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Conventional approaches to building and assessing security- 
critical software are based on the implicit assumption that 
security is the single most important concern and can be the 
primary factor driving the software development process. 
Changes in the marketplace and the nature of security 
requirements have brought this assumption into question. There 
is now a large class of systems in which security must compete 
with other development goals. A risk-driven process model of 
software development provides a framework for building software 
that balances conflicting requirements. But a risk-driven process 
invalidates many of the assumptions made by conventional 
approaches to the specification and verification of security 
requirements. 

This paper presents a new approach to assessing the degree to 
which softiare meets its security requirements. It does not 
propose a new specification notation or analysis technique, but 
provides a general framework into which existing notations and 
techniques can be integrated. It allows varying degrees of 
formality to be used: both across the components of the system, 
and through the development process. The appropriate degree of 
formality is whatever degree proves necessary to satisfy the 
stakeholders in the system that the security goals have been met. 

This approach has been found to be theoretically appealing as 
well as useful in practice. Here we give a brief overview of the 
approach, explain how it integrates into a risk-driven process 
model, and discuss our early results in using it to assess, and 
thereby thus guide the development of the Legion security model. 

* Work performed while the author was with the University of 
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The face of security is changing. In the past, systems were often 
grouped into two broad categories: those that placed security 
above all other requirements, and those for which security was not 
a significant concern. But such an ah-or-nothing approach to 
security is getting increasingly harder to justify. Pressures to 
compete with commercial software have forced even the builders 
of the most security-critical systems to consider security as only 
one of the many goals that they must achieve. Meanwhile, market 
pressures and increased vulnerability from network attacks have 
forced commercial software vendors to recognize security as a 
major goal in their development efforts. There will certainly 
remain systems for which security is either of no concern or the 
single critical goal. But for an increasingly large number of 
applications, security must be balanced against other design goals. 

Most existing research in the engineering of secure software has 
used formal methods in the context of a straightforward waterfall 
model of software development. Existing formal methods appear 
to work reasonably well in a conventional process model [Cor89, 
Kem90]. But, as Boehm points out, a waterfall process works 
well for systems where requirements and design issues are well 
understood from the outset [Boe88]. In the past, many security- 
critical systems exhibited these characteristics. In that 
environment, the waterfall model and conventional formal 
methods were generally adequate. However, they are much less 
useful in an environment where security and other design goals 
are in conflict. 

When security must compete with other goals, the possibility 
exists that exploration of the design space might result in altering 
of requirements. Furthermore, the ability to verify security is only 
one of the many goals that the designer must consider. In such an 
environment, a risk-driven process model, such as the spiral 
model, offers significant advantages: 

. The security ramifications of different design alternatives can 
be explored before the decision is made to commit to any 
one. 

. A basic verification strategy can be laid out early in the 
process in order to avoid the unpleasant possibility that a 
workable design is impossible to verify. 



. Decisions to relax security in order to meet other goals are 
done by design early in the process and not discovered by 
accident much later. 

The conventional approach to formal specification requires that a 
single formal notation, exhibiting a single level of formality, be 
uniformly applied to the entire system. Yet any notation will be 
good at reducing certain risks but inappropriate for others. As 
Boehm notes, a risk-driven approach should allow greater 
formality to be applied to areas with greater risk and less formal 
notations to be used in areas with little risk. Similarly, design 
areas that pose the greatest risks should be explored at a greater 
level of detail earlier in the process [Boe88]. When security is 
important, the aspects that pose the greatest risk to the verifiability 
of system security need to be explored early in the process, when 
changes are most possible and least expensive. 

This is consistent with Rushby’s assertion that formal methods 
should be applied selectively to “the hard problems” [Rus95]. A 
risk-driven approach permits formal methods to be made more 
cost-effective, by only expending the costs in the area where the 
expected returns are greatest. It is true that such an approach is 
theoretically inferior to the total application of formality - areas 
that might have benefited from the application of formality may 
be overlooked. But a total application of formality to even 
reasonably-sized systems has proven to be practically infeasible 
[CGR95]. Selective application of formality is the only practical 
way in which the appropriate formal techniques can be applied 
where they can be of most use [Rus95]. 

It is unrealistic to believe that any system can be completely 
secure. Even if a completely secure system was theoretically 
possible, the very nature of verification limits the confidence that 
we can have in it [DLW9, Fet88]. There will always be 
something we can do to increase our confidence in the security of 
the system. For this reason, the driving question in this work has 
not been “is the system secure?” but rather “what should we do 
next to make the system more secure?” 

In an environment where resources are limited, the spiral model is 
superior to the waterfall. If verification is left until after coding is 
complete, it may well never take place. While perfect verification 

may be theoretically appealing it is not attainable in practice. We 
should strive for the best verification possible, but at the same 
time recognize that there are limits to what we will achieve. In 
light of this, verification resources must be applied in as cost- 
effective a manner as possible. Resources should be applied to 
the areas where the greatest expected returns lie before they are 
applied to areas where they are expected to be less effective. 
Sometimes this means a concentrated application of formality; 
other times a broad application of less formal methods. Whatever 
the case, when verification resources are exhausted, the developer 
can be confident that the system was made as secure as possible 
given the development constraints. 

2. Methodically Organized Argument Trees 
This paper describes a new approach to security assessment. It is 
based on the presentation of security arguments using 
hierarchically organized trees, similar to the fault trees used by 
systems engineers to analyze the safety of critical systems. Each 
Methodically Organized Argument Tree (MOAT) encapsulates an 
argument that the system exhibits some desired security property. 
The different elements of the argument - the desired property, 
formal proofs, less formal reasoning, assumptions, axioms, 
lemmas, and component proof obligations - are all contained 
within the MOAT. 

A simple example MOAT is presented in Figure 1. The example 
demonstrates how an argument regarding the privacy of e-mail in 
a given system might progress. This example is not intended to 
be complete or in any way convincing. It is presented only as an 
example of how a graphical tree structure can aid in organizing 
and presenting security arguments for further scrutiny. 

MOATS permit the verification strategies for necessary security 
properties to be laid out in a clear, flexible, and accessible 
manner. They are claimed to: 

. Aid in communication between developers. The exact 
relationship between system security goals and individual 
component requirements is documented. The key elements 
of a security verification strategy are identified. And a 

User’s e-mail is 
kept private 

ensures sent 
Key known only 1 to sender and 

receiver 

User’s e-mail kept 
private on disk 

Figure 1 - A Simple Example MOAT 



security design rationale is provided for later maintenance 
engineers. 

Facilitate inspection. The essential elements of security 
arguments are presented in a manner that makes them 
accessible and makes faulty reasoning apparent. This aids 
the independent validation process. Because of the open- 
ended nature of the analysis, additional resources can be 
expended in those areas where additional confidence is 
required. 

Facilitate reuse of designs and their accompanying security 
arguments. The approach makes the assumptions upon 
which an analysis depends explicit. Existing analyses can be 
reused as long as their assumptions can be justified - using 
the same process. More general knowledge and experience 
can also be reused, in the form of canned arguments and 
heuristics. 

This paper presents initial results in attempting to validate these 
claims. 

Readers who are familiar with system fault tree analysis will 
immediately recognize similarities between MOATS and fault 
trees. These similarities are intentional. But while the resulting 
trees may appear similar, the methodology used to construct 
MOATS is quite different from the traditional uses of fault tree 
analysis 

The MOAT methodology has been found to permit the integration 
of existing security assurance techniques (including formal 
methods techniques) into a risk-driven process model. MOATS 
are developed concurrently with system specification, design, and 
verification. They permit high-risk areas to be more fully 
explored and more precisely specified before their lower risk 
counterparts. In particular: 

Different formal and informal notations can be used on 
different aspects of the system according to the nature and 
severity of the risks present. 

Different degrees of formality can be used as the project 
progresses. When the risk of changing specifications is 
great, an informal proof sketch can be created at the outset. 
This can then be refined into more formal versions as the 
specifications stabilize. 

The security ramifications of different design alternatives can 
be compared early in the process before expensive 
backtracking is required. 

A general verification strategy can be outlined and the 
tradeoffs between security verifiability and other properties 
can be explored early in the process. 

Tbe greatest system risks - security and otherwise - are 
considered before less important risks. In a realistic 
development process in which resources are likely to be 
exhausted, this is critical. 

Note that we are not proposing any new notation or analysis 
technique. The MOAT framework is intended to accommodate 
existing notations and techniques. We are also not advocating any 
particular existing notation or degree of formality. This approach 
is useful regardless of the degree of formality or the notations 
used. 

3. Overview of the Method 

The MOAT methodology involves building an argument tree 
(MOAT) for each security property that is to be analyzed. The 
process is iterative, continually refining the tree so as to make the 
argument that it presents more compelling. Tree construction 
loosely follows this sequence of steps: 

Create a root node representing the desired 
security property 

Repeat 
Select the node representing the greatest 
remaining risk 

Replace its justification with a more 
compelling version 

If the justification is a decomposition 
Add the new child nodes 

If the property must be relaxed 
Propagate the change upwards 

Until the risks have been sufficiently 
addressed, or resources are exhausted 

Each of these steps is described in greater detail in the sections 
that follow. 

3.1 Initialization 

The process begins with a goal - a security property that the 
system under construction is intended or required to have. 
Initially, a single node is created that simply asserts that the 
desired property holds - this assertion will be replaced with more 
compelling arguments as the tree is relined. This goal statement 
can be written in any notation, formal or otherwise. This goal is 
made the root of a tree structure. As the only node in the tree, the 
root is the only candidate for refinement in the first iteration of the 
body of the algorithm. 

3.2 Justification 

Initially, any leaf node represents an unjustified assertion. 
Justification involves associating with that node some argument 
as to why the asserted property holds. This can take many 
different forms. Some possibilities are: 

. The property can be a system property that is decomposed 
into component properties. The justification would then 
represent an argument or proof that the component properties 
compose to provide the required system property. 

. Tbe property may be an assumption about the environment in 
which a system is to be used. In this case, the fact that it is 
an explicit assumption may be justification enough. 
Alternatively, justification could be presented as to why the 
assumption is valid for the system or its environment. 

. The property might represent some derived design property. 
The argument could be a proof that a proposed design 
exhibits the property. 

. The node might represent a property that an externally 
provided component must possess. The argument might then 



be that the creator has guaranteed this property. 3.4 Decomposition into Subgoals 
Alternatively, the argument could document the testing 
strategy and history of tests applied to the component. Many arguments will involve decomposition of the goal property 

into more manageable subgoals. In such cases, an AND-node is 

. When multiple different notations are used in a single used to denote that all of the subgoals of the argument must hold 

analysis, a node may represent the translation of the property true in order for the goal to hold. For example, if the goal 

expressed by its one child from one semantic basis to property for a Kerberos-like system is to ensure that only 

another. The justification for this translation might be a authorized requests are executed, a decomposition might require 

mechanical translation. that: 

Whatever the format of the justification, additional assurance can 
always be provided. In particular, a justification that has been 
inspected and signed off on by many different parties may be 
considered more convincing than one seen only by the original 
author. 

l 
The certificate authority will only issue certificates that 
permit authorized requests 

l 
Requests will only be executed if permitted by a certificates 
issued by the certificate authority. 

There is no single fixed degree of formality for these 
justifications. Some examples include: 

The AND node will contain the argument that these two subgoals 
do in fact compose to form the desired goal. The child nodes will 
each represent one of the sub goals, and will have to be justified 

. A journal-quality proof, where sufficient formality is used to in turn. Decomposition into subgoals has a number of typical 

convince the intended audience, but no more. uses: 

. A convincing argument that does not rely on any formal 
notation. 

. A mechanically checked formal demonstration that source 
code meets its proof obligations. 

. An informal argument that all known sources of failure have 
been accounted for. 

Different nodes in the same tree may well contain different 
degrees of formality. This may be necessary due to different 
subject matter. For example, while it is possible to be very formal 
about source code properties, it might be very difficult to be 
formal about the fallibility of the users of the system. The former 
may involve mechanically checked proofs, whereas the latter may 
only contain an argument regarding employee training. Since 
security is a system property, MOATS have to accommodate all 
elements of a system: regardless of how amenable to the 
application of formality they might be. 

Assumptions. A proof (or less formal argument) that relies on 
assumptions can be considered valid independent of its 
assumptions. However, the proven property can onJy be 
considered justified insofar as its assumptions can be justified. 
Thus, an AND node can be used to replace a goal property with 
an argument and subgoals representing the assumptions upon 
which the argument relies. In this manner, assumptions are made 
explicit rather than buried somewhere within the argument. 
Furthermore, because tbe process works from goal towards 
assumptions, the same process can be applied in an iterative 
manner in order to establish the assumptions. 

In the example above, it might be assumed that the target objects 
are able to distinguish those certificates issued by the certificate 
authority. This assumption makes arguments regarding ticket 
existence easier, but needs to be justified at a later point in order 
for the dependant arguments to be considered applicable. 

Component Requirements. A system property can be decomposed 
into individual component requirements. In the above example, 
the certificate authority would be responsible for ensuring that 
only authorized requests are given certificates. The protected 
services would be responsible for ensuring that only requests 
permitted by a certificate are executed. A user’s confidence in the 
goal property will depend on (a) how accurate they believe the 
arguments supporting this decomposition to be and (b) how 
confident they are that the components meet their individual 
requirements. The latter can be achieved by applying multiple 
iterations of the MOAT analysis approach, or by using some other 
assessment technique. 

3.3 The Order of Analysis 

At each iteration of the process (other than the very first), the 
engineer is faced with the problem of deciding whether to 
decompose a leaf node or whether to refine an existing node. In 
addition, he or she must decide which node to perform these 
operations on. 

The answer to both of these questions is that the engineer must 
decide where the greatest risk to security lies, and how to best 
address it. In some cases, this will mean a breadth-first approach 
in which system security properties are divided into the 
responsibilities of many different objects, in order to determine 
whether a “weak link” exists before committing more resources to 
the precise analysis of any one component. In other cases, a 
depth-first search might be required, constructing an argument 
that provides confidence that a single component will be able to 
meet its stated requirements before a system-wide solution that 
depends on that component property can be designed. In some 
cases, formality might be applied immediately; in others a rough 
proof sketch might suftice as evidence that a more formal proof 
will be possible at a later point in the process. 

Lemmas. Complicated mathematical proofs are often structured 
as a series of lemmas. Each lemma represents a manageable part 
of the proof. Each is established individually, and together they 
make the proof of the desired property far simpler. MOATS 
accommodate this approach by creating an AND node containing 
the final proof, with child nodes for each of the lemmas upon 
which it depends. 

3.5 Decomposition into Alternatives 

The other major form of decomposition is the use of OR-nodes to 
represent alternative arguments. For example, if the goal property 
is to ensure that a message is transmitted privately, the following 
decomposition could be used: 
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. The message is sent over a secure network. 

. The message is securely encrypted. 

From an entirely formal perspective, OR nodes are never really 
necessary. But they have several practical uses: 

Reusability. OR nodes can be used to represent design 
alternatives. In the example above, the alternative approaches to 
demonstrating message privacy rely on different assumptions. An 
engineer reusing such an argument would be able to choose the 
alternative that better matched the assumptions of the target 
environment. Such flexibility makes the resulting arguments 
more suitable for reuse. 

Flexibility. In the above example, the decision of whether to 
encrypt or rely on a secure network does not have to be made 
globally. Some objects may use one approach consistently; others 
may vary according to the nature of the communication. Such 
alternatives give the designers flexibility. For example, a given 
object might use encryption when communicating over insecure 
global channels, but get greater performance by sending messages 
in the clear over secure local networks. 

Defense in depfh. Engineering is a human endeavor and engineers 
are fallible. No matter how well a system (and its supporting 
arguments) is constructed, it can still fail. Defense in depth calls 
for a more robust system that accommodates failure - both of the 
individual components and of the design itself. In the message 
security example, this might involve encryption of messages sent 
over secure channels. If either one of these provisions fail, the 
other can still support the necessary property. While formal 
proofs may appear infallible, they are often based on informal 
assumptions. Physical security is not something that can be 
formally proven. Encryption is based on arguments regarding the 
secrecy of keys, which in turn are based on many different 
assumptions that might prove faulty. Even in mathematics, we 
often see multiple proofs of the same theorem-because proofs, 
like MOATS, are not intended to “prove” but rather to convince 
the reader [DLP79], and several arguments may be more 
convincing than any one. 

3.6 Refinement 

Refinement permits the engineer to revisit a node and replace the 
argument at that node. Typically this would be used to replace an 
informal justification with a more formal one. In this manner, an 
informal proof argument can be sketched out and then refined 
only after there is cause to believe that the general structure is 
sound and applicable to the design at hand. Some risks that arise 
from changing specifications can be ameliorated by letting the 
designer put off the expensive process of proof refinement until 
the specification has stabilized. 

If a node property stated in an informal notation is replaced with 
more formal equivalents, this will possibly impact other nodes 
around the one in question. ‘Ihe child nodes may themselves have 
to be translated into the more formal notation. Conversely, the 
parent of the node being refined may now be refined as well, 
taking advantage of the greater formality in the statement of its 
child’s property. 

There is also the possibility that in refining the argument at a 
node, a problem with the less formal version will be uncovered. 
While the purpose of the informal argument sketch is to ensure 

that this will not cause major difficulties, this cannot be 
guaranteed. In the event that a problem arises, there are a number 
of possible ways of dealing with this: 

. The argument may require additional assumptions, or other 
subgoals. In this case additional child nodes can be added. 

. The argument may result in a weaker claim than was 
previously thought possible. It may be possible to address 
this via backtracking. 

. The argument may be so flawed as to require replacement of 
the entire subtree rooted at that node. 

3.7 Backtracking 

Backtracking occurs when no argument can be constructed to 
justify the property required of a node. This can occur when a 
leaf node is initially being considered, or when a node is being 
revisited. In such an instance it is necessary to revisit the node’s 
parent and perform one of the following: 

. Determine an alternative decomposition that does not rely on 
the property that cannot be justified. Replace the subtree 
rooted at the parent with a new tree, perhaps reusing certain 
fragments of the subtree being replaced. 

. Add an additional child node to the parent, thereby reducing 
the burden of proof on the node in question. 

. Amend the property of the parent node so as to reflect a 
weaker property that can be established using a weaker 
property at the node in question. If this invalidates or 
weakens the arguments in the parent node’s parent, the 
backtracking process continues with the parent node as the 
new node in question. 

The backtracking process recognizes that there exists some risk 
that verification cannot be achieved as a rational process. The 
ease with which a design can have its security properties verified 
is only one of the many criteria by which a design can be judged. 
In performing this process, the design should attempt to balance 
verifiability with other concerns. No matter how much this goal 
is pursued, there will be cases where the process must backtrack. 

This backtracking also recognizes that the stated security goals for 
a system may not be absolute. The stated goals are precisely that: 
goals. In performing this process, the engineer will uncover to 
what degree the stated security goals constrain the available 
design space. When conflict arises between the desired security 
goals and other design properties, the engineer will have to decide 
which has precedence. Sometimes, security will win out and the 
design will have to be modified to permit the stated goal to be 
achieved. But sometimes the security goals may have to be 
relaxed in order to accommodate other goals. The inclusion of 
backtracking in the process provides for both of these alternatives. 

This is particularly important in a reuse-centered environment. If 
every system is to be built from scratch, it is not unrealistic to 
require that a very specific set of security goals be achieved. But 
when standard components are being used, the designed will have 
to decide whether to adapt the definition of security to match what 
can be provided using existing part, or whether the need for a 
specific definition of security warrants the creation of novel 
components. The scope of this reuse can range from individual 
functions in a source code library to complete commercial off-the- 
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shelf software products. The process recognizes the need to adapt 
the definition of security to what is viable given the other design 
parameters. But it also ensures that the user is explicit about any 
alterations of the stated security goals. 

3.6 Termination Criteria 

This repetitive decomposition and refinement process can in 
theory continue indefinitely. In practice, it will be necessary to 
stop at some point. Depending on the manner in which this 
technique is used, there can be vastly different termination 
criteria: 

. The analysis can be terminated when the engineers believe 
that no sufficiently large threats to security remain. Of 
course an outside validation agency might disagree and 
require that it be resumed from the point at which it was left 
off. 

. When the deadline for product deployment is reached, the 
analysis can be halted. Alternatively, it can continue 
throughout the lifecycle of the product and only halt when 
the product is finally retired from active use. 

. If a single formal notation is being used, the analysis can 
stop when no more analysis can occur because the basic 
assumptions have been reached or a uniform degree of 
formality in the reasoning process is achieved. 

. When resources allocated to the enforcement of security 
have been exhausted, the analysis process can halt. 

Because of the open-ended nature of this approach, the analysis 
may never be “complete” in any meaningful sense. This is by 
design. Additional resources can always be added to the analysis, 
and the analysis will always apply the resources available thus far 
to the greatest security risks. Ultimately, the decision when to 
terminate the process will lie in the hands of the engineer. 

3.9 Assessment 

There are several ways in which MOATS can be assessed. In the 
simplest, every leaf can be considered to be either true or false. 
Using the Boolean relations described at the interior nodes, the 
goal property can be determined to be either true or false. But 
such an absolute argument will depend on the assumption that the 
leaves are labeled cortectly, and that the arguments at the interior 
nodes are correct. 

Alternatively, if a user of this method can assign meaningful 
quantitative values to the leaves, and establish meaningful ways 
of combining these values at the interior nodes, conventional fault 
tree solving methods can be used to compute quantitative values 
for the goal property. Such quantification is not presently 
possible, but it is not precluded by the use of MOATS. 

Perhaps the most useful approach to assessment is to simply 
examine the arguments at the interior nodes and the justifications 
presented for the leaf nodes and decide whether they are 
convincing. Some users may require formal proofs. Others may 
be more concerned with the arguments that justify the 
assumptions. In any case, the method accommodates whatever 
technique a given user may require. 

The assessment process is actually quite simple. The various 
stakeholders simply study the analysis and decide whether or not 
they are satisfied that the analysis (a) does in fact reflect the actual 

system and (b) demonstrates that the required security property is 
enforced. While assessment that depends on human judgment is 
quite informal and contains the potential for abuse, there are good 
reasons why this approach may be superior to the formal 
approach: 

It can be used at all phases of the process; not just when 
completely formal proofs have been constructed. 

It permits a risk-based approach to be taken, where 
correspondingly greater efforts are made to address the 
greater risks. 

It admits probabilistic arguments and arguments based on 
effects that are difficult to quantify, such as deterrence. 
Many defense mechanisms are not absolutely secure, but are 
considered “strong enough.” 

It recognizes that no proof is completely formal and that 
there is risk in even the smallest element of informality. 

Proofs must be convincing. Formal approaches that are not 
mechanically checked can hide flawed reasoning behind 
inaccessible notations. 

4. Analysis of the Method 

The MOAT approach represents a considerable change from 
conventional approaches to security assessment. As such, 
resistance is to be expected. In this section we consider some of 
the more troublesome aspects of such a paradigm shift and 
attempt to assuage them. 

4.1 Imperfect Methods 

One of the most common concerns voiced about utilizing different 
degrees of formality is that such an approach may well miss 
something that a uniform application of formality would have 
detected. Much of the effectiveness of formal methods arises 
from the fact that they leave no stone unturned. The cost of this 
effectiveness is turning over a lot of stones under which nothing 
interesting is found. 

This is a valid concern. If we knew a priori where all the 
ambiguities in an informal specification were, they would not 
pose a problem. Formal specifications are effective in part 
because they identify areas of ambiguity that were not previously 
known to be ambiguous. Formal proofs are effective because they 
highlight reasoning flaws that might otherwise have gone 
undiscovered. From a theoretical standpoint, the selective 
application of formality will always be inferior to a complete 
application of that formality. 

But this is a bit of a strawman argument. If the costs of complete 
application of formal methods preclude their use, then selective 
application of those same methods is the only practical 
alternative. Arguments are often heard that practitioners should 
be using formal methods and that the factors preventing their use 
in practice are myths [Hal90, BH94]. But the fact remains that the 
mainstream software engineering community has largely failed to 
embrace a complete switch to formal methods. Even formal 
methods proponents have begun to recognize that the selective 
application of those formal methods may be the only viable 
alternative [Rus95, CGR9.51. 
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Furthermore, the MOAT approach does not preclude a completely 
formal approach. If the resources are available, a completely 
formal approach can be taken. The MOAT approach does attempt 
to order the application of these resources, so that: 

. Backtracking is reduced. 

. Formality is applied where it is most cost-effective, before 
being applied to less cost-effective areas. 

. Specification, design, and verification can occur 
concurrently. 

Such an approach provides insurance against the possibility that 
resources are exhausted before complete application of formality 
is achieved. It is much like the “inverted pyramid” that journalists 
follow, presenting the elements of a story in order of importance. 
This permits an editor to cut the story at any point and ensure that 
the space provided has been used in an optimal manner. Under 
the MOAT approach, if security resources are exhausted, those 
available have been used in the most cost-effective manner 
possible. 

4.2 The Potential for Abuse 

Another concern about this approach is that it could potentially be 
abused. As the method permits the user to decide what degree of 
formality should be used, there is no mechanism to ensure that 
they will not choose a notation that permits them to sweep the 
more difficult details under the rug and claim to have analyzed the 
system sufficiently. This may not be malicious - a user of the 
method may simply not understand the degree of rigor that is 
appropriate to the security risks posed by the system. For these 
reasons, it might appear that a more rigorous process should be 
prescribed and the decision taken out of the designer’s hands. 

Although greater rigor in our processes is certainly a goal, there 
are many examples of techniques that are useful in spite (or 
perhaps even partly due to) their lack of rigor. Perhaps the most 
prominent example is fault tree analysis, used by systems 
engineers to reason about safety-critical systems. Fault trees are 
the single most important safety assessment technique. The 
Nuclear Regulatory Commission uses them to validate the safety 
of nuclear reactors. The military uses them to analyze the 
detonation systems of nuclear warheads. And Underwriters 
Laboratory uses them to analyze the safety of household products. 

Yet in spite of their importance, their construction and validation 
depends on human insight and experience. One textbook puts it 
“construction of fault trees is an art as well as a science and comes 
only through experience” and then proceeds to present a list of 
general heuristics to guide in their construction [McC81]. Both 
rigorous processes and automated software exist to aid in the 
automatic construction of fault trees from system diagrams, but 
even they are based on insight and experience rather than formal 
reasoning [RM83, HK85]. They also require a model of the 
system that accurately reflects the component interactions and 
environmental assumptions, which in turn is typically validated 
using insight rather than logic. 

Fault trees strike a careful balance between rigor and flexibility. 
They accommodate arbitrary designs and yet exploit reuse of 
experience with standard designs. They can be buttressed by 
formal reasoning about the accuracy of their construction, or they 
can depend on appealing to the intuition of the reader. It is up to 
the stakeholders in the system to determine what degree of rigor is 

required. It is up to them to ensure that the ability to 
accommodate different degrees of formality is not abused. That 
fault trees have become so popular is a sound argument that 
responsible practicing engineers can be entrusted to make these 
decisions wisely. 

4.3 Generality 

The MOATS approach is actually a generalization of existing 
formal and informal methods. It does not dictate a specific formal 
method and it does not require a single consistent formal 
semantics. But that does not stop a user of the method from 
opting to use a single existing notation with a single semantic 
basis. If a user wants to build a complete formal specification in 
Z, the MOATS approach can still provide benefits in that it allows 
the various proof sketches to be laid out before the cost of 
complete formalization is incurred. Furthermore, it makes the 
resulting proofs more accessible, by requiring the user to structure 
the analyses in a manner that makes the interdependence of 
component properties explicit. 

The MOATS approach is not wedded to existing formal notations, 
however. It is critical to remember that we do not use formal 
methods for formality’s sake alone. Rather, the use of any formal 
technique represents a risk-reduction activity. If we view formal 
methods as nothing more than risk-reduction techniques, it is 
simple to see how formal methods can be adapted to fit into a 
risk-driven process model. Consider the following examples of 
specification as simply a risk-reduction activity: 

Pamas’s specification of the A7 control software showed 
how a notation can lack a formal semantics and yet be 
tailored to the risks that were anticipated. The input/output 
forms captured knowledge about the most common failure 
modes in the hardware / software interface. And the tables 
represented years of experience with specifying state-driven, 
process-control software [Hen80]. 

The most successful Z specifications take advantage of the 
experience gained in using that language to develop large 
database systems. Many published specifications 
demonstrate the utility of the language and its reusable 
toolkit at specifying the high-risk element of these systems - 
internal database consistency - while essentially ignoring the 
low-risk - the sources of database events and their inputs and 
outputs [Hay85]. 

Specification of GUI systems is performed largely using 
screen-painting utilities with which there are no formal 
semantics associated. Nevertheless, these approaches 
address the key risks of these systems - that they will not be 
intuitive or will not meet the customer’s expectations. 

The most common specification tools in business are form 
and report generation utilities. These are not general-purpose 
formal specification languages, but they do have an 
(operationally-defined) formal semantics, and they address 
the exact risks that the users are concerned with. 

All of these examples provide evidence that the important 
question is not whether a specification notation is formal enough, 
but whether it addresses the key risks. 

On a different note, the MOATS approach also appears to be a 
generalization of some other work in the area of reuse of security 
verification. Frincke [Fri96] discusses the use of design templates 
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with pre-verified security properties. These could be incorporated 
directly into the MOATS approach by creating a node that merely 
references those arguments and has children representing the 
assumptions upon which the reused arguments rely. Spencer 
[Spe96] discusses a checklist-approach to the determination of 
security requirements. This approach could be approximated in 
the MOAT approach by using a node with one child for each 
element in the checklist. Each child would then either contain a 
rationale as to why it does not apply, or a translation of that 
general checklist entry to the specifics of the system in question. 
Both of these approaches are claimed to be quite useful by their 
authors, and both are accommodated by the MOAT approach. 

4.4 The Rational Process 

The cost-effectiveness of the MOATS approach will depend on 
the user’s ability to choose risks well. With perfect foresight 
however, a rational design process [PC861 can be achieved. With 
less than perfect foresight, the amount of backtracking required 
will depend on the skill of the user at anticipating risk areas. This 
is true of evety development methodology - both those that 
explicitly acknowledge the role of risk in the development process 
and those that don’t. The MOAT approach makes this role 
explicit in order to accommodate different development paths. 
Ultimately, however, the assessment arguments will either 
convince the intended audience or not. The route taken in 
developing the assessment arguments will not matter. 

This is a critical point. Poor employment of the method will not 
permit insecure systems to be mistakenly judged secure. At 
worst, the verification resources will have been wasted. But the 
assessment arguments will either convince the stakeholders who 
are concerned with security, or they will not. Regardless of the 
actual process taken, the rational process can be approximated, 
and it will be the products of that process that will ultimately be 
assessed. The open-ended nature of the MOAT approach does 
have the significant advantage of being amenable to additional 
justification should the original analysis require strengthening. 

Fraser, et al [FKV94] presented a survey of popular formal 
specification approaches. In the more general-purpose notations 
considered, formal notations were provided without methods for 
the elaboration of specifications written in those notations. Users 
of these notations are left completely to their own devices when it 
comes to actually creating a specification. The specifications 
might as well be pulled out of thin air, as far as the befuddled new 
user is concerned. The MOAT approach attempts to fill this void 
by giving users some guidance as to which parts of the 
specification contain the greatest risk and should be considered 
early on. Less critical aspects can always be elaborated at a later 
point - if at all. MOAT also aids users in helping them structure 
their arguments informally before attempting to commit them to a 
formal notation. 

5. Empirical Evaluation 

This approach grew out of our experience in developing the 
security model for the Legion distributed system [WWK96]. It 
was developed to address the need for organization and 
preservation of informal discussions about the security 
ramifications of design alternatives. As time progressed, the 
approach was modified in order to better meet our needs and to 
address its shortcomings. 

We report here on some of our experience with using this 
approach in practice. Although we attempted to make these 

experiments as controlled as possible, there is still considerable 
room for experimental error. Some of the more significant 
caveats are: 

. The approach was only used by a single group - one that 
included its developers. 

. It was not compared to other assessment methods used on the 
same projects. 

. The experiments were not numerous or diverse enough to 
draw general conclusions. 

. The approach evolved during the experiments. 

In spite of this, we found the approach to be quite practical. We 
present some of the more interesting observations here and leave 
it to the user to decide whether these results should be considered 
promising. We report here on three specific applications of 
MOATS to aspects of the Legion security model. These three 
experiments vary considerably in both scope, and formality. 

5.1 The Legion Caching Mechanism 

One of the key elements of the Legion security model is the May1 
function, which is used to define discretionary security for an 
object. The May1 function issues licenses that can be cached in 
order to enhance performance by exploiting temporal locality in 
method invocations. The developers were concerned that the 
subtle interactions between cache and May1 might weaken user- 
defined security policies in non-obvious ways. 

The application of the analysis process to the Legion caching 
mechanism produced the following general observations: 

. 

. 

. 

. 
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Using the method we were able to determine the precise 
criteria for Legion system compliance. Originally we had 
intended to create a complete formal specification of the 
Legion model and then require that an implementation 
conform to the model in order to be considered compliant. 
Through this process we were able to trace the required 
security property to specific requirements on the Legion 
model. Rather than require compliance with all aspects of 
the formal model, we can discover and state the specific 
properties that must be met in order for a system to be 
considered compliant. 

The method also demonstrated both the need for and the 
utility of backtracking. By starting with a desired security 
goal and then relaxing it in order to accommodate design 
choices, we were able to precisely derive a reasonable 
compromise between security and performance. In this 
manner the method provided a valuable distinction between 
the security goals we would like to achieve and those that we 
can reasonably expect to achieve. 

The method was used at a fairly low level to analyze a 
specific design. We found the method useful at this level. 
We were able to extract specific code-level verification 
obligations that could be targeted during the implementation 
to follow. If it later proves necessary, these verification 
obligations can be used to rigorously verify the code. 

This analysis demonstrated to our satisfaction that much of 
the benefits of rigor could be achieved without incurring the 
high costs of formalization. While risks certainly exist at the 



code level, our analysis provides confidence that the basic 
design is sound. 

5.2 The Legion Delegation Model 

The second significant analysis performed using this method was 
an analysis of the Legion delegation model. Most every multi- 
user system permits programs and users to act on behalf of 
another program - most typically to permit a single executable to 

have the rights of the user that invoked it. In a distributed system 
it can be very difficult to ensure that an object claiming to be 
working on behalf of another object really is authorized to 
perform the actions it attempts. 

Figure 2 presents the skeleton of the argument that resulted after 
several iterations and review cycles. The RA refers to the Legion 
Responsible Agent - the object on whose behalf an object 
invoking a method on target claims to be working. 

The claimed RA authorizes any method 
target executes on its behalf (8.3) 

The claimed RA can be held 
accountable for any method target 

executes on its behalf (8.4) 

The claimed RA cannot be 
held accountable for any 

method it does not 
authorize (8.8) 

Method execution by 
the target on behalf of 

the RA requires an 
authorizing certificate 

(8.5) 

I 

1 ’ - 
I I 

Method execution by If the RA does not If the RA does not 
the target on behalf authorize a method, authorize a method, 

of the RA requires an the target cannot the target cannot 
external leverage possess any possess a certificate 

relationship leverage over the RA permitting it (8.9) 

-- 
The method will only be 
executed by the target 
on behalf of the RA if 
permit0 returns true 

(8.6) 

permit will only return 
true if the certifiicate 

authorizes the method 
invocation (8.7) 

permit0 interprets the 
wn-“” ’ 

.,~~ 
certificate in the same nqj KNOWS rne 

manner as the RA (or the 
pubuc Kl .I’- ‘-sy of the 

1 
source of leverage) Rn 

permtr snares a 
compatible notion of 

time with the RA 
I I I I I I 

I 

No object other than 
the RA will issue 

certificates signed 
with the RA’s private 

key (8.11) 

No other object can 
gain illegitimate access 

to the private key 

The RA and the target 
have the same - 

interpretation of the 
certificate authorizes 

relation 

[ No other object with 1 
legitimate access to the 
key will use it to issue 

certificates 

I 

1 The “authorization 
scheme” as defined 
by the nature of the 
certificates issued 

matches user 
expectations (8.10) 

Figure 2 - Skeleton of the Legion Delegation Analysis 
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The analysis process was applied to this problem in order to gain 
a greater understanding of the issues involved and explore the 
tradeoffs between security, performance, and flexibility. A 
general model was posited and then analyzed to determine 
whether it could hold up under the many demands placed on it, 
and whether obvious improvements appeared. 

Unlike the analysis of the caching mechanism, which was limited 
to a single design, this analysis was intended to be as generic as 
possible, accommodating multiple design alternatives. The 
analysis of delegation also differed in that it included objects that 
could be placed on different hosts, and be created by different 
users with different goals. The following results were observed 
from this analysis 

The method aided in explicitly differentiating between an 
intuitive notion of delegation and an enforceable definition 
thereof. The user is given a clear understanding of the 
relationship between flexibility and enforceability. 

In performing the analysis, we discovered that we were able 
to replace vague, intuitive notions of “trust” with specific 
required properties. We had always believed that “objects 
have to trust their host”. This vague requirement was 
replaced (for this property) with specific requirements that 
hosts not issue delegation certificates on behalf of the object 
and that they not permit access to the private key of the 
object. Replacing fuzzy notions of trust with specific 
requirements in need of assurance was a very useful result. 

The method revealed that certain implicit assumptions that 
are often made of closed systems are invalidated by the open 
Legion environment. In particular, while a given design may 
ensure that an object is “willing to take responsibility” for 
the actions it delegates, it cannot ensure that the object can 
actually be held responsible in any meaningful manner. The 
analysis identified the need for some form of accountability 
relationship between objects. 

The resulting analysis proved very accessible. One engineer 
who saw this analysis but was neither familiar with the 
system nor a specialist in security was able to see a very 
subtle difficulty with issues of time. Once the concern was 
raised it was easy to understand the problem. Nevertheless, 
this remained a clear validation of the accessibility of the 
approach. 

The analysis identified several general patterns (heuristics) 
that reappeared in later analyses regarding other topics. For 
example, the basic alternative of either preventing failure or 
detecting failure is something that can be applied in many 
contexts. Similarly generic is the notion of using a precisely 
defined protocol as an oracle in order to as a means of 
moderating between mutually suspicious objects created with 
opposing goals. 

The analysis only considered those properties that could be 
directly traced to the primary goal of enforcing delegation. 
One very difficult element of the problem - the problem of 
getting expired certificates refreshed - surprisingly was 
found to play no role in the analysis. On later reflection this 
made perfect sense. But it took the use of a rigorous process 
to isolate those elements that are crucial to security from 
those that are merely optimizations. 

5.3 Legion Mandatory Security 

The Legion security model provides mechanisms whereby users 
can define arbitrary discretionary security policies. These same 
mechanisms can also be used to implement mandatory security 
policies over collections of objects. However, these two different 
uses of the same mechanisms imply different properties that those 
mechanisms will have to exhibit. Initial implementations of the 
Legion system will only concentrate on discretionary security. 
But it is critical to convince potential users that the basic strategy 
for mandatory security is sound. An analysis was performed with 
the intent of convincing users that the model could accommodate 
mandatory security policies, albeit under later implementations. 

The analysis of mandatory security was performed at a high level 
and in a very abstract manner. It was significantly different from 
the other analyses in that it was intended to demonstrate the 
feasibility of proofs under the proposed model. This analysis led 
to the following general observations regarding the method: 

The analysis allowed covert channels to be considered within 
a sysrem context. In particular, the risk of computerized 
covert channels was balanced against the risk of sensitive 
data being leaked via conventional means. Given this 
context, it is hard to justify either restricting functionality or 
expending assurance resources against covert channels. 

The analysis of mandatory security demonstrated the utility 
of the method at accommodating a variety of degrees of 
assurance. Different assurance arguments were provided for 
the user to choose from. They ranged from the conventional 
“either it can be made completely secure or it should not be 
built” variety to less easily quantified arguments concerning 
the difficulty of penetrating a given site and the deterrent 
effects of threatened detection. The method proved flexible 
in accommodating both ends of this spectrum. 

Like the delegation analysis, this analysis demonstrated the 
utility of the method in replacing vague definitions of trust 
with specific component obligations 

The mandatory security analysis effectively uncovered 
certain elements of the design that will be key to future 
verification efforts. In particuktr, it was discovered that later 
analyses would depend heavily on certain ordering 
restrictions being placed on the Legion protocol stack. 
Armed with this knowledge, the designers can work around 
these verification needs without constraining the design 
space unnecessarily. 

The mandatory security policy made clear that the ability to 
enforce a mandatory policy will depend heavily on how that 
policy is defined. In particular, a policy defined in terms of 
raw message traffic is much easier to enforce than one 
defined in terms of method invocations, but is also far less 
expressive. The application of this method reveals these 
tradeoffs before requiring a lot of investment in formal 
notations. 

This analysis was initially quite informal. But the areas of 
greater risk were explored in greater detail. Here risk is 
considered to be the concerns of potential customers. We 
were able to construct the analysis in an iterative manner, 
focusing resources on the areas where customers were most 
skeptical. The open-ended nature of the analysis proved 
quite valuable, in that the appropriate degree of rigor could 
be converged on rather than having to be selected a priori. 
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6. Conclusions 

From both our analytical consideration of the method and our 
initial empirical evaluation, we can draw some early conclusions. 
They are grouped into the following broad categories: 

l As a medium for communication. MOATS have proven 
themselves very useful in this area. They isolate the essential 
arguments from all of the supporting notational concerns. 
This makes these arguments more accessible both to 
developers and to other stakeholders in the system. The 
precise documentation of the relationship between 
component properties and system-level security allows 
developers of these components to understand exactly their 
role in ensuring security and the ramifications of their 
decisions. 

. As part of a risk-based process model. We have empirically 
observed MOATS to be useful at all phases of the software 
lifecycle. Unlike many other formal techniques, MOATS are 
flexible enough to adapt as the software requirements 
inevitably change. MOATS have even proven useful at 
uncovering potential conflicts in requirements, and thereby 
facilitating the negotiation of a reasonable compromise. 
Finally, the open-ended nature of the process means that the 
analysis can be constructed in a manner that is both 
responsive to feedback and ensures that verification 
resources are applied in the most cost-effective manner 
possible. 

. Reusability. We have found the MOAT methodology to be 
amenable to the reuse of knowledge in the form of general 
heuristics. The notational flexibility has also made it easy to 
reuse more substantial analyses. And because of the explicit 
identification and separate justification of assumptions, reuse 
of parts of existing analyses has proven possible. We also 
believe that other work in the area of reuse of security 
analyses demonstrates the viability of this more general 
approach. Still, considerable more work has to be done in 
order to draw any stronger conclusions in this area. 

. As a vehicle for exploration. Clearly, it is difficult to claim 
that the things we found using this approach wouldn’t have 
been found using any other approach. It is difficult to 
separate the abilities of the users from the utility of the 
method. Some of the things we uncovered were clearly due 
to moments of inspiration. Nevertheless, we find this 
approach to be extremely promising. As with any formal 
method, the moments of insight occurred as a result of 
attempting to document formerly vague ideas. However, in 
contrast to other formal approaches that we have used, the 
MOAT approach encourages the user to find the degree of 
rigor that is most suitable to each aspect of the problem at 
each point in the design process. The straightjacket of 
conventional formal methods is thereby replaced with a 
much more comfortable alternative. And any approach that 
users find practical will be more effective than one that is left 
on the shelf because it isn’t quite right and isn’t flexible 
enough to be altered. 
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