
A Practical Approach to Security Assessment

Abstract 1. The Problem

Darrell M. Kienzle *
The MITRE Corporation

kienzle@mitre.org

William A. Wulf
Department of Computer Science

University of Virginia
wulf@cs.virginia.edu

Conventional approaches to building and assessing security-
critical software are based on the implicit assumption that
security is the single most important concern and can be the
primary factor driving the software development process.
Changes in the marketplace and the nature of security
requirements have brought this assumption into question. There
is now a large class of systems in which security must compete
with other development goals. A risk-driven process model of
software development provides a framework for building software
that balances conflicting requirements. But a risk-driven process
invalidates many of the assumptions made by conventional
approaches to the specification and verification of security
requirements.

This paper presents a new approach to assessing the degree to
which softiare meets its security requirements. It does not
propose a new specification notation or analysis technique, but
provides a general framework into which existing notations and
techniques can be integrated. It allows varying degrees of
formality to be used: both across the components of the system,
and through the development process. The appropriate degree of
formality is whatever degree proves necessary to satisfy the
stakeholders in the system that the security goals have been met.

This approach has been found to be theoretically appealing as
well as useful in practice. Here we give a brief overview of the
approach, explain how it integrates into a risk-driven process
model, and discuss our early results in using it to assess, and
thereby thus guide the development of the Legion security model.

* Work performed while the author was with the University of
Virginia Department of Computer Science and bears no Past or
present relationship to MITKE.

bmission to make digital or hard copies of all or part of this work for
personal or classroom use is grated without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the fir11 citation on the first page. To copy
othetwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1997 New Security Paradigms Workshop Langdale, Cumbria LJK
Copyright ACM 1998 O-89791-986--6/97/ 9...$5.00

The face of security is changing. In the past, systems were often
grouped into two broad categories: those that placed security
above all other requirements, and those for which security was not
a significant concern. But such an ah-or-nothing approach to
security is getting increasingly harder to justify. Pressures to
compete with commercial software have forced even the builders
of the most security-critical systems to consider security as only
one of the many goals that they must achieve. Meanwhile, market
pressures and increased vulnerability from network attacks have
forced commercial software vendors to recognize security as a
major goal in their development efforts. There will certainly
remain systems for which security is either of no concern or the
single critical goal. But for an increasingly large number of
applications, security must be balanced against other design goals.

Most existing research in the engineering of secure software has
used formal methods in the context of a straightforward waterfall
model of software development. Existing formal methods appear
to work reasonably well in a conventional process model [Cor89,
Kem90]. But, as Boehm points out, a waterfall process works
well for systems where requirements and design issues are well
understood from the outset [Boe88]. In the past, many security-
critical systems exhibited these characteristics. In that
environment, the waterfall model and conventional formal
methods were generally adequate. However, they are much less
useful in an environment where security and other design goals
are in conflict.

When security must compete with other goals, the possibility
exists that exploration of the design space might result in altering
of requirements. Furthermore, the ability to verify security is only
one of the many goals that the designer must consider. In such an
environment, a risk-driven process model, such as the spiral
model, offers significant advantages:

. The security ramifications of different design alternatives can
be explored before the decision is made to commit to any
one.

. A basic verification strategy can be laid out early in the
process in order to avoid the unpleasant possibility that a
workable design is impossible to verify.

. Decisions to relax security in order to meet other goals are
done by design early in the process and not discovered by
accident much later.

The conventional approach to formal specification requires that a
single formal notation, exhibiting a single level of formality, be
uniformly applied to the entire system. Yet any notation will be
good at reducing certain risks but inappropriate for others. As
Boehm notes, a risk-driven approach should allow greater
formality to be applied to areas with greater risk and less formal
notations to be used in areas with little risk. Similarly, design
areas that pose the greatest risks should be explored at a greater
level of detail earlier in the process [Boe88]. When security is
important, the aspects that pose the greatest risk to the verifiability
of system security need to be explored early in the process, when
changes are most possible and least expensive.

This is consistent with Rushby’s assertion that formal methods
should be applied selectively to “the hard problems” [Rus95]. A
risk-driven approach permits formal methods to be made more
cost-effective, by only expending the costs in the area where the
expected returns are greatest. It is true that such an approach is
theoretically inferior to the total application of formality - areas
that might have benefited from the application of formality may
be overlooked. But a total application of formality to even
reasonably-sized systems has proven to be practically infeasible
[CGR95]. Selective application of formality is the only practical
way in which the appropriate formal techniques can be applied
where they can be of most use [Rus95].

It is unrealistic to believe that any system can be completely
secure. Even if a completely secure system was theoretically
possible, the very nature of verification limits the confidence that
we can have in it [DLW9, Fet88]. There will always be
something we can do to increase our confidence in the security of
the system. For this reason, the driving question in this work has
not been “is the system secure?” but rather “what should we do
next to make the system more secure?”

In an environment where resources are limited, the spiral model is
superior to the waterfall. If verification is left until after coding is
complete, it may well never take place. While perfect verification

may be theoretically appealing it is not attainable in practice. We
should strive for the best verification possible, but at the same
time recognize that there are limits to what we will achieve. In
light of this, verification resources must be applied in as cost-
effective a manner as possible. Resources should be applied to
the areas where the greatest expected returns lie before they are
applied to areas where they are expected to be less effective.
Sometimes this means a concentrated application of formality;
other times a broad application of less formal methods. Whatever
the case, when verification resources are exhausted, the developer
can be confident that the system was made as secure as possible
given the development constraints.

2. Methodically Organized Argument Trees
This paper describes a new approach to security assessment. It is
based on the presentation of security arguments using
hierarchically organized trees, similar to the fault trees used by
systems engineers to analyze the safety of critical systems. Each
Methodically Organized Argument Tree (MOAT) encapsulates an
argument that the system exhibits some desired security property.
The different elements of the argument - the desired property,
formal proofs, less formal reasoning, assumptions, axioms,
lemmas, and component proof obligations - are all contained
within the MOAT.

A simple example MOAT is presented in Figure 1. The example
demonstrates how an argument regarding the privacy of e-mail in
a given system might progress. This example is not intended to
be complete or in any way convincing. It is presented only as an
example of how a graphical tree structure can aid in organizing
and presenting security arguments for further scrutiny.

MOATS permit the verification strategies for necessary security
properties to be laid out in a clear, flexible, and accessible
manner. They are claimed to:

. Aid in communication between developers. The exact
relationship between system security goals and individual
component requirements is documented. The key elements
of a security verification strategy are identified. And a

User’s e-mail is
kept private

ensures sent
Key known only 1 to sender and

receiver

User’s e-mail kept
private on disk

Figure 1 - A Simple Example MOAT

security design rationale is provided for later maintenance
engineers.

Facilitate inspection. The essential elements of security
arguments are presented in a manner that makes them
accessible and makes faulty reasoning apparent. This aids
the independent validation process. Because of the open-
ended nature of the analysis, additional resources can be
expended in those areas where additional confidence is
required.

Facilitate reuse of designs and their accompanying security
arguments. The approach makes the assumptions upon
which an analysis depends explicit. Existing analyses can be
reused as long as their assumptions can be justified - using
the same process. More general knowledge and experience
can also be reused, in the form of canned arguments and
heuristics.

This paper presents initial results in attempting to validate these
claims.

Readers who are familiar with system fault tree analysis will
immediately recognize similarities between MOATS and fault
trees. These similarities are intentional. But while the resulting
trees may appear similar, the methodology used to construct
MOATS is quite different from the traditional uses of fault tree
analysis

The MOAT methodology has been found to permit the integration
of existing security assurance techniques (including formal
methods techniques) into a risk-driven process model. MOATS
are developed concurrently with system specification, design, and
verification. They permit high-risk areas to be more fully
explored and more precisely specified before their lower risk
counterparts. In particular:

Different formal and informal notations can be used on
different aspects of the system according to the nature and
severity of the risks present.

Different degrees of formality can be used as the project
progresses. When the risk of changing specifications is
great, an informal proof sketch can be created at the outset.
This can then be refined into more formal versions as the
specifications stabilize.

The security ramifications of different design alternatives can
be compared early in the process before expensive
backtracking is required.

A general verification strategy can be outlined and the
tradeoffs between security verifiability and other properties
can be explored early in the process.

Tbe greatest system risks - security and otherwise - are
considered before less important risks. In a realistic
development process in which resources are likely to be
exhausted, this is critical.

Note that we are not proposing any new notation or analysis
technique. The MOAT framework is intended to accommodate
existing notations and techniques. We are also not advocating any
particular existing notation or degree of formality. This approach
is useful regardless of the degree of formality or the notations
used.

3. Overview of the Method

The MOAT methodology involves building an argument tree
(MOAT) for each security property that is to be analyzed. The
process is iterative, continually refining the tree so as to make the
argument that it presents more compelling. Tree construction
loosely follows this sequence of steps:

Create a root node representing the desired
security property

Repeat
Select the node representing the greatest
remaining risk

Replace its justification with a more
compelling version

If the justification is a decomposition
Add the new child nodes

If the property must be relaxed
Propagate the change upwards

Until the risks have been sufficiently
addressed, or resources are exhausted

Each of these steps is described in greater detail in the sections
that follow.

3.1 Initialization

The process begins with a goal - a security property that the
system under construction is intended or required to have.
Initially, a single node is created that simply asserts that the
desired property holds - this assertion will be replaced with more
compelling arguments as the tree is relined. This goal statement
can be written in any notation, formal or otherwise. This goal is
made the root of a tree structure. As the only node in the tree, the
root is the only candidate for refinement in the first iteration of the
body of the algorithm.

3.2 Justification

Initially, any leaf node represents an unjustified assertion.
Justification involves associating with that node some argument
as to why the asserted property holds. This can take many
different forms. Some possibilities are:

. The property can be a system property that is decomposed
into component properties. The justification would then
represent an argument or proof that the component properties
compose to provide the required system property.

. Tbe property may be an assumption about the environment in
which a system is to be used. In this case, the fact that it is
an explicit assumption may be justification enough.
Alternatively, justification could be presented as to why the
assumption is valid for the system or its environment.

. The property might represent some derived design property.
The argument could be a proof that a proposed design
exhibits the property.

. The node might represent a property that an externally
provided component must possess. The argument might then

be that the creator has guaranteed this property. 3.4 Decomposition into Subgoals
Alternatively, the argument could document the testing
strategy and history of tests applied to the component. Many arguments will involve decomposition of the goal property

into more manageable subgoals. In such cases, an AND-node is

. When multiple different notations are used in a single used to denote that all of the subgoals of the argument must hold

analysis, a node may represent the translation of the property true in order for the goal to hold. For example, if the goal

expressed by its one child from one semantic basis to property for a Kerberos-like system is to ensure that only

another. The justification for this translation might be a authorized requests are executed, a decomposition might require

mechanical translation. that:

Whatever the format of the justification, additional assurance can
always be provided. In particular, a justification that has been
inspected and signed off on by many different parties may be
considered more convincing than one seen only by the original
author.

l
The certificate authority will only issue certificates that
permit authorized requests

l
Requests will only be executed if permitted by a certificates
issued by the certificate authority.

There is no single fixed degree of formality for these
justifications. Some examples include:

The AND node will contain the argument that these two subgoals
do in fact compose to form the desired goal. The child nodes will
each represent one of the sub goals, and will have to be justified

. A journal-quality proof, where sufficient formality is used to in turn. Decomposition into subgoals has a number of typical

convince the intended audience, but no more. uses:

. A convincing argument that does not rely on any formal
notation.

. A mechanically checked formal demonstration that source
code meets its proof obligations.

. An informal argument that all known sources of failure have
been accounted for.

Different nodes in the same tree may well contain different
degrees of formality. This may be necessary due to different
subject matter. For example, while it is possible to be very formal
about source code properties, it might be very difficult to be
formal about the fallibility of the users of the system. The former
may involve mechanically checked proofs, whereas the latter may
only contain an argument regarding employee training. Since
security is a system property, MOATS have to accommodate all
elements of a system: regardless of how amenable to the
application of formality they might be.

Assumptions. A proof (or less formal argument) that relies on
assumptions can be considered valid independent of its
assumptions. However, the proven property can onJy be
considered justified insofar as its assumptions can be justified.
Thus, an AND node can be used to replace a goal property with
an argument and subgoals representing the assumptions upon
which the argument relies. In this manner, assumptions are made
explicit rather than buried somewhere within the argument.
Furthermore, because tbe process works from goal towards
assumptions, the same process can be applied in an iterative
manner in order to establish the assumptions.

In the example above, it might be assumed that the target objects
are able to distinguish those certificates issued by the certificate
authority. This assumption makes arguments regarding ticket
existence easier, but needs to be justified at a later point in order
for the dependant arguments to be considered applicable.

Component Requirements. A system property can be decomposed
into individual component requirements. In the above example,
the certificate authority would be responsible for ensuring that
only authorized requests are given certificates. The protected
services would be responsible for ensuring that only requests
permitted by a certificate are executed. A user’s confidence in the
goal property will depend on (a) how accurate they believe the
arguments supporting this decomposition to be and (b) how
confident they are that the components meet their individual
requirements. The latter can be achieved by applying multiple
iterations of the MOAT analysis approach, or by using some other
assessment technique.

3.3 The Order of Analysis

At each iteration of the process (other than the very first), the
engineer is faced with the problem of deciding whether to
decompose a leaf node or whether to refine an existing node. In
addition, he or she must decide which node to perform these
operations on.

The answer to both of these questions is that the engineer must
decide where the greatest risk to security lies, and how to best
address it. In some cases, this will mean a breadth-first approach
in which system security properties are divided into the
responsibilities of many different objects, in order to determine
whether a “weak link” exists before committing more resources to
the precise analysis of any one component. In other cases, a
depth-first search might be required, constructing an argument
that provides confidence that a single component will be able to
meet its stated requirements before a system-wide solution that
depends on that component property can be designed. In some
cases, formality might be applied immediately; in others a rough
proof sketch might suftice as evidence that a more formal proof
will be possible at a later point in the process.

Lemmas. Complicated mathematical proofs are often structured
as a series of lemmas. Each lemma represents a manageable part
of the proof. Each is established individually, and together they
make the proof of the desired property far simpler. MOATS
accommodate this approach by creating an AND node containing
the final proof, with child nodes for each of the lemmas upon
which it depends.

3.5 Decomposition into Alternatives

The other major form of decomposition is the use of OR-nodes to
represent alternative arguments. For example, if the goal property
is to ensure that a message is transmitted privately, the following
decomposition could be used:

8

. The message is sent over a secure network.

. The message is securely encrypted.

From an entirely formal perspective, OR nodes are never really
necessary. But they have several practical uses:

Reusability. OR nodes can be used to represent design
alternatives. In the example above, the alternative approaches to
demonstrating message privacy rely on different assumptions. An
engineer reusing such an argument would be able to choose the
alternative that better matched the assumptions of the target
environment. Such flexibility makes the resulting arguments
more suitable for reuse.

Flexibility. In the above example, the decision of whether to
encrypt or rely on a secure network does not have to be made
globally. Some objects may use one approach consistently; others
may vary according to the nature of the communication. Such
alternatives give the designers flexibility. For example, a given
object might use encryption when communicating over insecure
global channels, but get greater performance by sending messages
in the clear over secure local networks.

Defense in depfh. Engineering is a human endeavor and engineers
are fallible. No matter how well a system (and its supporting
arguments) is constructed, it can still fail. Defense in depth calls
for a more robust system that accommodates failure - both of the
individual components and of the design itself. In the message
security example, this might involve encryption of messages sent
over secure channels. If either one of these provisions fail, the
other can still support the necessary property. While formal
proofs may appear infallible, they are often based on informal
assumptions. Physical security is not something that can be
formally proven. Encryption is based on arguments regarding the
secrecy of keys, which in turn are based on many different
assumptions that might prove faulty. Even in mathematics, we
often see multiple proofs of the same theorem-because proofs,
like MOATS, are not intended to “prove” but rather to convince
the reader [DLP79], and several arguments may be more
convincing than any one.

3.6 Refinement

Refinement permits the engineer to revisit a node and replace the
argument at that node. Typically this would be used to replace an
informal justification with a more formal one. In this manner, an
informal proof argument can be sketched out and then refined
only after there is cause to believe that the general structure is
sound and applicable to the design at hand. Some risks that arise
from changing specifications can be ameliorated by letting the
designer put off the expensive process of proof refinement until
the specification has stabilized.

If a node property stated in an informal notation is replaced with
more formal equivalents, this will possibly impact other nodes
around the one in question. ‘Ihe child nodes may themselves have
to be translated into the more formal notation. Conversely, the
parent of the node being refined may now be refined as well,
taking advantage of the greater formality in the statement of its
child’s property.

There is also the possibility that in refining the argument at a
node, a problem with the less formal version will be uncovered.
While the purpose of the informal argument sketch is to ensure

that this will not cause major difficulties, this cannot be
guaranteed. In the event that a problem arises, there are a number
of possible ways of dealing with this:

. The argument may require additional assumptions, or other
subgoals. In this case additional child nodes can be added.

. The argument may result in a weaker claim than was
previously thought possible. It may be possible to address
this via backtracking.

. The argument may be so flawed as to require replacement of
the entire subtree rooted at that node.

3.7 Backtracking

Backtracking occurs when no argument can be constructed to
justify the property required of a node. This can occur when a
leaf node is initially being considered, or when a node is being
revisited. In such an instance it is necessary to revisit the node’s
parent and perform one of the following:

. Determine an alternative decomposition that does not rely on
the property that cannot be justified. Replace the subtree
rooted at the parent with a new tree, perhaps reusing certain
fragments of the subtree being replaced.

. Add an additional child node to the parent, thereby reducing
the burden of proof on the node in question.

. Amend the property of the parent node so as to reflect a
weaker property that can be established using a weaker
property at the node in question. If this invalidates or
weakens the arguments in the parent node’s parent, the
backtracking process continues with the parent node as the
new node in question.

The backtracking process recognizes that there exists some risk
that verification cannot be achieved as a rational process. The
ease with which a design can have its security properties verified
is only one of the many criteria by which a design can be judged.
In performing this process, the design should attempt to balance
verifiability with other concerns. No matter how much this goal
is pursued, there will be cases where the process must backtrack.

This backtracking also recognizes that the stated security goals for
a system may not be absolute. The stated goals are precisely that:
goals. In performing this process, the engineer will uncover to
what degree the stated security goals constrain the available
design space. When conflict arises between the desired security
goals and other design properties, the engineer will have to decide
which has precedence. Sometimes, security will win out and the
design will have to be modified to permit the stated goal to be
achieved. But sometimes the security goals may have to be
relaxed in order to accommodate other goals. The inclusion of
backtracking in the process provides for both of these alternatives.

This is particularly important in a reuse-centered environment. If
every system is to be built from scratch, it is not unrealistic to
require that a very specific set of security goals be achieved. But
when standard components are being used, the designed will have
to decide whether to adapt the definition of security to match what
can be provided using existing part, or whether the need for a
specific definition of security warrants the creation of novel
components. The scope of this reuse can range from individual
functions in a source code library to complete commercial off-the-

9

shelf software products. The process recognizes the need to adapt
the definition of security to what is viable given the other design
parameters. But it also ensures that the user is explicit about any
alterations of the stated security goals.

3.6 Termination Criteria

This repetitive decomposition and refinement process can in
theory continue indefinitely. In practice, it will be necessary to
stop at some point. Depending on the manner in which this
technique is used, there can be vastly different termination
criteria:

. The analysis can be terminated when the engineers believe
that no sufficiently large threats to security remain. Of
course an outside validation agency might disagree and
require that it be resumed from the point at which it was left
off.

. When the deadline for product deployment is reached, the
analysis can be halted. Alternatively, it can continue
throughout the lifecycle of the product and only halt when
the product is finally retired from active use.

. If a single formal notation is being used, the analysis can
stop when no more analysis can occur because the basic
assumptions have been reached or a uniform degree of
formality in the reasoning process is achieved.

. When resources allocated to the enforcement of security
have been exhausted, the analysis process can halt.

Because of the open-ended nature of this approach, the analysis
may never be “complete” in any meaningful sense. This is by
design. Additional resources can always be added to the analysis,
and the analysis will always apply the resources available thus far
to the greatest security risks. Ultimately, the decision when to
terminate the process will lie in the hands of the engineer.

3.9 Assessment

There are several ways in which MOATS can be assessed. In the
simplest, every leaf can be considered to be either true or false.
Using the Boolean relations described at the interior nodes, the
goal property can be determined to be either true or false. But
such an absolute argument will depend on the assumption that the
leaves are labeled cortectly, and that the arguments at the interior
nodes are correct.

Alternatively, if a user of this method can assign meaningful
quantitative values to the leaves, and establish meaningful ways
of combining these values at the interior nodes, conventional fault
tree solving methods can be used to compute quantitative values
for the goal property. Such quantification is not presently
possible, but it is not precluded by the use of MOATS.

Perhaps the most useful approach to assessment is to simply
examine the arguments at the interior nodes and the justifications
presented for the leaf nodes and decide whether they are
convincing. Some users may require formal proofs. Others may
be more concerned with the arguments that justify the
assumptions. In any case, the method accommodates whatever
technique a given user may require.

The assessment process is actually quite simple. The various
stakeholders simply study the analysis and decide whether or not
they are satisfied that the analysis (a) does in fact reflect the actual

system and (b) demonstrates that the required security property is
enforced. While assessment that depends on human judgment is
quite informal and contains the potential for abuse, there are good
reasons why this approach may be superior to the formal
approach:

It can be used at all phases of the process; not just when
completely formal proofs have been constructed.

It permits a risk-based approach to be taken, where
correspondingly greater efforts are made to address the
greater risks.

It admits probabilistic arguments and arguments based on
effects that are difficult to quantify, such as deterrence.
Many defense mechanisms are not absolutely secure, but are
considered “strong enough.”

It recognizes that no proof is completely formal and that
there is risk in even the smallest element of informality.

Proofs must be convincing. Formal approaches that are not
mechanically checked can hide flawed reasoning behind
inaccessible notations.

4. Analysis of the Method

The MOAT approach represents a considerable change from
conventional approaches to security assessment. As such,
resistance is to be expected. In this section we consider some of
the more troublesome aspects of such a paradigm shift and
attempt to assuage them.

4.1 Imperfect Methods

One of the most common concerns voiced about utilizing different
degrees of formality is that such an approach may well miss
something that a uniform application of formality would have
detected. Much of the effectiveness of formal methods arises
from the fact that they leave no stone unturned. The cost of this
effectiveness is turning over a lot of stones under which nothing
interesting is found.

This is a valid concern. If we knew a priori where all the
ambiguities in an informal specification were, they would not
pose a problem. Formal specifications are effective in part
because they identify areas of ambiguity that were not previously
known to be ambiguous. Formal proofs are effective because they
highlight reasoning flaws that might otherwise have gone
undiscovered. From a theoretical standpoint, the selective
application of formality will always be inferior to a complete
application of that formality.

But this is a bit of a strawman argument. If the costs of complete
application of formal methods preclude their use, then selective
application of those same methods is the only practical
alternative. Arguments are often heard that practitioners should
be using formal methods and that the factors preventing their use
in practice are myths [Hal90, BH94]. But the fact remains that the
mainstream software engineering community has largely failed to
embrace a complete switch to formal methods. Even formal
methods proponents have begun to recognize that the selective
application of those formal methods may be the only viable
alternative [Rus95, CGR9.51.

IO

Furthermore, the MOAT approach does not preclude a completely
formal approach. If the resources are available, a completely
formal approach can be taken. The MOAT approach does attempt
to order the application of these resources, so that:

. Backtracking is reduced.

. Formality is applied where it is most cost-effective, before
being applied to less cost-effective areas.

. Specification, design, and verification can occur
concurrently.

Such an approach provides insurance against the possibility that
resources are exhausted before complete application of formality
is achieved. It is much like the “inverted pyramid” that journalists
follow, presenting the elements of a story in order of importance.
This permits an editor to cut the story at any point and ensure that
the space provided has been used in an optimal manner. Under
the MOAT approach, if security resources are exhausted, those
available have been used in the most cost-effective manner
possible.

4.2 The Potential for Abuse

Another concern about this approach is that it could potentially be
abused. As the method permits the user to decide what degree of
formality should be used, there is no mechanism to ensure that
they will not choose a notation that permits them to sweep the
more difficult details under the rug and claim to have analyzed the
system sufficiently. This may not be malicious - a user of the
method may simply not understand the degree of rigor that is
appropriate to the security risks posed by the system. For these
reasons, it might appear that a more rigorous process should be
prescribed and the decision taken out of the designer’s hands.

Although greater rigor in our processes is certainly a goal, there
are many examples of techniques that are useful in spite (or
perhaps even partly due to) their lack of rigor. Perhaps the most
prominent example is fault tree analysis, used by systems
engineers to reason about safety-critical systems. Fault trees are
the single most important safety assessment technique. The
Nuclear Regulatory Commission uses them to validate the safety
of nuclear reactors. The military uses them to analyze the
detonation systems of nuclear warheads. And Underwriters
Laboratory uses them to analyze the safety of household products.

Yet in spite of their importance, their construction and validation
depends on human insight and experience. One textbook puts it
“construction of fault trees is an art as well as a science and comes
only through experience” and then proceeds to present a list of
general heuristics to guide in their construction [McC81]. Both
rigorous processes and automated software exist to aid in the
automatic construction of fault trees from system diagrams, but
even they are based on insight and experience rather than formal
reasoning [RM83, HK85]. They also require a model of the
system that accurately reflects the component interactions and
environmental assumptions, which in turn is typically validated
using insight rather than logic.

Fault trees strike a careful balance between rigor and flexibility.
They accommodate arbitrary designs and yet exploit reuse of
experience with standard designs. They can be buttressed by
formal reasoning about the accuracy of their construction, or they
can depend on appealing to the intuition of the reader. It is up to
the stakeholders in the system to determine what degree of rigor is

required. It is up to them to ensure that the ability to
accommodate different degrees of formality is not abused. That
fault trees have become so popular is a sound argument that
responsible practicing engineers can be entrusted to make these
decisions wisely.

4.3 Generality

The MOATS approach is actually a generalization of existing
formal and informal methods. It does not dictate a specific formal
method and it does not require a single consistent formal
semantics. But that does not stop a user of the method from
opting to use a single existing notation with a single semantic
basis. If a user wants to build a complete formal specification in
Z, the MOATS approach can still provide benefits in that it allows
the various proof sketches to be laid out before the cost of
complete formalization is incurred. Furthermore, it makes the
resulting proofs more accessible, by requiring the user to structure
the analyses in a manner that makes the interdependence of
component properties explicit.

The MOATS approach is not wedded to existing formal notations,
however. It is critical to remember that we do not use formal
methods for formality’s sake alone. Rather, the use of any formal
technique represents a risk-reduction activity. If we view formal
methods as nothing more than risk-reduction techniques, it is
simple to see how formal methods can be adapted to fit into a
risk-driven process model. Consider the following examples of
specification as simply a risk-reduction activity:

Pamas’s specification of the A7 control software showed
how a notation can lack a formal semantics and yet be
tailored to the risks that were anticipated. The input/output
forms captured knowledge about the most common failure
modes in the hardware / software interface. And the tables
represented years of experience with specifying state-driven,
process-control software [Hen80].

The most successful Z specifications take advantage of the
experience gained in using that language to develop large
database systems. Many published specifications
demonstrate the utility of the language and its reusable
toolkit at specifying the high-risk element of these systems -
internal database consistency - while essentially ignoring the
low-risk - the sources of database events and their inputs and
outputs [Hay85].

Specification of GUI systems is performed largely using
screen-painting utilities with which there are no formal
semantics associated. Nevertheless, these approaches
address the key risks of these systems - that they will not be
intuitive or will not meet the customer’s expectations.

The most common specification tools in business are form
and report generation utilities. These are not general-purpose
formal specification languages, but they do have an
(operationally-defined) formal semantics, and they address
the exact risks that the users are concerned with.

All of these examples provide evidence that the important
question is not whether a specification notation is formal enough,
but whether it addresses the key risks.

On a different note, the MOATS approach also appears to be a
generalization of some other work in the area of reuse of security
verification. Frincke [Fri96] discusses the use of design templates

II

with pre-verified security properties. These could be incorporated
directly into the MOATS approach by creating a node that merely
references those arguments and has children representing the
assumptions upon which the reused arguments rely. Spencer
[Spe96] discusses a checklist-approach to the determination of
security requirements. This approach could be approximated in
the MOAT approach by using a node with one child for each
element in the checklist. Each child would then either contain a
rationale as to why it does not apply, or a translation of that
general checklist entry to the specifics of the system in question.
Both of these approaches are claimed to be quite useful by their
authors, and both are accommodated by the MOAT approach.

4.4 The Rational Process

The cost-effectiveness of the MOATS approach will depend on
the user’s ability to choose risks well. With perfect foresight
however, a rational design process [PC861 can be achieved. With
less than perfect foresight, the amount of backtracking required
will depend on the skill of the user at anticipating risk areas. This
is true of evety development methodology - both those that
explicitly acknowledge the role of risk in the development process
and those that don’t. The MOAT approach makes this role
explicit in order to accommodate different development paths.
Ultimately, however, the assessment arguments will either
convince the intended audience or not. The route taken in
developing the assessment arguments will not matter.

This is a critical point. Poor employment of the method will not
permit insecure systems to be mistakenly judged secure. At
worst, the verification resources will have been wasted. But the
assessment arguments will either convince the stakeholders who
are concerned with security, or they will not. Regardless of the
actual process taken, the rational process can be approximated,
and it will be the products of that process that will ultimately be
assessed. The open-ended nature of the MOAT approach does
have the significant advantage of being amenable to additional
justification should the original analysis require strengthening.

Fraser, et al [FKV94] presented a survey of popular formal
specification approaches. In the more general-purpose notations
considered, formal notations were provided without methods for
the elaboration of specifications written in those notations. Users
of these notations are left completely to their own devices when it
comes to actually creating a specification. The specifications
might as well be pulled out of thin air, as far as the befuddled new
user is concerned. The MOAT approach attempts to fill this void
by giving users some guidance as to which parts of the
specification contain the greatest risk and should be considered
early on. Less critical aspects can always be elaborated at a later
point - if at all. MOAT also aids users in helping them structure
their arguments informally before attempting to commit them to a
formal notation.

5. Empirical Evaluation

This approach grew out of our experience in developing the
security model for the Legion distributed system [WWK96]. It
was developed to address the need for organization and
preservation of informal discussions about the security
ramifications of design alternatives. As time progressed, the
approach was modified in order to better meet our needs and to
address its shortcomings.

We report here on some of our experience with using this
approach in practice. Although we attempted to make these

experiments as controlled as possible, there is still considerable
room for experimental error. Some of the more significant
caveats are:

. The approach was only used by a single group - one that
included its developers.

. It was not compared to other assessment methods used on the
same projects.

. The experiments were not numerous or diverse enough to
draw general conclusions.

. The approach evolved during the experiments.

In spite of this, we found the approach to be quite practical. We
present some of the more interesting observations here and leave
it to the user to decide whether these results should be considered
promising. We report here on three specific applications of
MOATS to aspects of the Legion security model. These three
experiments vary considerably in both scope, and formality.

5.1 The Legion Caching Mechanism

One of the key elements of the Legion security model is the May1
function, which is used to define discretionary security for an
object. The May1 function issues licenses that can be cached in
order to enhance performance by exploiting temporal locality in
method invocations. The developers were concerned that the
subtle interactions between cache and May1 might weaken user-
defined security policies in non-obvious ways.

The application of the analysis process to the Legion caching
mechanism produced the following general observations:

.

.

.

.

12

Using the method we were able to determine the precise
criteria for Legion system compliance. Originally we had
intended to create a complete formal specification of the
Legion model and then require that an implementation
conform to the model in order to be considered compliant.
Through this process we were able to trace the required
security property to specific requirements on the Legion
model. Rather than require compliance with all aspects of
the formal model, we can discover and state the specific
properties that must be met in order for a system to be
considered compliant.

The method also demonstrated both the need for and the
utility of backtracking. By starting with a desired security
goal and then relaxing it in order to accommodate design
choices, we were able to precisely derive a reasonable
compromise between security and performance. In this
manner the method provided a valuable distinction between
the security goals we would like to achieve and those that we
can reasonably expect to achieve.

The method was used at a fairly low level to analyze a
specific design. We found the method useful at this level.
We were able to extract specific code-level verification
obligations that could be targeted during the implementation
to follow. If it later proves necessary, these verification
obligations can be used to rigorously verify the code.

This analysis demonstrated to our satisfaction that much of
the benefits of rigor could be achieved without incurring the
high costs of formalization. While risks certainly exist at the

code level, our analysis provides confidence that the basic
design is sound.

5.2 The Legion Delegation Model

The second significant analysis performed using this method was
an analysis of the Legion delegation model. Most every multi-
user system permits programs and users to act on behalf of
another program - most typically to permit a single executable to

have the rights of the user that invoked it. In a distributed system
it can be very difficult to ensure that an object claiming to be
working on behalf of another object really is authorized to
perform the actions it attempts.

Figure 2 presents the skeleton of the argument that resulted after
several iterations and review cycles. The RA refers to the Legion
Responsible Agent - the object on whose behalf an object
invoking a method on target claims to be working.

The claimed RA authorizes any method
target executes on its behalf (8.3)

The claimed RA can be held
accountable for any method target

executes on its behalf (8.4)

The claimed RA cannot be
held accountable for any

method it does not
authorize (8.8)

Method execution by
the target on behalf of

the RA requires an
authorizing certificate

(8.5)

I

1 ’ -
I I

Method execution by If the RA does not If the RA does not
the target on behalf authorize a method, authorize a method,

of the RA requires an the target cannot the target cannot
external leverage possess any possess a certificate

relationship leverage over the RA permitting it (8.9)

--
The method will only be
executed by the target
on behalf of the RA if
permit0 returns true

(8.6)

permit will only return
true if the certifiicate

authorizes the method
invocation (8.7)

permit0 interprets the
wn-“” ’

.,~~
certificate in the same nqj KNOWS rne

manner as the RA (or the
pubuc Kl .I’- ‘-sy of the

1
source of leverage) Rn

permtr snares a
compatible notion of

time with the RA
I I I I I I

I

No object other than
the RA will issue

certificates signed
with the RA’s private

key (8.11)

No other object can
gain illegitimate access

to the private key

The RA and the target
have the same -

interpretation of the
certificate authorizes

relation

[No other object with 1
legitimate access to the
key will use it to issue

certificates

I

1 The “authorization
scheme” as defined
by the nature of the
certificates issued

matches user
expectations (8.10)

Figure 2 - Skeleton of the Legion Delegation Analysis

13

The analysis process was applied to this problem in order to gain
a greater understanding of the issues involved and explore the
tradeoffs between security, performance, and flexibility. A
general model was posited and then analyzed to determine
whether it could hold up under the many demands placed on it,
and whether obvious improvements appeared.

Unlike the analysis of the caching mechanism, which was limited
to a single design, this analysis was intended to be as generic as
possible, accommodating multiple design alternatives. The
analysis of delegation also differed in that it included objects that
could be placed on different hosts, and be created by different
users with different goals. The following results were observed
from this analysis

The method aided in explicitly differentiating between an
intuitive notion of delegation and an enforceable definition
thereof. The user is given a clear understanding of the
relationship between flexibility and enforceability.

In performing the analysis, we discovered that we were able
to replace vague, intuitive notions of “trust” with specific
required properties. We had always believed that “objects
have to trust their host”. This vague requirement was
replaced (for this property) with specific requirements that
hosts not issue delegation certificates on behalf of the object
and that they not permit access to the private key of the
object. Replacing fuzzy notions of trust with specific
requirements in need of assurance was a very useful result.

The method revealed that certain implicit assumptions that
are often made of closed systems are invalidated by the open
Legion environment. In particular, while a given design may
ensure that an object is “willing to take responsibility” for
the actions it delegates, it cannot ensure that the object can
actually be held responsible in any meaningful manner. The
analysis identified the need for some form of accountability
relationship between objects.

The resulting analysis proved very accessible. One engineer
who saw this analysis but was neither familiar with the
system nor a specialist in security was able to see a very
subtle difficulty with issues of time. Once the concern was
raised it was easy to understand the problem. Nevertheless,
this remained a clear validation of the accessibility of the
approach.

The analysis identified several general patterns (heuristics)
that reappeared in later analyses regarding other topics. For
example, the basic alternative of either preventing failure or
detecting failure is something that can be applied in many
contexts. Similarly generic is the notion of using a precisely
defined protocol as an oracle in order to as a means of
moderating between mutually suspicious objects created with
opposing goals.

The analysis only considered those properties that could be
directly traced to the primary goal of enforcing delegation.
One very difficult element of the problem - the problem of
getting expired certificates refreshed - surprisingly was
found to play no role in the analysis. On later reflection this
made perfect sense. But it took the use of a rigorous process
to isolate those elements that are crucial to security from
those that are merely optimizations.

5.3 Legion Mandatory Security

The Legion security model provides mechanisms whereby users
can define arbitrary discretionary security policies. These same
mechanisms can also be used to implement mandatory security
policies over collections of objects. However, these two different
uses of the same mechanisms imply different properties that those
mechanisms will have to exhibit. Initial implementations of the
Legion system will only concentrate on discretionary security.
But it is critical to convince potential users that the basic strategy
for mandatory security is sound. An analysis was performed with
the intent of convincing users that the model could accommodate
mandatory security policies, albeit under later implementations.

The analysis of mandatory security was performed at a high level
and in a very abstract manner. It was significantly different from
the other analyses in that it was intended to demonstrate the
feasibility of proofs under the proposed model. This analysis led
to the following general observations regarding the method:

The analysis allowed covert channels to be considered within
a sysrem context. In particular, the risk of computerized
covert channels was balanced against the risk of sensitive
data being leaked via conventional means. Given this
context, it is hard to justify either restricting functionality or
expending assurance resources against covert channels.

The analysis of mandatory security demonstrated the utility
of the method at accommodating a variety of degrees of
assurance. Different assurance arguments were provided for
the user to choose from. They ranged from the conventional
“either it can be made completely secure or it should not be
built” variety to less easily quantified arguments concerning
the difficulty of penetrating a given site and the deterrent
effects of threatened detection. The method proved flexible
in accommodating both ends of this spectrum.

Like the delegation analysis, this analysis demonstrated the
utility of the method in replacing vague definitions of trust
with specific component obligations

The mandatory security analysis effectively uncovered
certain elements of the design that will be key to future
verification efforts. In particuktr, it was discovered that later
analyses would depend heavily on certain ordering
restrictions being placed on the Legion protocol stack.
Armed with this knowledge, the designers can work around
these verification needs without constraining the design
space unnecessarily.

The mandatory security policy made clear that the ability to
enforce a mandatory policy will depend heavily on how that
policy is defined. In particular, a policy defined in terms of
raw message traffic is much easier to enforce than one
defined in terms of method invocations, but is also far less
expressive. The application of this method reveals these
tradeoffs before requiring a lot of investment in formal
notations.

This analysis was initially quite informal. But the areas of
greater risk were explored in greater detail. Here risk is
considered to be the concerns of potential customers. We
were able to construct the analysis in an iterative manner,
focusing resources on the areas where customers were most
skeptical. The open-ended nature of the analysis proved
quite valuable, in that the appropriate degree of rigor could
be converged on rather than having to be selected a priori.

14

6. Conclusions

From both our analytical consideration of the method and our
initial empirical evaluation, we can draw some early conclusions.
They are grouped into the following broad categories:

l As a medium for communication. MOATS have proven
themselves very useful in this area. They isolate the essential
arguments from all of the supporting notational concerns.
This makes these arguments more accessible both to
developers and to other stakeholders in the system. The
precise documentation of the relationship between
component properties and system-level security allows
developers of these components to understand exactly their
role in ensuring security and the ramifications of their
decisions.

. As part of a risk-based process model. We have empirically
observed MOATS to be useful at all phases of the software
lifecycle. Unlike many other formal techniques, MOATS are
flexible enough to adapt as the software requirements
inevitably change. MOATS have even proven useful at
uncovering potential conflicts in requirements, and thereby
facilitating the negotiation of a reasonable compromise.
Finally, the open-ended nature of the process means that the
analysis can be constructed in a manner that is both
responsive to feedback and ensures that verification
resources are applied in the most cost-effective manner
possible.

. Reusability. We have found the MOAT methodology to be
amenable to the reuse of knowledge in the form of general
heuristics. The notational flexibility has also made it easy to
reuse more substantial analyses. And because of the explicit
identification and separate justification of assumptions, reuse
of parts of existing analyses has proven possible. We also
believe that other work in the area of reuse of security
analyses demonstrates the viability of this more general
approach. Still, considerable more work has to be done in
order to draw any stronger conclusions in this area.

. As a vehicle for exploration. Clearly, it is difficult to claim
that the things we found using this approach wouldn’t have
been found using any other approach. It is difficult to
separate the abilities of the users from the utility of the
method. Some of the things we uncovered were clearly due
to moments of inspiration. Nevertheless, we find this
approach to be extremely promising. As with any formal
method, the moments of insight occurred as a result of
attempting to document formerly vague ideas. However, in
contrast to other formal approaches that we have used, the
MOAT approach encourages the user to find the degree of
rigor that is most suitable to each aspect of the problem at
each point in the design process. The straightjacket of
conventional formal methods is thereby replaced with a
much more comfortable alternative. And any approach that
users find practical will be more effective than one that is left
on the shelf because it isn’t quite right and isn’t flexible
enough to be altered.

Acknowledgements

We are grateful to Worthy Martin, John Pfaltz, Kevin Sullivan,
Carl Landwehr, and Cathy Meadows for insightful and
constructive feedback on this work. This work was partially

supported by DARPA (Navy) contract # N66001-96-C-8527 and
DOE grant DE-FD02-96ER25290.

References

[BH94] Bowen, J., M. Hinchey, “Seven More Myths of Formal
Methods,” Oxford University Computing Lab,
Technical Report PRG-TR-7-94, June 1994.

[Boe88] Boehm, B., “A Spiral Model of Software
Development,” IEEE Computer, May 1988, pp. 61-72.

[Bos95] Boswell, A., “Specification and Validation of a Security
Policy Model,” IEEE Transactions on Software
Engineering, Vol. 21, No. 2, Feb. 1995, pp. 63-68.

[CGR95] Craigen, D., S. Gerhart, and T. Ralston, “Formal
Methods Reality Check: Industrial Usage,” IEEE
Transactions on Software Engineering, Vol. 21, No. 2,
Feb. 1995, pp. 90-98.

[Cor89] Cornwell, M., “A Software Engineering Approach to
Designing Trustworthy Software,” Proceedings of the
IEEE Symposium on Security and Privacy, Oakland
1989, pp. 148-156.

[DLW9] DeMillo, R., R. Lipton, and A. Perlis, Social Processes
and Proofs of Theorems and Programs,
Communications of the ACM, Vol. 22, No. 5, May
1979, pp. 27 I-280.

[Fet88] Fetzer, J., “Program Verification: The Very Idea,”
Communications of the ACM, Vol. 3 1, No. 9, Sept.
1988.

[FKV94] Fraser, M., K. Kumar, and V. Vaishnavi, Strategies for
Incorporating Formal Specifications in Software
Development, Communications of the ACM, Vol. 37,
No. 10, Oct. 1994, pp.7486.

[Fri96] Frincke, D., Developing Secure Objects, Proceedings of
the 19@’ National Information Systems Security
Conference, Baltimore Maryland, October 1996, pp.
410-419.

[Ha1901 Hall, A., “Seven Myths of Formal Methods,” IEEE
Software, Vol. 7, No. 5, Sept. 1990.

[Hay851 Hayes, I., “Applying Formal Specification to Software
Development in Industry,” IEEE Transactions on
Software Engineering, Vol. SE-II, No. 2, Feb. 1985,
pp. 169-178.

[Hen801 Heninger, K., “Specifying Software Requirements for
Complex Systems: New Techniques and their
Application,” IEEE Transactions on Software
Engineering, Vol. SE-6, No. 1, Jan. 1980.

[HK85] Henley, E. J. and H. Kumamoto, Designing for
Reliability and Safety Control, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1985, pp. 407 - 458.

15

[Kern901 Kemmerer, R. A., “Integrating Formal Methods into the
Development Process,” IEEE Software, Sept. 1990, pp.
37-50.

[McC81] McCormick, N. J., Reliability and Risk Analysis,
Academic Press, San Diego, California, 1981, pp. 154-
228.

[PC861 Parnas, D., P. Clements, “A Rational Design Process:
How and Why to Fake It,” IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, Feb. 1986.

[RM83] Roland, H.E. and B. Moriarty, System Safety
Engineering and Management, John Wiley and Sons,
New York, 1983, pp. 215-271.

[Rus95] Rushby, J., “Formal Methods and their Role in the
Certification of Critical Systems”, SRI-CSL-95-01,
January 1995. http://www.csl.sri.com/csl-M-l.html

[Spe96] Spencer, R., Deriving Security Requirements for
Applications on Trusted Systems, Proceedings of the
19’ National Information Systems Security Conference,
Baltimore Maryland, October 1996, pp. 420-427.

[WWK96] Wulf, W. A., C. Wang, and D. M. Kienzle, “A New
Model of Security for Distributed Systems”,
Proceedings of the New Paradigms in Security
Workshop, Lake Arrowhead, California, 1996.

16

