur
the very notion of a perimeter to be protected. In the second
place, since we have to presume that the code might be
reverse-engineered and modified, we cannot rely on the
system enforcing security - or very much of anything, for
that matter.

Moreover, security has a cost in time, convenience, or both.
The intuitive determination of how much confidence is “good
enough” is moderated by cost considerations. As has been
observed many times, one reason that extant computer systems
have not paid more attention to security is that the cost,
especially in convenience, is too high. These prior systems
took the “security is absolute” approach, and everyone paid
the cost regardless of their individual needs. To succeed, our
model must scale - it must have essentially zero cost if no
security is needed, and the cost must increase in proportion to
the extra confidence one gains.

The above ohservation calls for rethinking some very basic,
often stated assumptions - that is, a change in the way of
thinking and a shift in security paradigm. In the rest of the
paper, we suggest a new security model that differs from the
traditional approach. We also illustrate ideas to deal with the
issues raised above, as well as others. Before proceeding to
describe our plan of attack, the following describes the Legion
system to provide context.

2 Background - The Legion Project’

1. We cannot adequately present Legion in the few pages below.
For more information see our web page a1 http://www.cs.vir-

ginia.edul-legion/

The Legion project at the University of Virginia is an attempt
to provide system services that create the illusion of a single
virtual machine, a machine that provides secure shared object
and shared name spaces, high performance via both task and
data parallelism, application adjustable fault-tolerance,
improved response time, and greater throughput. Legion is
targeted towards wide-area assemblies of workstations,
supercomputers, and parallel supercomputers. Such a system,
if constructed, will unleash the integrated potential of many
diverse, powerful resources which may very well
revolutionize how we work, how we play, and in general, how
we interact with one another.

The potential benefits of Legion are enormous. We envision
(I) more effective collaboration by putting coworkers in the
same virtual workplace; (2) higher application performance
due to parallel execution and exploitation of off-site resources;
(3) improved access to data and computational resources; (4)
improved researcher and user productivity resulting from
more effective collaboration and better application
performance; (5) increased resource utilization; and (6) a
considerably simpler programming environment for the
applications programmers. Indeed, it seems probable to us that
the NII can reach its full potential only with a Legion-like
infrastructure.

2.1 The Legion Object Model and System Phi-
losophy

Legion is an object-oriented metasystem’. The principles of
the object-oriented paradigm are the foundation for the
construction of Legion; All components of interest in Legion
are objects, and all objects, including classes, are instances of
classes. Use of the object-oriented paradigm enables us to
exploit the paradigm’s encapsulation and inheritance
properties, as well as benefits such as software reuse, fault
containment, and reduction in complexity.

Hand-in-hand with the object-oriented paradigm is one of our
driving philosophical themes: we cannot design a system that
will satisfy every users’ needs, therefore we must design an
extensible system. This philosophy manifests itself
throughout, particularly in our use of delayed binding and
what we call “service sliders”. Consider security. There is a
trade-off between security and performance (due to the cost of
authentication, encryption, etc.). Rather than providing a fixed
level of security - with the result that no one will be happy, we
allow users to choose their own trade-offs by implementing
their own policies or using existing policies via inheritance.
Similarly users can select the level of fault-tolerance that they
want - and pay for only what they use. By allowing users to
implement their own or inherit services from libmry classes
we provide the user with flexibility while at the same time
providing a menu of existing choices.

2.2 Design Objectives and Restrictions

We have the following design objectives, against which we
measure our success; site autonomy; an extensible core;
scalability; easy-to-use, seamless computational environment:
high performance via parallelism; single, persistent

2. This does not imply that Legion supports only ohjert-oriented
languages. Legion will support traditional languages such as C
and F&ran as well.

35

namespace; security for both users and resource providers;
manage and exploit resource heterogeneity, and fault
tolerance.

In addition to the goals above, two constraints restrict our
design - we cannot replace host operating systems, and we
cannot legislate changes to the interconnection network.

To accomplish the goals, many technical, political,
sociological, and economic issues need to be resolved. In this
paper we attempt to address the security aspect of the Legion
project.

3 The Security Model

In this section we describe a design for the security model in
Legion. The model, following closely to the Legion
philosophy, responds to the issues raised in the introduction.
We first present the design guidelines and principles. We
discuss the trade-offs and our design decisions. We then
explain how the model works, in particular how it can be used
to enforce discretionary policies.

The premise here is that we cannot, and indeed should not,
provide a guarantee of security. What we can and should do is
(1) be as precise as possible about the degree of confidence a
user can have, (2) make that confidence “good enough” and
“cheap enough” for an interestingly large selection of users,
and (3) provide a context that allows the user to gain the
additional confidence they require with a cost that is
intuitively proportional to the added confidence they get.

3.1 Design Principles

The Legion Security model is based on three principles:
l first, as in the Hippocratic Oath, do no harm!
l second, caveat emptor, let the buyer beware.
l third, small is beautiful.
.

Legion’s first responsibility is to minimize the possibility that
it will provide an avenue via which an intruder can do
mischief to a remote system. The remote system is, by the
second principle, responsible for ensuring that it is running a
valid copy of J..egion - but subject to that, 1,egion should not
pennit its corruption.

The second principle means that in the final analysis users are
responsible for their own security. Legion provides a model
and mechanism that make it feasible, conceptually simple, and
inexpensive in the default case, but in the end the user has the
ultimate responsibility to determine what policy is to be
enforced and how vigorous that enforcement will be. This, we
think, also models the “real world”; the strongest door with the
strongest lock is useless if the user leaves it open.

The third principle simply means, given that one cannot
absolutely, unconditionally depend on JEgion to enforce
security, there is no reason to invest it with elaborate
mechanisms. On the contrary, at least intuitively, the simpler
the model and the less it does, the lower the probability that a
corrupted version can do harm. The remainder of the paper
describes such a simple, albeit evolving model. The

description is discursive, but a much shorter, formal detinition
will be forthcoming.
As noted above, Legion is an object-oriented system. Thus,

l the unit of protection is the object, and
l the “rights” to the object allow invocation of its

member functions (each member function is associated with
a distinct right).

This is not a new idea; it dates to at least the Hydra system in
the mid 1970’s 161 and is also in some proposed CORBA
models [lo]. Note, however, that it subsumes more common
notions such as protection at the level of file systems. In
Legion, files are merely one type of user-defined object that
happen to have methods readlwritelseekletc. Directories are
just another type of object with methods such as lookup/enter/
delete/etc. There is no reason why there must be only one type
of file or one type of directory and, indeed, these need not be
distinguished concepts defined by, or even known to Legion.

The basic concepts of the Legion Security Model are minimal;
there are just four:

l every object provides certain known member func-
tions (that may be defaulted to NIL); the ones we will
describe here are “Mayl,” “Jam,” and “Delegate.“.

l there is a “responsible agent” (RA) associated with
each operation. The RA is someone who can be held
accountable for the particular operation. There are a certain
set of member functions associated with an RA object.
User-defined objects can play the role of RA by supplying
these member functions.

. every invocation of a member function is performed
in an environment consisting of a pair of (unique) object
names - those of the operative responsible agent, and
“calling agent”, CA.

l there are a small set of rules for actions that JAgion
will take, primarily at member function invocation. These
rules are defined informally here.

The general approach is that Legion will invoke the known
member functions (MayI, etc.), thus giving objects the
responsibility of defining and ensuring the policy. Precisely
how this happens is detailed in the following sections.

3.2 Protecting Oneself - Privacy

In Legion users are responsible for their own security. They
are the ones who decide how secure their applications ought to
be, and from there, which policy is to be enforced and how
rigorous the enforcement should be.

For example, a truly paranoid user’s object can (and should, if
they deem it important) include code in every method to
authenticate the caller and to determine whether that caller has
the right to make this call. This cautious user most likely will
not be satisfied unless some elaborate authentication scheme is
used to identify the caller.

For many users, however, this degree of caution is
unnecessary and some delegation to the Legion mechanism is
appropriate - for example, rather than engaging in an
authentication dialog with the caller, an object might trust that
the CA field of the environment is correct. In the following
we’ll describe how the model facilitates appropriate, situation-

36

specific delegation; for readability we’ll proceed in several
steps, each of which adds a bit more detail and refinement.

Our first objective is to have policies defined by the objects
themselves. At the same time, we don’t want to have to
include policy-enforcement code in every member function
unless the object is particularly sensitive. So, instead, we
require that every class define a special member function,
“MayI” (this can be defaulted, but we’ll ignore that for now).
May1 defines the security policy for objects of that class.
Conceptually at least, Legion will automatically call the May1
function before every member function invocation, and will
permit that invocation only if May1 sanctions it (see figure 1).

We’ll refine this in a moment to be both more efficient and
more powerful -but note how this simple idea begins to meet
our objectives. First, it permits the creator of an object class to
define the privacy policy for objects of that class; there is no
system-wide policy. Second, it is fully extensible - when a
user defines a new class its member functions become the
“rights” for that class and its May1 function/policy determines
who may exercise those rights. Third, it is fully distributed;
there is no distinguished trusted data base (each May1 may
consult a database if it chooses, but there is no “distinguished”
one(s)). Fourth, it is not particularly burdensome; users can
default May1 to “always OK”, inherit a May1 policy from a
class they trust, or write a new policy if the situation warrants
it. Fifth, the code for implementing the security policy is
localized to the May1 function rather than distributed among
the member functions. Finally, the default “always OK” policy
can be optimized so that there is no overhead at all associated
with the mechanism.

,&urel I,

3.3 Authentication

The previous discussion left one question unanswered: who or
what is the “I” that the May1 function grants access to? Indeed,
the request must first be authenticated to identify the principal
that uttered it, and then authorized only if the principal has the
right to perform the operation on the object. The principal
behind the request could be human users, software programs,
or compound identities such as delegations, roles and groups.

Authentication in Legion is aided by the use of Legion
environment. Recall that the environment contains two object
identifiers, namely the calling agent (CA) and the responsible
agent (RA). The CA is the object that initiated the current
method call. The RA is a generalization of the “user id” in
conventional systems; for the moment it is adequate to think of

it as identifying the user or agent who was responsible for the
sequence of method invocations that lead to the current one.

In the general spirit of our approach, the authentication of the
caller and caller’s context can be anything that the May1
function demands - and in sensitive cases, that is just as it
should be. In most cases, however, “I” will be simply CA, or
RA, or any subset of the two. Indeed, by analogy with familiar
systems where “I” is the user, that subset may be just RA.

Legion makes a specified level of effort to assure the
authenticity of the environment IDS; this effort should be
adequate for most purposes. However, in the spirit of the
second principle, we expect that May1 functions with
extraordinary security concerns will code their own
authentication protocols by, for example, calling back to the
caller, and/or responsible agent. To make this possible, we
require every Legion object to supply a special public member
function - “lam” for authentication purposes. In the same
principle as “May1 “, “lam” could be optimized to NIL.

Legion bases authentication on public-key cryptography in the
default case. Knowledge of the private key is the proof of
authenticity. In addition, a set of general principle
authentication protocols will be provided as the system
standard. Yam” can choose to support all or none of them.
Other more elaborate protocols could be negotiated between
objects and made known to the “lam” function. Objects
unprepared to adequately authenticate themselves are ipso
facto not to be trusted. The result of “Iam” can be cached for
future reference, but that is an implementation choice and is
beyond the scope. of this paper.

3.4 Login

The avenue via which Legion users authenticate themselves to
Legion is the Login procedure. Login establishes user’s
identity as well as creating a responsible agent object for the
user. The login procedure is therefore the building block for
future authentication, delegation and creating of compound
identities.

By the same design principle, Legion should not mandate a
single “Login” mechanism. Typically, there is a login object
that will be invoked when a user first logs in. This login object
engages in a login dialog with the user and, if satisfied,
declares itself to be the responsible agent. Actually, any
I.egion object may declare itself to be the current responsible
agent should it choose. It simply does so by executing a “RA =
me” command (environments are stacked, so that a return
from an object executing this command will revert to the
previous RA).

There are many advantages to why we shouldn’t make this
“login” mechanism universal. For example, logging on to
Iegion in UVa may require only a simple password while
Legion in CIA might demand their users to submit fingerprints
or retinal scan information. Users can define their own login
class with varying degrees of rigor in the login dialog, specific
to their needs. The “login” mechanism can also be easily
inherited or defaulted to some simple scheme.

How do we know that a particular login class is to be trusted?
We don’t, in general. The May1 function of another class need

37

not believe the login! After interrogating the class of the
responsible agent the May1 function may reject the call if the
login is either insufficiently rigorous, or simply unknown to
this Mayl. As in the infamous “real world”, trust can only be
earned.

3.5 Delegation

In all security models one must consider how rights propagate;
Can a principal hand all or some of its authority to another,
and how can a principal restrict its authority? For example, a
user on a workstation may wish to delegate the “read” right on
her files to the C compiler. The compiler can then access files
on her behalf as long as the delegation still stands, much in the
same way the user may wish to delegate. Just as the basic
security policy is embedded in May1 and not in Legion, our
model does not answer this question - but it does provide a
uniform way for the user to answer it.

We require every Legion object to have another public
method, “Delegate.” The parameters to Delegate are the ID of
the object to which rights should be delegated, and a set of
restrictions that limit those rights. For example, a user object
A wants to invoke a compiler C and pass the “read-only” right
on file F to C. To accomplish this, A must invoke the
“Delegate” function of F to request such a delegation. Using a
C++ like notation, but prefixing it with the name of the
executing object and a colon, this is:

At F.Delegate(C, read)t

F, upon receiving the above request, can either grant the
delegation, reject it, or grant delegation of a more restricted
authority than what is requested. Granting delegation may
result in storing some information locally or in creation of a
new entry in some database (for example, an access control
list) known to May].

A then instructs C to compile the file by passing it the ID of F.
At C.ccqdle(?)

When C attempts to read F, F’s May1 is invoked. May1
recognizes this delegated authority either by looking up some
local information or consulting some external database. The
operation is thus permitted. However, if C attempts to invoke
any of F’s other methods, F will disallow this.

Our philosophy is that delegation policy is a part of the
discretionary policy which should be defined by the object
itself. Indeed, delegation policies can be arbitrarily complex or
light weight. Classes that want to take extreme precautions
against delegation may choose not to support delegation at all
- this is the default. Alternatively, users can write their own
delegation functions or inherit appropriate ones from existing
classes - for example, by including a time limit as part of the
access database, delegation can be made to expire after certain
time period.

So far we have discussed three security-related functions:
Mayl, lam and Delegate. They are user-defined functions,
together, quite elegantly, they form a guard or reference
monitor upon which any discretionary policy can be defined.
In addition,

l “MayI”. “lam” and “Delegate” can be defaulted to
NIL and hence will impose no overhead. And indeed, many
classes will favor the default case for performance reasons.

l when these functions are non-NIL, they enforce
user-definable policies rather than some global Legion-
defined one,

0 these functions can be as simple or as elaborate as
the user feels necessary to achieve their comfort level - the
“service slider” approach again.

3.6 Licenses

May1 is a relatively costly operation that may involve
consultation of external databases and extra message
exchanges for authentication. Invoking May1 for each method
invocation is both technically and conceptually inefficient; a
slight modification both removes this inefficiency and expands
the power of the model. Rather than returning a simple
boolean, May1 is expected to return a record; this record is the
key to invoke any member function other than May1 - and
thus is related to what are called “capabilities” and “tickets” in
other schemes. We call the record a ‘license’ because it grants
access to the object under terms and conditions defined within
it. The conceptual form of a license is:

RA, CAr UID;
righter array of boolranj
tr life tire?
PI integer;
fc functioni
cr,cc,ct,cn,cfs hoolean~

The “rights” are bits that map one-to-one onto the object’s
member functions. To invoke a particular member function, its
corresponding rights bit must be set - if it isn’t, the attempted
call is not permitted. The remainder of the fields define the
conditions under which the license is valid; operationally this
means:

if cr is true, the environment’s responsible agent must be equal
to the license’s RA field.

if cc is true, the environment’s calling agent must be equal to
the license’s CA field.

if ct is true, the current time must be less than tt.

if cn is true, the number of previous member function
invocations under this license must be less than n.

If any of these fail, May1 is reinvoked - that is, a failure does
not necessarily preclude the method invocation, it just ensures
that May1 is given another chance to assess the trust in “I”. A
whole spectrum of choices are given by the terms and limits
specified in the license. For example, at one extreme, by
setting cn = true and n = 1, May1 is invoked on every call. At
the other extreme, if cr = cc = ct = cn = cf = false, and all the
rights bits are set, everything is permitted to anyone (This is in
fact a classical capability scheme). Between these extremes
are a rich variety of options in terms of both who may use rhe
license and how often May1 is reinvoked.

I. Both the time of the call and time t stored in the license are
hased on the clock of the machine hosting the ohjcct being
invoked.

38

After these checks are made, if they do not fail, the cf bit is
tested and the function ‘f’ may be invoked:

if cf is true, call f, which returns one of : OK, NO, or “invoke
Mayl”

The function f is a hook for users to define arbitrary
constraints or checking mechanisms in addition to the ones
specified in the license. For example, a typical f function can
restrict access to any member function until, say, after 6 pm. In
most cases, applications may want to default f to NIL while
others can implement f to do anything they wish.

If f is invoked and the OK value is returned, the method
invocation is permitted. If the returned value is NO, the
attempted call fails just as though the appropriate rights bit
were not set. In the third case the current license is revoked
and May1 is called to create a new one.

This mechanism permits the user not only to define the
security policy for an object, but also to make trade-off
decisions about the cost of that security. As in the real world,
cost is a legitimate concern, and we expect May1 may be a
rather costly operation while checking the license will be
inexpensive. It is easy to posit situations where security is of
no concern at all - as in reading the system clock - and a
“heavy” mechanism would be totally inappropriate.
Conversely more sensitive objects may deserve frequent
“lightweight” checks, infrequent more thorough checks, or a
full reauthentication with retinal scan on every access. All of
these are supported by the model.

3.7 Cache the licenses

We would like to briefly discuss what might be considered an
implementation issue, but in fact has impact on the model’s
power. In one obvious implementation, licenses would be
stored in the user’s (caller’s) memory; if precautions aren’t
taken the user could modify them in illegal ways - adding
rights, increasing the time limit. etc. The usual way to prevent
this is to encrypt the licenses so that any modification results
in garbage, but we are thinking of another alternative. The
alternative has a number of advantages, including enabling
revocation (“taking back” rights that were previously granted)
and better protection.

The idea is relatively simple. When May1 returns a license, I.,
I.egion will cache the license in the called object’s address
space, indexed by the RA, and CA UIDs. Subsequent requests
from the caller will result in a local cache lookup at the site of
the called object. The method call and the rights presented in
the license are matched to check the validity of the call. Note
this’ means that the license is never in the caller’s address
space and hence cannot be modified by it (if the call4 object
tramples on the license, well, caveat emptor!). This is not to
say, the information in the license cannot be disclosed to the
caller; since it cannot be used in any way, a copy of the entire
license can be made available upon request.

Figure 2 illustrates an example in which object A calls B on
behalf of user Alice. Previously, the user executed “RA = me”
to set the RA field to Alice. Next, the function call from Alice
to A has an identical RA and CA field; both are “Alice”. When
a local cache lookup is performed by A, a license is found and
subsequently checked. A then calls B. and the RA field

remains the same while the CA is now “A”. The same cache
checks are performed by B upon receipt of A’s invocation
request.

There are a number of advantages to this scheme:
l the caller can do no mischief to the license since it

does not have write access to it
l revocation of licenses is trivial, and under control of

the called object -just delete some (or all) of the licenses
in its local cache

l the user need not be aware that any of this is happen-
ing - they can just invoke the appropriate member func-
tions

l the default (no protection) case can be optimized -
no caching or checking needs to be done

‘: ,I B’s cache

>, :, * Figure2
“’ j ,’ I,

,*”

4 Mandatory Policies

Mandatory policies, such as multi-level security, presume that
the parties involved may be conspirators and impose some sort
of check by a third party - usually “the system” - between
caller and called objects. Generally this imposition is
completely dynamic - every call is checked.

In the Legion context, of course, we eschew the idea of a
system-wide policy. Thus we need a safe mechanism that
interposes an arbitrary enforcer of an arbitrary policy between
caller and called object. Interestingly, when combined with
inheritance, the May1 function already discussed provides half
the answer, albeit in a somewhat different way.

39

Imagine that a new mandatory security regime is to be created.
An obvious consideration is that the enforcer, which we’ll call
the “security agent” must know about all of the kinds of
objects in its domain -it cannot enforce “no write down” if it
doesn’t know what a “write” to a specific object is, for
example. Thus we’ll begin with the presumption that a good
security agent simply won’t allow calls on objects of unknown
pedigree.

Given that, it is reasonable to presume that the security agent
can derive subclasses for the objects that it does know about;
in these subclasses the security agent can inherit a May1
function of its choosing - and specifically one that invokes
the security agent to verify the validity of each inward call. All
the objects, and only the objects that are instances of these
derived classes will be permitted in this security agent’s
regime.

As noted above, this solves half the problem - the security
agent is invoked whenever an object under its control is called.
We need to add the symmetric capability for outward calls;
thus we add a method IWantTo that, if non-null, is invoked by
Legion whenever an object attempts to make a call on another
object. Now, by deriving a class that defines both the May1 and
IWantTo methods, the security agent can be ensured that it
gets invoked on every call involving one of the objects under
its control.

Note that while the usual mechanism for enforcing mandatory
policies is done completely at run time, the one we have
described is partially a “compile time” (or “link time”)
mechanism-that is, the time at which the May1 and IWantTo
methods are bound into the subclass. Although this seems
almost required by the rejection of a single system-wide
policy, it might raise concerns over the possibility of
intentional corruption of the mechanism. This is a subtler topic
than can be handled in detail here, but the reader may gain
some comfort from the observation that we have inverted the
usual (temporal) relation between defender and attacker. In the
traditional scenario the defender of security puts out a system
which the attackers then may analyze and attack at leisure. In
this case, if the attack is to be mounted from within an object
that the security agent has “wrapped” with its own May1 and
IWantTo functions, the attacker must put their code out first
without knowledge of how it will be wrapped. In this case, the
security agent has the advantage of examining the purported
attackers code before deciding whether to allow it into its
security regime.

Finally, although we won’t discuss it here, obviously we can
define a license mechanism for IWantTo that is analogous to
that for MayI, with the analogous benefit - IWantTo can get
involved as much or as little as it deems appropriate.

5 Is There An Imposter In The House?

In a large distributed system such as we envision, it is
impossible to prevent corruption of some computers. We must
presume that someone will try to pose as a valid Legion
system or object in order to gain access lo, or tamper with
other objects in an unauthorized way. That is why, in the final
analysis, the most sensitive data should not be stored on a

computer connected to any network, whether running Legion
or not.

On the other hand, perhaps we can make the probability of
such mischief sufficiently low and its cost sufficiently high to
be acceptable for all but the most sensitive applications. We
have formulated a number of principles that form a basis for
our ongoing research. They are:

1. Defense in de@: There won’t be a single silver bullet
that “solves” the problem of rogue Legionnaires, so each of
the following is intended as an independent mechanism. The
chance that a rogue can defeat them all is at least lower than
defeating any one separately.

2. Least Privilege: Legion will run with the least privilege
possible on each host operating system. There are two points
to this: first, it will reduce the probability that a remote user
can damage the host, and second it is the manifestation of a
more pervasive minimalist design philosophy (see below).

3. No hierarchy (compartmentalize): There must not be a
general notion of something being “more privileged than”
something else. Specifically Legion is not more privileged
than the objects it supports, and it is completely natural to set
up non-overlapping domains/policies. This precludes the
notion of a “Legion root,” guaranteeing that no single entity
can gain system-wide ultimate privileges.

4. Minimize functionality to minimize threats: The less one
expects Legion to do, the harder it is to corrupt it into doing
the wrong thing! Thus, for example we have moved a great
deal of functionality into user-definable objects - responsible
agents and security agents were discussed here, but similar
moves have been made for binding, scheduling, etc. This
increases the control that an individual or organization has
over their destiny.

5. If if quacks like a Legion...: Legion is defined by its
behavior, not its code. There are a number of security-related
implications of this. First. it’s possible for several entities to
implement compatible Legion systems; this reduces the possi-
bility of a primordial trojan horse; it also permits competing,
warranteed implementations. Second, it opens the possihility
of dynamic behavioral checks - imagine a benign worm that
periodically checks the behavior of a system that purports to
be a Legion, for example.

6. Firewalls: It must be possible to restrict the machines on
which an object is stored or is executed, and conversely
restrict the objects that are stored or executed on a machine.
Moreover, the mechanism that achieves this must not he part
of Legion. It must be definable on a per class basis just like
May1 and Iam. (Of course, like the other security aspects of
J,egion objects, we expect that the majority of folks will sim-
ply inherit this mechanism from a class that they trust).

7. Punishmcnf vs. Prevention: It will never be possible to
prevent all misdeeds, but it may be possible to detect some of
them and make public visible examples of them as a deterrent.

40

It should be noted that there is an informal, but important link
between physical and computer security that is especially
relevant to this discussion. Any individual or organization
concerned with security must control the physical security of
their own equipment; doing this increases the probability that
the legion code at their own site is valid. That, coupled with
the security agent’s ability to monitor every invocation, can be
used to further increase an installation’s confidence.

6 Recapping Some Options

This new security model we presented here is to shift the
emphasis from “system as enforcer” to user-definable policies
- to give users responsibility for their own security - and to
provide a model that makes both the conceptual cost and
performance cost scale with the security needed. At one
extreme, the blithely trusting need do nothing and the
implementation can optimize away 311 the checking cost. At
the other extreme, ultimate security suggests staying off the
net altogether. Between these extremes:

l High security systems might be willing to accept the
base Legion communication mechanism, but not even trust
it to May1 or check licenses properly. For these we suggest
embedding checks in each member function and use physi-
cal security in conjunction with Legion. For example,
restrict one’s objects to running on only certain. known-to-
be-safe computers and accept only a few trustworthy
responsible agents.

. Somewhat less sensitive systems might trust the
local “imposter checking” mechanisms to adequately ensure
that May1 and license checking is done. However, they may
still want to invoke May1 on each member function invoca-
tion to obtain a high degree of assurance. Such systems may
execute authentication protocols with the responsible- and/
or calling agent to ensure that the remote Legion is not an
imposter.

l In situations where security is not 3 primary con-
cern. cnreful systems may feel that a lighter weight check
with the “f’ function in the license would be appropriate

and only call May1 every Nth invocation or after some
amount of time has elapsed. Such a system might clear its
license cache at random intervals as well.

l And soon.

The point of all this is that there is a rich spectrum of options
and costs; the user must choose the level at which they are
sufficiently confident. Caveat emptor!

7 Related Work

There is a rich body of research on security that spans a
spectrum from the deeply theoretical to the eminently
practical, most of which is relevant to this work. In particular.
all of the work on cryptographic protocols [ll] and on
tirewalls [18] is directly applicable to the development of
Legion itself. Other work, such 3s that on the definition of
access control models [7], on information flow policies[l3]
and on verification [191 will be more applicable to the
development of MayI functions - which we will lean on as

we develop a number of bases classes from which users may
inherit policies. In the same vein we will lean on existing
technologies such as Kerberos [9] Sesame [21], etc.

We are not aware, however, of other work that has turned the
problem inside out and placed the responsibility for security
enforcement on the user/class-designer. The closest related
work is in connection with CORBA; indeed many of the
concerns we raised in the introduction are also cited in the
OMG White Paper on Securin, [IO]. A credo of this work,
however, was “no research”, and so they retain the model of
system as enforcer. Indeed an exemplar of our concern with
this approach is where they talk about the trusted computing
base (TCB):

‘The TCB should be kept to a minimum, but is likely to
contain operating system(s), communications software
(though note that integrity and confidentiality of data in transit
is often above this layer), ORB, object adapters, security
services and other object services called by any of the above
during 3 security relevant operation.”

It’s precisely this sort of very large “minimum” security
perimeter that caused us to wonder whether there was another
way.

8 Technical Challenges and Future Work

There are many technical issues that we are unable to discuss
in depth due to limited space. These issues pose challenging
research questions and greatly impact the design of Legion
Security. For example,

l Encryption: Legion does not specify the use of any
particular encryption algorithm. Applications concerned
about the privacy of their communication should choose
any encryption scheme they deem necessary. But that does
raise one question, namely, how much protection of mes-
sages should be done by default? Our initial default is to
send messages in the clear but digitally signed (with an
option to encrypt) - but is that the right performance-cost
trade-off?

l Kq managemenr: Public-key cryptography is the
basis of authentication in Legion. However, Legion eschews
any distinguished trusted objects. Name and key manage-
ment thus need to be handled without any centralized com-
ponent - no single key certification or distribution server.
To make the key management simple, we define that every
object’s unique identitier be the public key of that ob.ject. A
new key generation scheme is developed to do completely
distributed, unique key generation. See 122) for more details
on Legion key generation and management.

l Communication L.qer Security: The mechanisms
we have discussed are higher level ones, but we also need to
worry about lower level ones - notably the privacy and
authenticity of the messages used to implement the higher
level concepts. As with the previous mechanisms, we do not
want a system-wide policy and we especially want to scale
the cost of these mechanisms to the users’ needs.

l Rogue Legionnaires: Will our users he comfortable
enough to use Legion despite the fact that Legion itself

41

could be corrupted? Do the principles we stated in fact help
enough to make users confident? Can we describe the limits
of the approach well enough for users to make well-
informed decisions?

l Composition of security policies: in a multi-policy
environment like Legion, what can we say when objects that
enforce different policies are used together? In particular
what happens when contlicting, even contradictory, security
policies operate in conjunction? What can we do to effec-
tively resolve conflict should it arises and help users evalu-
ate combined policies?

l Expressiveness and Robustness: is the model
expressive enough to be sufficiently useful to a interestingly
large number of users in spite of its limitations? In addition,
is it robust enough to engender user confidence7 How can
we validate the model and effectively demonstrate its
expressiveness and robustness?

l There are a host of implementation issues related to
other functional aspects of a real system - scheduling, for
example - that have security implications (how better to
effect denial of service than to simply not schedule the
task!).

We will start to test out our ideas and address these questions
on a “campus wide” Legion prototype which is currently
operational in the University of Virginia. As the overall
Legion project proceeds, we will be able to develop the model
in a more realistic context and scale.

Our first step, of course, is to complete the model and its
operational specification, including choice of protocols,
encryption/signature algorithms, distributed key generation,
and so on.

A host of base classes with different security policies, such as
ACL and Kerberos, will be built in this stage of experiment.
Similarly we will implement a small number of login
mechanisms - e.g., a password scheme, a question-answer
scheme, and a variant of one of these that periodically during a
session revalidates the user is still the one that logged in.
While these classes will hardly test the limits of
expressiveness, they should give us an a handle on the effort
required to define familiar policies and will provide an initial
selection from which “real users” can derive new classes.

To gain confidence that the design is robust we will be
verifying the protocols with tools developed for the purpose
here at Virginia. We will also be doing a comparative analysis
against other proposals.

The next step is to huild “version zero” of the model. We can
then compare its performance to distributed systems without
security concerns (e.g., PVM, PC++, Mentat) as well as to
security services such as KERBEROS.

Several design/build/test cycles are needed to revise and
complete our design. An extensive risk analysis is imperative
to the procedure. As in other situations, this analysis should
guide further efforts to first eliminate failures, and then for
those that remain recover and mitigate their effects.

9 Conclusion

The “National Information Infrastructure”, NH, will inevitably
involve the interaction/cooperation of diverse agents with
differing security and integrity requirements. There will be
“bad actors” in this environment, just as in other facets of life.
The problems faced by Legion-like systems will have to be
solved in this context.

The model we have posited, we believe, is both a conceptually
elegant and a robust solution to these problems. We believe it
is fully distributed; it is extensible to new, initially
unanticipated types of objects; it supports an indefinite number
and range of policies and “login” mechanisms; it permits
rational, user-defined trade-offs between security and
performance. At the same time, we believe that it has an
efficient implementation.

What we need to do now is to test the “we believe” part of the
last paragraph.

10 Reference

1.

2.

3.

4.

5 _.

6.

7.

8.

9.

10.

11.

Andrew. S. Grimshaw, William A. Wulf, James C.
French, Alfred C.Weaver and Paul F. Reynolds Jr.
“Legion: The Next Logical Step Toward a Nationwide
Virtual Computer”, June 8, 1994. CJYA CS Technical
Report CS-94-21
Andrew. S. Grimshaw, “Easy to use object-oriented par-
allel programming with Mentat”. IEEE computer, pp 39-
51, May 1993
Andrew S. Grimshaw. J. B. Weissman. and W. T. Strayer,
“Portable Run-Time Support for Dynamic Object-Ori-
ented Parallel Processing,“, submitted to ACM Trunsuc-
lions on Computer Systems, July 1993
Andrew S. Grimshaw, E. A. West, and W. R. Pearson,
“No Pain and Gain! - Experiences with Mentat on Bio-
logical Application,” Concurrency: Practice & Experi-
ence, pp. 309-328. vol. 5, issue 4, June 1993
Andrew S. Grimshaw. W. T. Strayer, and P Narayan,
“Dynamic OBject-Oriented Parallel Processing” IEEE
Purullel & Disfrihuted Technology: Systems & Applicu-
lions. pp. 33-47, May, 1993
William A. Wulf, Roy Levin, Samuel P Harbison,
“HYDRAICmmp: An Experimental Computer Sys-
tem “, M&raw-Hiil. New York, 198 1
B. W. Lampson, “Protection”, Proceedings of the Fifth
Princeton Symposium on Information Sciences and Sys-
tems, pp 437-443. March 1971
H.H. Hosmer, “The Multipolicy Paradigm for ‘Dusted
Systems” Prvceedings of New Security Purudigms Work-
shop, pp. 19-32, 1992-1993
B. C. Neuman, T. Y. Ts’o, “Kerberos: An Authentication
Service for Computer Networks” IEEE Communications,
Vol. 32, pp. 33-38, Sept. 1994
B. Fairthome, “OMG White Paper on Security”, OMG
Security Working Gmup, April 1994
Bruce Schneier, “Applied Cryptography”, John Wiley &
Sons, INC. 1994

42

12. Dorothy E. Denmng. “A Lattice Model of Secure Infor-
mation Flow”, Communications oj the ACM, Vol 19, No
5, pp 236-242, May 1976.

13. J. H. Saltzer, “Protection and the Control of Information
Sharing in Multics”, Communications of the ACM. Vol
17, No 7, pp 388-402, July 1974

14. I,, Snyder, “Formal Models of Capability-based Protec-
tion Systems”IEEE Transactions on Computers, vC-30
n3, March 1981, pp 172-181

15. William R. Cheswick and Steven M. Beliovin, “Firewalls
and Internet Security” Addison- Wesley, 1994

16. C. Landwehr, “Verifying Security”, Computing Surveys,
Vo1.13, No. 3, Sept. 1981

17. G. Benson, Appelbe, I. Akyildiz, ‘The Hierarchical
Model of Distributed System Security”,
IEEE, May 1988, pp 122-128

18. 1. I. Glasgow, G. H. MacEwen. “The Development and
Proof of a Formal Specification for a Multilevel Secure
System”&X Transactions on Computer Systems, Vol.
5, No 2. May 1987. pp 151-184

19. R. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-key cryptosys-
terns”, Communications of ACM, vol. 21, no. 2 Feb.
1978. pp. 120-126

20. Mark Lomas, Bruce Christianson, “To whom am 1 Speak-
ing”, Computer, January 1995

21. Tom Parker and Denis Pinkas, “SESAME Technology
Version 3, Overview,’
http:l/www.esat.kuleuven.ac.be/cosiclsesamefdoc-txtt
overview.txt, May 1995

22. Chenxi Wang, Wm A. Wulf, “A Distributed Key Genera-
tion Technique”. UVA CS Technical Report, CS-96-08.

43

