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Abstract 

We present a solution to the denial of service prob- 
lem for routing infrastructures. When a network 
suffers from denial of service, packets cannot reach 
their destinations. Existing routing protocols are 
not, well-equipped to deal with denial of service; 
a misbehaving router-which may be caused by 
software/hardware faults, misconfiguration, or ma- 
licious attacks-may be able to disable entire net- 
works. To protect network infrastructures from 
routers that incorrectly drop packets and misroute 
packets, we hypothesize failure models for routers 
and present protocols that detect and respond to 
those misbehaving routers. Based on realistic as- 
sumptions, we prove that our protocols have the fol- 
lowing properties: (1) A well-behaved router never 
incorrectly claims another router as a misbehaving 
router; (2) If a network has misbehaving routers, 
one or more of them can be located; (3) Misbehav- 
ing routers will eventually be removed. 

1 Introduction 

Through a myriad of applications, including elec- 
tronic mail, WWW, and electronic commerce, com- 
puter networks play an increasingly important role. 
Most, of the existing network security work concerns 
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confidentiality, data integrity, user authentication, 
and non-repudiation, typically as associated with 
hosts. Until recently, very little attention was given 
to securing routing infrastructures. By routing in- 
frastructures, we refer to routers and routing pro- 
tocols. Denial of service for the routing infrastruc- 
tures may be caused by natural faults as well as by 
malicious attacks. Because disabling a network can 
have a huge impact (e.g., time-critical information 
cannot, be communicated) on a large scale, networks 
are inviting targets for sabotage. 

We use a detection-response (i.e., an expansive 
view of intrusion detection) approach to protect 
networks from denial of service. In our approach, 
routers cooperatively diagnose each other to detect, 
locate, and respond to misbehaving routers. The 
idea of system diagnosis is not new; Preparata’s, 
Metze’s, and Chien’s seminal paper [19] proposed a 
framework for automated system diagnosis. Our 
contribution is on designing tests specifically for 
router diagnosis and proving their detection and re- 
sponse properties. In simple terms, a testing router 
A sends a packet to a tested router B and verifies 
B's behavior against its expected behavior. The 
verification problem includes two sub-problems: de- 
termining B's expected behavior and determining 
B’s actual behavior. 

In a network that uses a dynamic routing pro- 
tocol, B's behavior depends on the current state 
of the network. Moreover, A and B may not al- 
ways share the same view of the state. Thus A 
may not always know the expected behavior of B. 
We argue that by concentrating on certain types of 
routing protocols (e.g., in link state routing, unlike 
distance vector routing, a router propagates rout- 
ing updates to its neighbors as soon as it receives 
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‘them) and careful test assignments (e.g., choosing 
the tester A to be a direct neighbor of the tested 
B), A and B can see the same network state most 
of the time. (We will further justify this point in 
Section 8.) These approximations seem to be nec- 
essary because of the impossibility of constructing 
global states of distributed systems. 

This paper assumes that A can determine the 
expected behavior of B and focuses on the second 
sub-problem (i.e., determining B’s actual behavior). 
There are two basic ways to choose “test” packets- 
normal traffic or packets created specifically to test 
B. As we will see later, these two strategies give 
rise to different diagnosis techniques, both of which’ 
we consider. If A generates its packets to test B, 
a major issue is what packets A should generate to 
uncover the bad behavior of B, if any. Solutions 
may not exist in all cases. If we assume the worst- 
case scenario in which B could distinguish ordinary 
packets from those test packets, B could misbehave 
only on ordinary packets to avoid being detected. 
(This motivates us to use normal traffic to diag- 
nose a router, which will be discussed in Section 7.) 
To further complicate the problem, unless the path 
traversed by a test packet avoids routers other than 
A and B. The tester A may need to collaborate 
with other routers and depend on their reports to 
diagnose B. (S ec ion t 6 discusses a technique on 
choosing a tester and a test packet that avoids us- 
ing a third router for the diagnosis.) Using multi- 
ple routers to test a router gives rise to additional 
issues. First, if A uses reports from mischievous 
routers for its analysis, it may incorrectly deduce 
that B is a misbehaving router or that B is a good 
router. Second, the set of testing routers need to 
communicate without being affected by the pres- 
ence of misbehaving routers in the network. 

Router diagnosis seems to be very expensive if 
we assume the worst-case adversary. We tlnd that 
there are special cases that have practical signif- 
icance and are indeed solvable without incurring 
substantial overhead. We develop failure models 
that characterize the behavior and the “strength” 
of misbehaving routers. For example, we assign 
routers that misbehave permanently and those that 
misbehave intermittently to different failure classes, 
with the former being a subclass of the latter. Baaed 
on these models, we design distributed diagnosis 
protocols that detect and logically remove misbe- 
having routers. Once misbehaving routers are lo- 
cated, the other routers respond by reconfiguring 

the network to restore its operational status. It is 
essential that misbehaving routers cannot misuse 
the network reconfiguration capability to give them- 
selves additional power to disable the network. Our 
protocols solve the misuse problem by only allow- 
ing a router to disconnect itself from its neighbors, 
which misbehaving routers can emulate by drop- 
ping or misrouting packets, yet guarantee that all 
misbehaving routers will eventually be removed. 

The outline of this paper is as follows: Section 2 
presents some denial of service examples for com- 
puter networks. Section 3 reviews related work on 
securing routing protocols and routers, and on in- 
trusion detection. Section 4 describes our system 
model and failure models for routers. Section 5 
presents our overall approach for diagnosing routers 
and the desirable properties of diagnosis protocols. 
Sections 6 and 7 detail our techniques and proto 
cols for misbehaving-router detection and present 
how automated response can be carried out to logi- 
cally remove those routers, thus restoring the oper- 
ational status of the networks. Section 8 concludes 
the paper and discusses the limitations of our work. 

2 Examples of Routing In- 
frastructure Failures 

In this section, we describe three denial of service 
examples related to routers and routing protocols. 
They are the 1980 ARPANET collapse, “black hole” 
routers, and routers that misroute packets. 

In the 1980 ARPANET collapse [20], the source of 
the problem was mainly due to a faulty router which 
generated a sequence of bad control packets. The 
sequence numbers of these control packets were or- 
dered such that one was “fresher” than another and 
thus formed a cycle. Because those control packets 
received a higher priority than the data packets, the 
routers in the ARPANET spent most of their time 
handling these routing updates. Thus the network 
was unavailable for hours. This particular problem 
was fixed, but other similar problems might still ex- 
ist. Finn’s comments [5] on the ARPANET incident 
are as follows: 

“It is clear that many such update se- 
quences can be found. This occurred en- 
tirely by accident, from an unlikely set of 
circumstances. Network designers did not 
consider it a serious possibility. However, 



a malicious router could easily create this 
situation and halt the network. Such an 
attack would be extremely damaging, dif- 
ficult to prevent, and difficult to correct 
once it occurred.” 

Routers exchange control packets to reflect 
changes, such as topology changes, in a network. 
A black hole router (e.g., [5]) sends out routing up- 
dates claiming that it is on zero-cost (or low-cost) 
paths to all destinations and then proceeds to drop 
the packets that it receives. In shortest-path-based 
routing protocols, the most common kind of rout- 
ing protocols, routers in the neighborhood of a black 
hole router will direct (some of) their network traf- 
fic to the black hole. Figure 1 depicts a black hole 
router. The black hole problem has occurred in op- 
erational networks and can cause a widespread de- 
nial of service. 

Figure 1: Black Hole Routers and Misrouting 
Routers. 

Ideally, routers cooperate with each other to de- 
liver the packets to their destinations. However, if 
the routers make their routing decisions baaed on 
different views of the state of the network, rout- 
ing loops may be formed and the packets caught 
in them may never reach their destinations. Tem- 
porary routing loops occur naturally, say when a 
link goes down, and solutions have been proposed 
to deal with them (e.g., [3]). Permanent routing 
loops or misrouting by a malicious router, depicted 
in Figure 1, are more serious problems. In an IP 
network, packets have a time-to-live (TTL) field, 
which guarantees a packet will not stay in the net- 
work forever. Hence routing loops and misrouting 
can cause packets to be dropped. 

The first example belongs to a family of prob- 
lems in which routers receive a lot of high prior- 
ity control packets originating from a router, and 
the routers spend a significant portion of their time 

processing those packets. This type of problems 
is easy to detect and excessive control packets can 
usually be dropped. The second example (i.e., black 
hole routers) and the third example (i.e., misrout- 
ing routers) are difficult to counter, We will model 
these two types of failures and present diagnosis 
protocols to detect and to respond to them. 

3 Related Work 

Many existing routing protocols are not very se- 
cure. For example, sending plain-text passwords 
in the clear is the only authentication method cur- 
rently defined to protect routing update packets in 
RIP version 2 [lo]. For OSPF version 2 [14], the 
OSPF standard defines a cryptographic authentica- 
tion scheme in addition to a simple plain-text pass- 
word scheme. However, in that cryptographic au- 
thentication scheme, routers on a networklsubnet 
use a secret shared key to authenticate routing pro- 
tocol packets. Thus the cryptographic authenti- 
cation scheme does not offer adequate protection 
against some misbehaving routers. Perlman [17, 181 
presents a scheme for public-key distribution and 
for protecting link state updates by means of digital 
signatures. Finn [5] discusses using public-key and 
secret-key routing update authentication in general 
and proposes a secure routing protocol. Kumar and 
Crowcroft [8] propose a design to secure IDPR, an 
inter-domain routing protocol. Murphy and Badger 
[16] propose a design to incorporate public-key dis- 
tribution and signing link state updates in OSPF. 
Using strong authentication methods on routing in- 
formation does not solve all the problems. If a 
router is faulty or compromised, it may send out 
erroneous but authentic routing control packets. 
Thus when we remotely download router software 
to routers or configure routers, we need to use se- 
cure remote access protocols. Finn’s report [5] is a 
good source of background information on the vul- 
nerabilities of computer networks. 

Intrusion detection (e.g., [4, 6, 9, 151) is a retrofit 
approach to improve the security of computer sys- 
tems and networks. Intrusion detection systems de- 
tect and possibly respond to policy violations. A 
fundamental assumption of intrusion detection is 
that we have to live with existing systems and net- 
work infrastructures. Thus changes to them should 
be kept at a minimum when we improve their secu- 
rity. It is impractical to assume that we will replace 
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the existing (insecure) computer and network sys- 
tems by secure systems in the near future because 
of the huge costs and the difficulties in building a 
useful yet perfectly secure system. Designing and 
deploying secure systems and protocols are impor- 
tant; we should do everything we can to prevent 
accidents and attacks. We view intrusion detection 
as the second line of defense. To the best of our 
knowledge, no work has been published on intru- 
sion detection in routing infrastructures. Moreover, 
very little intrusion detection work has been done 
on detecting denial of service attacks [l]. 

4 Our Model 

A network is modeled by a directed graph G = 
(V, E). Vertices represent routers and edges repre- 
sent communication channels, which may be point- 
to-point links or networks attached to more than 
one router. Note that we do not model hosts that 
are not routers. If a source host cannot send a 
packet directly to the destination host, the source 
will send the packet to a router. We call this router 
the source router. When a router receives a packet, 
it will send the packet directly to the destination 
host if it can; otherwise, it will forward the packet to 
another router “closer” to the destination host. We 
call the router that delivers the packet to the desti- 
nation host the destination router. A packet gener- 
ated by a host is represented by a packet generated 
by the source router. That packet is called a source 
packet with respect to the source router. Moreover, 
a packet destined for a host is represented by a 
packet destined for the destination router. That 
packet is called a destination packet with respect 
to the destination router. Packets processed by a 
router that are neither source packets nor destina- 
tion packets of the router are called transit packets 
with respect to that router. 

We make the following network assumptions. As- 
sumptions 1, 2, and 3 are used to ensure that a 
testing router knows the expected behavior of the 
tested routers. Note that Assumptions 1 and 2 can 
be realized by using link-state routing’. We will 

‘In link-date routing, a router periodically computes the 
cost (e.g., delay) to each of its neighboring routers and gen- 
erates an update packet that contaiins its own identity and 
the costs to neighboring routers. The update packet is then 
distributed to all other routers by flooding. Each router col- 
lectrr the update packets from all other routers, constructs 
the shortest path tree with itself aa the root, and updates 

justify Assumption 1 in Section 8. 

Assumption 1 (Shared Views on Network 
States) Neighboring routers share the same map 
that shows how routers are connected and the cost 
of the communication links. 

Assumption 2 (Shortest-path Routing) A 
router always chooses the shortest path to route a 
packet to its destination. 

Assumption 3 (Bidirectional Channels) 
Vi, j E V, (i, j) E E j (j, i) E E. In other words, 
neighboring routers can send packets directly to each 
other. 

Traditionally, security research works on the 
worst-case assumption that an adversary has un- 
limited power. Solutions developed under that as- 
sumption, if they exist at all, may be impractical 
to use [12]. In reality, some failures may be less 
likely to occur than others. For example, many 
router failures are caused by accidents. Another 
example is that an attacker may be able to change 
the routing table of a router but not the router 
software. Modifying the router software may re- 
quire detailed knowledge about the routing proto- 
col and the router’s operating system and access 
to the (possibly proprietary) source code. In the 
rest of this section, we present failure models for 
routers by characterizing the behaviors of an adver- 
sary. Enumerating failure models allows us to study 
the problems and develop solutions for them. 

We define a network sink as a router that drops 
(some of) its transit packets. A black hole is a 
network sink that also sends out routing adver- 
tisements claiming it can reach certain destinations 
with costs lower than that it should advertise ac- 
cording to the routing protocol specification. We 
define a misrouting router as a router that for- 
wards a transit packet to a router other than the 
one on the shortest path to the destination router. 
A router that exhibits network sink or misrout- 
ing behavior is called a bad router; otherwise, it is 
called a good router. Bad routers may be caused by 
software/hardware faults, misconfiguration, or ma- 
licious attacks. We make the following assumption 
about good routers. 

its own routing table. Examples of link-state routing pro- 
tocols are Open Shortest Path First (OSPF)[l4], IS-IS[7j, a 
proprietary protocol used in the Internet core system known 
aa SPREAD, and a proprietary routing protocol used in the 
ARPANET[ll]. 
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Assumption 4 (Existence and Connectivity 
of Good Routers) There exists at least one good 
router in the network. Good routers are connected 
via good routers. In other words, bad routers do not 
partition the network. 

We present two independent ways to classify bad 
routers with the property that a stronger class is a 
subset of a weaker class. Thus any solution for a 
weaker class is also applicable to a stronger class. 

Note that a bad router from a weaker class is usually 
harder to detect than one from a stronger class. Our 
classifications are depicted in Figure 2. The first 

Permanent KY 
Yiizii? 

Figure 2: Classifications of Bad Routers. 

classification concerns the timing when bad routers 
misbehave, and the second classification addresses 
on what packets bad routers misbehave. In the 
first classification, the classes are permanent, almost 
permanent, probabilistic and intermittent. A per- 
manently bad router exhibits the anomalous (i.e., 
network sink or misrouting) behavior all the time. 
An almost permanently bad router is like a per- 
manently bad router, except when it sees explicit 
control packets that correspond to diagnosis which 
will reveal its anomalous behavior, it may behave 
like a good router. After the diagnosis is over, it 
may switch back to the bad-router mode. The pur- 
pose for the almost permanent class is to model how 
a bad router can “trick” a diagnosing router. For 
every transit packet, a probabilistic bad router ex- 
hibits the anomalous behavior with a certain prob- 
ability. An intermittently bad router may not ex- 
hibit the anomalous behavior consistently but mis- 
behaves infinitely often’. “Permanent” is weaker 

2Routers that misbehave only once or a small number 
of times are usually not very harmful. In fact, virtually all 
existing routing protocols support beet-effort delivery only; 
there is no guarantee that all packets can reach their desti- 

than both “almost permanent” and “probabilistic”. 
“Almost permanent” and “probabilistic” are in turn 
weaker than “Intermittent”. 

In the second classification, the classes, from the 
strongest to the weakest, use the following cri- 
teria to drop or to misroute packets: all pack- 
ets, the values of source or destination attributes3 
that satisfy certain conditions, and the contents 
of entire packets, which include the values of the 
source/destination attributes and the packet pay- 
load, that satisfy certain conditions. Those classes 
are called indifferent, address-aware, and content- 
aware respectively. In our definition, the “address- 
aware” class includes the “indifferent” class; an in- 
different bad router is a special case of address- 
aware bad routers in that it does not use the ad- 
dress information. Similarly, an address-aware bad 
router is a special case of content-aware bad routers. 
For example, an address-aware bad router may act 
on packets sent by a certain organization and a 
content-aware bad router may act on packets that 
contain certain keywords in their payload. 

5 Our Approach 

In our approach, routers diagnose each other to 
identify the bad routers. Preparata, Metze, and 
Chien (PMC) [19] proposed a framework for this 
kind of diagnosis. (Barborak, et al.% paper [2] sur- 
veys work that [19] h aa initiated.) Preparata, et 
al. modeled a system equipped with automatic fault 
diagnosis in which system components can test each 
other to detect and to locate faulty components. 
After a component applies a test to another com- 
ponent, the tester will know if the tested component 
is fault-free or faulty. Permanent faults and perfect 
test coverage4 are assumed. In the PMC model, a 
centralized supervisor is used to collect and analyze 
all the test results and determine which components 
are faulty. Note that the test results from a faulty 
component may be unreliable. The PMC model is 

nations. Bad routers that misbehave only once or a finite 
number of times may still be detected by a good router us- 
ing the protocol presented in Section 7; however, we cannot 
guarantee that the protocol can completely disconnect a bad 
router in this case because that may require multiple rounds 
of diagnosis and reconfiguration. 

3For IP networks, the attributes for a source or a destina- 
tion are an IP address and a port number. Standard services 
are usually associated with well-known port numbers. 

‘A fault-free tester can always determine accurately the 
state of a tested component. 
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a starting point for our work, but we need a more 
realistic model in the context of routing infrastruc- 
tures. 

There are two main issues in our approach. First, 
given a failure model, we need to design tests that 
can reveal the anomalous behaviors of bad routers. 
Second, we need to determine how to carry out the 
diagnosis. In the PMC model, test assignments 
are designed assuming that a component can test 
any other component directly. However, we need 
to consider the topology of the underlying physical 
communication network in router diagnosis-how 
routers can communicate/coordinate with or test 
each other without being affected by the presence of 
bad routers. Sections 6 and 7 present two different 
techniques for detecting network sinks and misrout- 
ing routers, namely distributed probing and flow 
analysis, and discuss how to perform automated 
response to reconfigure the network 50 as to logi- 
cally remove the bad routers. Distributed probing 
assumes a more benign bad router model and has 
a lower cost. Moreover, it works well even if multi- 
ple bad routers exist simultaneously. Flow analysis 
works on a more malicious bad router model; how- 
ever, it is more expensive because it requires the 
routers to monitor every transit packet. Our di- 
agnosis protocols are distributed in nature and do 
not assume a centralized analyzer that gathers and 
analyses the test results, which may become a single 
point of failure. 

Assuming that testing routers can determine the 
expected behavior of tested routers and that well- 
behaved routers do not drop or misroute transit 
packets, we use the following criteria-the first two 
concern detection and the third concerns response- 
to evaluate our diagnosis protocols: 

l Soundness: If a router is diagnosed as a bad 
router by good routers, the router is a bad 
router. 

l Completeness: If there are bad routers in the 
network that have misbehaved, our diagnosis 
routine can locate at least one of them at a 
time. 

e Responsiveness: Eventually, all bad routers 
in the network will be identified and logically 
removed, and the good routers will still be con- 
nected. 

6 Distributed Probing 

In distributed probing, a router diagnoses its neigh- 
boring routers by sending them directly (i.e., with- 
out passing through intermediate routers) a test 
packet whose destination router is the tester itself. 
Based on whether a tester can get back the test 
packet within a certain time interva15, the tester 
can deduce the goodness of the tested router. Note 
that this test is not applicable for all neighboring 
router pairs, but we will show that there are enough 
of them to meet the soundness, the completeness, 
and the responsiveness criteria. If the shortest path 
from the tested router to the tester involves other 
intermediate routers, the fact that the test packet 
cannot reach the tester does not necessarily mean 
the tested router is bad. 

Distributed probing is applicable to detecting 
network sinks and misrouting routers that cause de- 
nial of service-that is, the misrouted packets can- 
not reach their destinations. In this section, we 
will present two protocols that detect two differ- 
ent classes of bad routers. The first protocol works 
for almost permanent, indifferent bad routers. The 
second protocol works for almost permanent bad 
routers that are source-address-aware and payload- 
aware. Before we present our protocols, we will de- 
fine our notation and state additional assumptions 
that are specific to distributed probing. 

Recall that a network is modeled by a directed 
graph G = (V, E) where vertices denote routers 
and edges denote communication channels. Let 
e = (i, j) E E be an edge that goes from ver- 
tex i to vertex j. The cost of e is denoted by 
cost(i,j) or cost(e). Note that our definition al- 
lows cost(i, j) # cost(j, i) to model asymmetric cost 
metrices. An edge (i, j) E E is called testable if 
cost(j,i) is strictly less than the cost of any other 
path from j to i in G, where the cost of a path 
is the sum of the costs of all edges on the path. 
We use Assumption 1 to ensure that i and j see 
the same network state. The notion of testable 
edges characterizes the edges useful to distributed 
probing. Consider a network, depicted in Figure 3, 
that has three routers, namely a, b, and c. We de- 
note cost(b,c), cost(b, a), and cost(a,c) by cl, ~2, 
and cs respectively. The edge (c, b) is testable if 
cl < (cz +cs). If (c, b) is testable and router c sends 
a packet p whose destination is c itself to b, then 

‘The time interval is set BB an upper bound of the round- 
trip time between the testing router and the tested neighbor. 
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Figure 3: Testable Edges. 

p will return to c if and only if b does not misbe- 
have on p. For i E V, N(i) = {j 1 (i,j) E E} 
denotes the set of neighbors of vertex i. For S C V, 
N(S) = {j $! S 1 (i, j) E E A i E S} denotes the set 
of neighbors of S, a set of vertices. If the context 
is clear, we sometimes use i, i E V, to refer to the 
router represented by vertex i. 

Assumption 5 (Positive-Cost Edges) Ve E E, 
cost(e) > 0. 

Assumption 6 (Pairwise Private Addresses) 
For all i E V and j E N(i), i has an address that 
i can, but j cannot, reach without using any inier- 
mediate routers=. We call this address 2he pairwise 
private address of vertex i with respect lo vertex j 
and denote it by paddrj(i). This requirement en- 
sures that a testing router can generate a packet 
whose destination is Ihe testing router itself and 2he 
packet is a transit packet for the tested router. 

Protocol 1 (Autonomous Distributed Prob- 
ing) 
Vi E V, vertex i executes the following at random 
lime.?: 

For each j E N(i) such that (i, j) is testable 
Send a packet whose destination is 

paddrj(i), say p, to j via (i, j); 

If p does not return to i 
Then i ceases its neighbor relationship with 

6 If necessary, we may assign an unused address to a router 
interface to realize this requirement. 

‘The protocol is executed at random times to assure a 
tester does not reveal its testing mode. 

js (i.e., i thinks j is bad) 
Else i does nothing (i.e., i thinks j is good) 

Lemma 1 Given that bad routers are almost per- 
manent and indifferent, Protocol 1,is sound. 

Proof: Because Protocol 1 does not use any con- 
trol packets, it is applicable to diagnosing almost 
permanently bad routers. The soundness of the pro- 
tocol follows from the definition of testable edges. 
cl 

Lemma 2 Given that bad routers are almost per- 
manent and indiflerent, Prolocol 1 is complete. 

Proof: Consider a maximal connected compo- 
nent of bad routers in G. We denote the set of 
those bad routers by B. If N(B) is empty, then 
by Assumptions 3 and 4 the bad routers are dis- 
connected from the network. Otherwise, we claim 
that at least one vertex in N(B), the set of good 
neighbors of B, haa a testable edge to a vertex in 
B. On the contrary, we assume that none of the 
vertices in N(B) h as a testable edge to a vertex 
in B. Let BN = ((2, y) 1 x E B A y E N(B)}, 
the set of edges incident to a vertex in B and a 
vertex in N(B). Moreover, let (b,n) E BN be 
an edge such that Ve E BN,cost(b, n) < cost(e). 
Because we sasume (n, b) is not testable, there ex- 
ists a multi-edge path P = (b -+ . . . -+ n) such 
that cost(P) 5 cost(b,n). Thus, by Assumption 5, 
3e E BN such that cost(b,n) > cost(e), which con- 
tradicts the choice of (b, n). 0 

Lemma 3 Given thai bad routers are almost per- 
manent and indifferent, Protocol 1 is responsive. 

Proof: Lemma 2 provea that at least one of the 
bad routers, say b, will be located by a good router, 
say g. Then, by Protocol 1, g will cease its neighbor- 
hood relationship with b. Recall that we assume the 
good routers are connected in G. The new graph 
G’ = (V, E’) where E’ = E - {(b, g), (g, b)} ha.9 all 
the good routers remaining connected. Note that 
bad routers disconnecting themselves from their 
neighbors, no matter good or bad, does not af- 
fect the result. Thus running Protocol 1 continu- 
ously will eventually remove all the edges between 
a good router and a bad router, yet maintaining 
good routers connected. 0 

sBroadcasting neighbor relationship changes can be done 
by flooding, the procedure used by link state protocols to 
distribute routing updates. 
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Theorem 1 Given that bad routers are almost per- Then i forwards qr to all neighbors to which i 
manent and indifferent, Protocol 1 is sound, com- has sent the corresponding sr; 

plete, and responsive. i quits the diagnosis; 

Proof: The proof follows from Lemma 1, 
Lemma 2, and Lemma 3. 0 

Protocol 1 can be modified to cope with perma- 
nently bad routers that are source-address-aware 
and payload-aware. A fresh and authenticated9 di- 
agnosis request that contains the values of source 
attributes and payload can be distributed to all 
routers by flooding. Then the routers will use those 
values to construct their test packets. However, 
the request may alert the bad routers about the 
upcoming diagnosis. Thus the flooding of that di- 
agnosis request disqualifies the protocol for detect- 
ing almost permanently bad routers. In the follow- 
ing, we present another modification to Protocol 1, 
which we call source-initiated distributed probing, 
that (almost) avoids the problem of alerting bad 
routers about the diagnosis. 

For each j E N(i) such that (i, j) is testable 
Send a packet p whose source is s, 

destination is paddrj (i), and payload is 

1, to j via (i, j); 
If p does not return to i 
Then i ceases its neighbor relationship with 

j (i.e., i thinks j is bad) 
Elself i has not forwarded sr to j, do so 

(i.e., i thinks j is good) 

Lemma 4 Given that bad routers are almost per- 
manent and source-address- and payload-aware, and 
the first router chosen to initiate the diagnosis is 

good, Protocol 2 is complete. 

In source-initiated distributed probing, a fresh and 
authenticated start diagnosis request that contains 
an identifier, id, and the values of source attributes 
and payload is sent to a router, say r. The protocol 
assumes that r is a good router. For example, we 
can choose the source router with respect to the val- 
ues of source attributes as r. If a host finds out its 
packets cannot reach their destinations, it can send 
a request that contains the information about those 
packets, which can be used to construct a diagnosis 
packet, to the source router r. Note that in Proto- 
col 2, a router forwards a start diagnosis request to 
a neighbor only after that neighbor is diagnosed to 
be a good router. Thus routers will not be alerted 
about the diagnosis before they are judged to be 
good routers unless r is a bad router. To stop the 
diagnosis, an authenticated quit diagnosis request 
that contains id will be sent to all routers. 

Proof: Let r be the router chosen to initiate 
the diagnosis and KG be the set of known “good” 
routers. KG is initialized to {r}. We will prove 
the completeness of Protocol 2 by induction on the 
cardinality of KG. 

Base case (i.e., KG = {r}): Let M1N = {i E 
N(r) 1 Vj E N(r), cost(j, r) 2 cost(i, r)}. We claim 
that r has a testable edge to every vertex in MIN; 
otherwise, by Assumption 5, it violates the defini- 
tion of MIN. If all vertices in MIN are good, 
then the new KG equals the old KGU MIN (i.e., 
the cardinality of KG is increased by at least one). 
Otherwise, a bad router is located. 

Induction step: Consider an arbitrary vertex gi E 
KG. Let ~1 E N(gi) - KG. If (gr , zr) is testable, 
then either the new KG equals the old KG U (21) 
or ~1 is diagnosed as a bad router. If (gr , ~1) is not 
testable, then 392 E KG A x2 E N(gz) - KG such 
that cosl(xr + . ..22 -+ gz... --+ gr) 5 cost(zr,gl). 
In other words, we have cost(zz,gz) < cost(xl, gl). 
Again, if (gz, x2) is not testable, then we can apply 
the same argument and eventually we can find a 
testable link originating from a vertex in KG. As a 
result, either the cardinality of KG can be increased 
by at least one, or a bad router can be located. •I 

Protocol 2 (Source-initiated 
Probing) 

Distributed 

Vi E V, if i receives a fresh and authenticated start 
request, sr, that contains the values for source at- 
tributes, s, and the payload, I, then i executes the 
following at random times: 

If i receives the authenticated quit request qr 

‘The message authentication requirements for our diag- 
nosis protocols are the same as those for link state routing 
protocols. Thm one may use the digital signature schemes 
proposed by Perhnan[l7, 181 and Murphy and Badger[lG] to 
authenticate the diagnosis control messages. 

Theorem 2 Given that bad routers are almost per- 
manent and source-address- and payload-aware, and 
the first router chosen to initiate the diagnosis is 

good, Protocol 2 is sound, complete, and responsive. 

Proof: The proof follows from Lemma 4 and the 
fact that the proofs of the soundness and the respon- 
siveness properties are the same as those of Proto- 
col 1. 0 
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7 Flow Analysis 

Flow analysis monitors the transit packets flowing 
in and out of a router to detect abnormal behaviors. 
For each router, the neighbors collaborate with each 
other to diagnose the router. To enable robust com- 
munication among the neighbors, flooding, a tech- 
nique first proposed by Perlman [17, 181, is used. 
To detect network sinks, the neighbors verify “con- 
servation of transit traffic”, depicted in Figure 4, by 

Figure 4: Conservation of Transit Traffic: 

Cy=l zi = Cyzl Yi. 

comparing the amount of transit traffic with respect 
to the tested router going in and that going out 
of the router. To detect misrouting routers, they 
verify that the transit packets coming out of the 
tested router are correctly forwarded. Flow analy- 
sis is applicable to bad routers that are intermittent 
and content-aware-that is, all failure models dis- 
cussed in Section 4. In this section, we will first 
define our notation, and then state additional as- 
sumptions that are specific to flow analysis. Finally, 
we will present our diagnosis protocol and prove its 
properties. 

For all (i, j) E E and k E {i,j}, let t(i,j)(k) 
be the accumulated number of bytes of the packet 

payload” for the transit packets with respect to 
both i and j sent from i to j from It’s point of view”, 
n(i,j)(lc) be the accumulated number of bytes of the 
packet payload for the packets that are transit to i 
but non-transit to j sent from i to j from L’s point of 
view, g(i,j)(lc) be the accumulated number of bytes 
of the packet payload for the packets that are source 
packets of i and transit to j sent from i to j from 
It’s point of view, and m(i,j)(j) be the accumulated 
number of bytes of the packet payload for the mis- 
routed transit packets with respect to i sent from i 
to j from j’s point of view. Figure 5 depicts t(i,j)(lc), 

n(i,j)(k)s and g(i,j)(k), which concern packets sent 
from router i to router j. A router can compute 
the above counters because of the assumption that 
routers know the topology of the network and the 
costs of the edges (i.e., Assumption 1). 

fig;7 5: t(i,j)(k), n(i,j)(k), and g(i,j)(k)a where k E . . 
2, * 

Assumption 7 (No Adjacent Bad Routers) 
V(i, j) E E, i is a good router or j is a good router. 

Assumption 8 (Good Routers are in the Majority) 
The number of good routers > [VI/S. 

Assumption 9 (Per-hop Packet Delay is Neg- 
ligible) The propagation delay, the processing de- 
lay, and the queueing delay per hop are negligible. 

“Because of possible packet fragmentation, we use packet 
payload sizes instead of packets counts. Packet fragmenta- 
tion occurs because networks have different maximum packet 
sizes, also known as maximum transfer units (MTU). 

l1 We introduce k here to detect disagreements between i 
andj. 
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The execution of Protocol 3 is divided into 
phases. In simple terms, routers checkpoint their 
counters at the same time” and then broadcast 
their values via flooding to other routers. Assump- 
tion 9 ensures that conservation of transit pack- 
ets holds13. Based on the checkpoint messages 
received, routers can decide if a router exhibits 
anomalous behaviors-not sending out checkpoint 
messages, sending out bogus checkpoint messages, 
removing transit packets, or misrouting packets. 
Protocol 3 would be simpler if we assume that the 
routers’ clocks are synchronized so that all good 
routers can depend on their clocks to advance to 
the next phase. We do not make that assump- 
tion. In Protocol 3, a router waits until it receives a 
“phase change” message (which we call a nexi phase 
ready message) from r( IV1 + 1)/21 routers before ad- 
vancing to the next phase. Because we assume the 
majority of the routers are good (Assumption 8), 
at least one good router is involved in each phase 
change. Bad routers cannot significantly increase 
or decrease the time interval between any two con- 
secutive phases. 

Protocol 3 (Flow Analysis) 
Vi E V, i initializes ihe current phase variable, 
phasei, 20 zero. Lei ?r be Ihe pre-defined time inter- 
val between consecutive phases and Ati be the local 
time elapsed since the last phase started. If i has 
jusl started, “last phase started” denotes the lime 
i started running Ihe protocol. A message is called 
current if ils phase number equals phase;. Then i 
executes the following: 

Wait until (1) A.ti = ?r or (2) [([VI + 1)/21 
authenticated current next phase ready 
messages have been received; 

Broadcast an authenticated next phase ready 
message that contains phasei; 

Wait until [(IV1 + 1)/2] authenticated current 
neti phase ready messages have been 
received; 

Store and then reset local counters (i.e., 

“In practice, we only require a router and its neighbors to 
checkpoint at approximately the same time. Because com- 
munication channels are bidirectional (Assumption 3) and 
floodingis used, neighboringrouters see other routers’ “phase 
change” messages at roughly the same time. A bad router 
could delay forwarding packets to its neighbors; however, it 
can only cast suspicion on itself for not having a consistent 
view with its neighbors. 

I3 We can realize negligible per-hop packet delay by choos- 
ing an appropriate T, time interval between consecutive 
phases. 

+i,j)(i),l(j,i)(i), n(i,j)(i), n(j,i)(i), S(i,j)(i)~ 

g(j,i)(i), and m(j,i)(i)); 
Set Ati = 0; 
Broadcast an authenticated checkpoint message 

lo all routers that con2ains (1) phasei, 

(2) Vj E N(i), +i,j)(i), n(i,j)(i), and 
g(i,j)(i), and (3) Vk E V such Iha i E N(k), 

t(k,i)(i), n(k,q(i>, and g(k,i)(i); 
For each j E N(i) 

If j’s authenticated current checkpoint 
message has been received and 
t(i,j)(i) = t(i,j)(j) A n(i,j)(i) = n(ij)(j) A 

g(i,j)(i) = S(i,j)(j) 
Then 

If Vk E V such that k E N(j) or 
j E N(k), k’s authenticated current 
checkpoint message has been received 

and (k E N(j) * +j,k)(j) = t(j,k)(k) 
* n(j,k)(j) = n(j,k)(k) A 
S(j,k)(j) = 9(j,k)Ck)) and 
(j E N(k) 3 t(u)(j) = t(k,j)(k) A 
n(k,j)(j) = n(k,j)(k) * 
S(k,&) = g(k,j)(lc)) 

Then 

If Cl~{n 1 jEN(n))(t(Cj)(A + g(U)(j)) 
# C,eN(j)(t(j,l)(j) + ncj,oW> 
(i.e., conservation of transit trafic 
violated) 

Then i ceases its neighbor relationship 
with j; . 

Else do nothing (because other routers 
will respond to the problem); 

Else i ceases its neighbor relationship with j; 
For each j E {n 1 i E N(n)) 

If j’s authenticated current checkpoint 
message has no2 been received or 

t(j,i)(i) # Q,i)W V n(j,i)(i) # n(j,i)(d V 

S(j,i)(i) # S(j,i)M V m(j,i)(i) # 0 
Then i ceases its neighbor relationship 

with j; 
Set phasei =phaSei + 1 

Lemma 5 Given 2haZ bad routers are intermittent 
and co&en&aware, Protocol S is sound. 

Proof: We prove the lemma by caSe analysis. 
First, there are three ways a router, say b, can be 
diagnosed as a network sink by good routers: 

l 3i E V, a good router, such that i E N(b) or 
b E N(i) and i does not receive authenticated 
current checkpoint messages from b. Because 
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we assume all good routers are connected, and 
flooding, which takes negligible time, is used 
to broadcast checkpoint data, i’s not receiving 
b’s checkpoint data implies that b has not sent 
any. 

l 3 E V, a good router, such that (i E N(b) A 

(f(b,i)(Q # t(b,i)(b) V n(b,i)(i) # n(b,i)(b) V 

g@+)(i) # g(a,q(b))) Or (b E N(i) A ct(i,b)ti) # 

t(i,b)(b) V n(i,b)(i) # n(i,b)(b) V g(i,b)(i) # 

g(i,b)(b))) implies either b or i has lied. Thus b 
must be a bad router. 

’ &{n 1 b~N(n)}(t(kb)(b) + g(hb)tb)) # 

~r~N~b~(~(b,k)(b) + n(b,k)(b)) implies b is a net- 

work smk because the amount of transit traffic 
flowing in b is not equal to that flowing out of 
6. 

Note that b is diagnosed by i E N(b) as a misrouting 
router only when m(b,i)(i) # 0. Hence Protocol 3 is 
sound. 0 

Lemma 6 Given that bad routers are intermittent 
and content-aware, Protocol 9 is complete. 

Proof: By performing a case analysis similar to 
that of Lemma 5 together with Assumption 7, one 
can show that bad routers which have misbehaved 
and are connected to the network will be located 
by at least one of their good neighbors in the next 
phase. 0 

Lemma 7 Given that bad routers are intermittent 
and content-aware, Protocol 9 is responsive. 

Proof: By Assumption 7 and Lemma 5, we know 
that only edges incident on a good router and a 
bad router are removed from E. Thus good routers 
will remain connected. By Lemma 6, when a bad 
router that is connected to the network misbehaves, 
it will be located by a good router in the next 
phase. Together with the fact that an intermittently 
bad router misbehaves infinitely often, eventually 
all bad routers will be logically removed from the 
network. 0 

Theorem 3 Given that bad routers are intermit- 
tent and content-aware, Protocol S is sound, com- 
plete, and responsive. 

Proof: The proof follows from Lemma 5, 
Lemma 6, and Lemma 7. 0 

8 Discussion 

This paper addresses denial of service on routers 
and routing protocols. We present failure models 
for routers that characterize the behavior of failed 
routers, which may be due to natural faults or ma- 
licious attacks. Based on the failure models, we 
develop techniques and protocols to detect and to 
logically remove misbehaving routers from the net- 
work, and prove properties of the protocols, namely 
soundness, completeness, and responsiveness. Our 
diagnosis protocols are designed to avoid introduc- 
ing additional vulnerabilities to the routing infras- 
tructures through the use of them-a bad router 
cannot disconnect a good router from the rest of 
the network and a bad router cannot initiate the di- 
agnosis too often to make all routers spend most of 
their time executing the protocol (c.f. the flow anal- 
ysis protocol in Section 7). In conclusion, if there 
is a path between the source and the destination on 
which all routers are good, our protocols guarantee 
that the network will eventually be able to deliver 
packets from the source to the destination. 

Our work does not solve the entire denial of ser- 
vice problem of routing infrastructures. This paper 
represents a first step to protect routing infrastruc- 
tures from denial of service using an intrusion de- 
tection approach. Issues not addressed include the 
following: 

l There are router failures not covered by our 
failure models (cf. the motivation of the failure 
models in Section 4). For example, a compro 
mised router may modify the body of a transit 
packet. Distributed probing can be adapted to 
handle this problem-a router can check the in- 
tegrity of test packets after they are sent back 
by tested routers. However, adapting flow anal- 
ysis to diagnose this kind of failures appears to 
be non-trivial and is a future work item. An- 
other example is that a failed router may gen- 
erate spurious packets to overwhelm links or 
other routers. One may impose a limit on the 
amount of source packets that can be generated 
by a router per unit time and have its neigh- 
boring routers to verify it. Moreover, the flow 
analysis technique can be used to cope with 
replication of transit traffic. 

* Link failures are not modeled. Note that in our 
protocols, a link failure that results in packet 
Ioss may be viewed as a node failure. The 
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routers incident on the link will detect the fail- 
ure and cease the neighbor relationship. Con- 
sequently, the failed link will not be used. 

e Our definition of bad routers may include be- 
haviors of legitimate routers, which may lose 
packets due to congestion. We may restrict our 
protocols to be used in lightly loaded networks 
or for network connections with reserved band- 
width. To apply our protocols for a more gen- 
eral setting, we may extend them by using a 
threshold on how many packets a good router 
can drop. To illustrate, we may incorporate the 
“k-out-of-n” method in our distributed probing 
protocols. A router is considered good if it can 
pass k out of n tests. A related future work 
is to address inter-domain issues such as policy 
routing (in which routers may not use short- 
est paths to route packets) and firewalls (e.g., 
packet filters). 

l We assume that neighboring routers see the 
same network state so that testable edges in 
the distributed probing protocols can be deter- 
mined and consistent checkpointing in the flow 
analysis protocol can be performed. We ar- 
gue that is a reasonable assumption. First, by 
using flooding to disseminate routing updates 
(a is done in link-state routing protocols) and 
checkpoint packets and requiring communica- 
tion channels to be bidirectional, neighboring 
routers see the control packets at almost the 
same time. Although a bad router could delay 
forwarding those control packets, it only hurts 
that bad router itself for not having a consis- 
tent view among that router and its neighbors. 
Second, as noted in [13], link costs are static, 
independent of link load, in modern link-state 
routing protocols. Thus normally link states do 
not change often. To cope with the few cases 
in which our assumption does not hold, again 
the threshold technique can be used. For the 
checkpointing problem, we can also use a longer 
time interval between consecutive phases to re- 
duce the impact of slightly different checkpoint 
times among neighboring routers. Future work 
is needed to validate the practicality of the as- 
sumption. 

l Our models only consider transit traffic. In 
other words, packets sent by source hosts to 
source routers and those sent by destination 

routers to destination hosts are not addressed. 
Our work is useful in containing the damage 
that can be caused by a rQuter to its source 
and destination packets. A related issue is 
that a router may claim that it is directly 
connected to a local network, thus becoming 
a source/destination router for that local net- 
work. To address this problem, routers can be 
given a list of potential neighbors and use it to 
identify those false advertisements. 

l We have not examined the diagnosis overhead 
on routers in detail, but the overhead does not 
seem to be excessive. For distributed probing, 
a router needs to determine the testable links 
from itself to its neigbhoring routers, baaed on 
the link state updates received, and then sends 
(and receives) a test packet to (and from), in 
the worst case, each of its neighbors. The 
overhead depends on how often the diagne 
sis is performed. For flow analysis, there are 
two main sources of overhead: First, for each 
transit packet, the router needs to lookup a 
table, which may need to be updated when 
there is a topology change, and then increments 
the appropriate counter. Second, at the end 
of each phase, routers broadcast an authenti- 
cated packet containing the values of their local 
counters and an authenticated packet to signal 
that it is ready to advance to the next phase. 
Then routers will verify the goodness of their ’ 
neighboring routers by computing the amount 
of transit traffic flowing in and out of those 
neighbors. 
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