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Abstract 

So far tamper-resistance has been considered as a prop- 
erty such as information stored in (I device is hard to 
read or modify by tampering. Such tamper-resistance is 
quite important in many situations: superdistribution, 
electronic commerce systems using IC card, pay tele- 
vision systems with decoders containing secret values 
for descrambling image and so on. Tamper-resistance 
ensures proper operation of a program and prevents ex- 
traction of secret data and abuse of the program. More- 
over, tamper-resistance enables a vendor to enforce his 
own conditions upon users. 

A new notion of tamper-resistance is stated as follows. 
Tamper-resistance means a property such as informa- 
tion stored in a device or software is hard to read or 
modify by tampering. A tamper-resistant device is usu- 
ally expensive and not easy to handle compared with its 
realization in software. It is better to achieve tamper- 
resistance without relying on any physical device. 

Meanwhile, intellectual property rights for a software 
program can be easily violated once an attacker analyzes 
the algorithm of a target program. The attacker can 
create a distinct program which looks quite different 
but functions just as the target program does. It is 
very important for software programs to be protected 
from any reverse engineering and manipulation. 

From these observations we study methods to gener- 
ate a tamper-resistant code and explain an elementary 
tool, aO/fl/f2/f3. It replaces and shuffles operational 
codes or inserts reproductive dummy codes in a pro- 
gram so that t,he output becomes hard to read. After 
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these processes, an attacker conducting algorithm anal- 
ysis becomes confused by a resultant program posscss- 
ing unrelevant and irregularly ordered information. Re- 
garding the degree of tamper-resistance, we are still at 
an elementary stage, but experimental results indicate 
generated codes have become harder to read. 

1 Introduction 

So far tamper-resistance has been considered as a prop- 
erty such as information stored in a device is hard to 
read or modify by tampering. Such tamper-resistance 
is quite important in many situations. An example is 
a pay television system. Receivers of the pay television 
system need to buy a decoder of scrambled image. This 
decoder includes a secret key inside, which is used di- 
rectly or indirectly for decoding scrambled image. No 
company wants illegal receivers to extract and change 
the secret key and to watch its programs for free. There- 
fore, the secret key should be protected from observa- 
tion and modification. 

A similar situation occurs in superdistribution 
(MK90]. The superdistribution is a way of distributing 
software or digital contents, and a software company 
charges users for each use of software rather than sell- 
ing an entire software product. The software company 
should properly count the use of software and prevent il- 
legal use. The proper operation of the superdistribution 
system, including enforcement of the conditions set by 
the software company upon users, is ensured by tamper- 
resistant devices. Such a tamper-resistant device is s- 
tored for instance in user’s comput,er as a coprocessor. 

IC card is another example. Some of electronic cash 
systems using IC cards, e.g. Mondex system, reside 
their security on the tamper-resistance of IC cards. It 
is also popular to use IC card for user idcntitication. 
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In either case, embedded secret information should be 
protected. In general, tamper-resistant IC cards are 
often used in electronic commerce. 

In the Escrowed Encryption Standard (EES) 
[NIST94] proposed by the American government, an en- 
cryption algorit,hm called Skipjack and other unknown 
encryption algorit,lims are stored in a tamper-resistant 
Clipper Chip. A rrlcssagc in t,he EES is encrypted by the 
Skipjack with a session key and the session key is em- 
bcdcled in t hc: Law Enforcement Access Field (LEAF) in 
a11 encrypted form. An authorized investigator extract- 
s the session key from the LEAF and conducts a legal 
wiretapping. The LEAF is computed from the session 
key and the other values, family key, device unique key 
and device unique identifier, by utilizing the unknown 
algorithms (possibly including t,he Skipjack algorithm). 
These device unique values are stored in the Clipper 
Chip. These values, the unknown algorithms and the 
Skipjack algorithm should not be manipulated by user- 
s. Otherwise, the investigator may fail to recover the 
session key or to decrypt, the ciphertext. For successful 
wiretapping, it is necessary that the LEAF is created by 
the fixed algorithm and that the device unique values 
are really related to a clipper chip whose communication 
the investigator tries to wiretap. A tamper-resistant de- 
vice achieves the protection of stored algorithms and da- 
ta. In the similar context, if Trusted Third Party (TTP) 
is realized by a tamper-resistant device, its proper be- 
havior is ensured by non-manipulation of the device, 
and user’s non-deviation from determined operation is 
ensured by the difficulty of reading secret values used 
by the TTP. 

Although a tamper-resistant device is quite effective 
for the protect,ion of algorithms and data, consider- 
ing cost performance and ease of handling, it is bet- 
ter to achieve the tamper-resistance without using any 
physical device. Therefore, it is important to broad- 
en the notion of tamper-resistance. In a new notion, 
tamper-resistance means a property such as information 
stored i71 a device or software is hard to read or mod- 
ify by tampering. We discuss techniques of generating 
tamper-resistant software which protects software algo- 
rithms and prevents an attacker from illegal use of soft- 
ware packages [MMOU95, MMOU96, Mura96, h1097, 
MTT97]. Such secure software is resistant to reverse- 
engineering and keeps an eIlcryptiorl/tlct:ryplion algo- 
rithm or dat,a secret. 

In this [)i1[)(‘1. the coIlc:Cpt and the iml)ort,ance of t,lle 
t,anlgcr-resist;lrit, code are clarified and an elcmt!ritary 
construction for gcncrat,ing such code is shown. Her<: n-c 
focus on assembly level. But that does not, mean hi&:1 
lcvc~l support is III~I~:css~~~~ for securing software. Work 
at, higher lcvc~l, i.e. at, source level, is also important, 
ant1 Mill be discussed iu the fut,ure papers. As another 
tiirc~ct.ion of rcsc~arch and clt~vc~lo~~~~ic~~~t,, we can combine 

software-only approach with hardware-only approach. 
However, this alternative approach is not discussed in 
this paper, either. 

After the introduction, we discuss effects of tamper- 
resistant software in Sect.2. Then we show what kind 
of program is hard or easy to read in Sect.3. Methods 
used to generate an elementary tamper-resistant code 
are shown in Sect.4, and their concrete constructions 
arc given in Sect.5. From the experimental results de- 
scribed in Sect.6, we are convinced that a code becomes 
harder to read than without the tamper-resistant coding 
operation. Concluding remarks are described in Sect.7. 

2 Effects of tamper-resistant 
software 

The tamper-resistant software is expected to be sub- 
stituted for the tamper-resistant device in most of the 
situations described in the introduction. If the same 
level of tamper-resistance is achieved in software as in 
device, both a maker and a user of tamper-resistant soft- 
ware can get benefit of low cost performance and ease 
of handling. 

One application of the tamper-resistant software is 
software agent. Whenever a software agent moves to a 
domain managed by other party, it is under threat of 
being captured. A captured agent may be scrutinized, 
and secret information the agent carries may be stolen. 
Or the agent is modified so that it is abused by the par- 
ty. The network-type agent should be protected from 
observation and modification. 

In mobile computing a computing device could be 
lost, and important programs or data would be known 
by its finder. As long as a program has a tamper- 
resistant form, it is not revealed even if the computing 
device is lost or stolen. 

In the meantime, our approach has something to do 
with intellectual property rights. IntelIectual property 
rights of a software program can be compromised once 
an attacker analyzes the algorithm of a target, comput- 
er software program. The attacker can create a dis- 
tinct program which looks quite different but functions 
just, as the target program. He may also create com- 
puter viruses, worms or Trojan horses [Ska96] which 
hack various software tools, software applications and 
OS 1)rograms. Without doubt, these problems preven- 
t the so11nd growth of a highly computerized society. 
Soft,\\-arc must be protected from reverse engineering. 
‘I‘;llrll)er-I-esist,allc:c of softlvare will provide such protec 
tioii. 

Tliorc a~‘(’ several iterrls to b(a l)r’ot ect,ecl in a softn.arrl 
l)ackage, i.e. the program code, image in the display 
iLIl(l the algorithm itself, and different tyl)es of legal 
measures apply to t,lieni. In IJ.S.;\., the former t.wo 



items are protected by the copyright law and the last 
one is protected by the Patent Act [Rem82]. On the 
other hand, it is very difficult in some countries to get 
a patent for an algorithm used in a software package. 
The algorithm is not patented without clear relation to 
the physical property of a physical device. In contrast, 
a tamper-resistant code protects an algorithm of a pro- 
gram even without any relation to the physical property 
of a physical device. 

Concerning the copyright of a program, it can be pro- 
tected by combining our approach with an authentica- 
tion system or a copy-protect system. Once the authen- 
tication routine or the copy protection routine is discov- 
ered and analyzed, it may be circumvented easily. But 
if a part of the program for the authentication system 
or a part of the program for the copy-protect system is 
made hard to read by a tamper-resistant coding oper- 
ation, then it becomes harder to find out where such a 
program part exists in a program. Therefore, an attack- 
er cannot forge a signature or disqualify the protective 
operation. Since there are not many effective techni- 
cal measures for protecting software package items, a 
tamper-resistant code may become a strong candidate 
for attaining the protection of software packages. 

3 Programs that are hard to an- 
alyze 

3.1 Necessary conditions 

In this section we discuss the kinds of program that are 
hard to analyze. If an algorithm of a program itself 
is complicated, then there is no doubt that the pro- 
gram cannot be easily analyzed. Then our question is 
what is the property of a program that possesses a less 
complicated algorithm and is hard to analyze. In order 
to proceed our discussion, let us consider what kind of 
steps we will take when we try to create a program op- 
erating similarly to an original program. Obviously, we 
try to find an algorithm of the target program. Using 
the given algorithm, we create a modified program with 
better performance or a distinct program with the same 
functionaiity as the original. 

The other property of a program that is hard to ana- 
lyze is that, one cannot, easily find a module of instruc- 
tions. For instance, what is our strat,egy to void the 
cop>--protect, mechanism of a software program? NO one 
wants to check the operation of all parts of the program. 
It is enough to find a module for a copy-protect routine 
out of the entire program and to simply change a func- 
tion call for the routine. In this sense, the place of the 
top and the bottom of a module is important informa- 
tion for the program analysis. 

Therefore, a hardly analyzable program satisfies the 

following property as a necessary condition: 

l It is uneconomic to guess an algorithm of a given 
code. In this category, we include a program with 
a complicated algorithm. 

This property includes a condition such as it is imprac- 
tical to guess the place of a module in a given code. 

At a primary stage of our tamper-resistant code 
project, we attempt to generate a hardly analyzable 
program without modifying an original algorithm. 

3.2 Properties 
program 

An easily analyzable 
properties: 

of an easily analyzable 

program possesses the following 

. 

. 

. 

3.3 

The top and the bottom of a module are clearly 
determined. 

Instructions and registers follow an ordinary rule 
of a programming, or a distinctive pattern is found 
in a program. 

The data structure is easily known. 

Properties of a hardly analyzable 
program 

Contrary to the above properties, a hardly analyzable 
program possesses the following properties: 

l The top and the bottom of a module are ambigu- 
ous. 

l A program code does not have a distinctive pattern. 

l The data structure is unknown, and no consistency 
is found in a data sequence. 

4 Methods to generate an ele- 
mentary 
code 

tamper-resistant 

4.1 Basic techniques 

In order to generate a tamper-resistant code, we aim at 
converting any instruction pattern useful for program 
analysis, such as idiom, into unanalyzable instruction 
pat,terns without, changing an original algorithm. There 
are several approaches to generating such a tamper- 
resistant software program. First, instruction streams 
are irregularly ordered. Second, dummy codes are in- 
serted. Finally, a program is formed by a self-decrypting 
program. The last approach is closely related to the be- 
havior of polymorphic computer viruses. In this paper, 



we mainly discuss how to make instruction streams hard 
to understand and how to use dummy codes. 

The method to make an instruction stream hard to 
understand consists of two operations. One is a re- 
place operation of specific instructions, and the other 
is a shuffle operation of instruction stream. The replace 
operation replaces a complicated operational instruc- 
tion, such as ‘jsr’ used for function call, with multiple 
simple instructions. The shuffle operation shuffles in- 
struction streams. An easily understandable program 
code has a simple instruction structure which one can 
intuitively follow. In other words, there are basic rules 
of programming, and when one reads a code stream, we 
follow these rules without recognizing them. A complex 
instruction stream can be separated into several sets of 
instructions depending on their meaning. These cate- 
gories are considered to be one of unobservable rules. 
The replace or shuffle operations make the partition of 
instruction sets unclear and a produced code does not 
look like following the rules. Thus the code becomes 
harder to read. 

4.2 Importance of optimization 

In addition to the operations described in Sect.4.1, we 
should optimize redundant instructions. Redundancy in 
a code helps one to read a code. Redundant instruction 
optimization removes these redundancies. 

In general, a tamper-resistant code generating pro- 
cess should be non-reversible, or if it can be reversed, 
the reverse operation should be time consuming and 
expensive. Because otherwise, an attacker can easily 
recover an original program at a low cost. 

Depending on an optimization process and an origi- 
nal program code, the original program becomes either 
harder or easier to read after the optimization. Even so, 
an optimized code is composed of simple instructions 
sets so that it leaves less information to the attacker. It 
is considered that converting an original program into 
an optimized code is easy and the the opposite conver- 
sion is difficult. In other words, the optimization process 
is expected to be non-reversible. Hence, we should first 
optimize an original program in order to get rid of in- 
formation useful for algorithm analysis. Afterwards, WC 
should esccute replacement, shuffling or dummy code 
insertion. 

4.3 Scrambled instruction stream 

We use the following rules: 
1) To construct a program using only the most fun- 

damental instructions, e.g. add, mov, jcc, jmp, or, and, 
x01‘, etc. 

2) To optimize codes and, a.ccordingly, to shuffle op- 
timized instructions. 
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Original 
jsr sub-r 
.imp step 

After replacement 
add $49~ ii=-(l) 
mov $sub-r - 156,-4(sp) ;jsr(2) 
add $156,-4(sp) iisr(3) 
mov $1 - lOO,(sp) ;.isr(4) 
add $lOO,(sp) ;.isr(5) 
jmp -4(sP) ;.br(6) 

1: mov $step + 135,-4(sp) ;jmp(l) 
add $-135,-4(sp) ;.iw(2) 
jmp -4(sP) ;jmpGU 

After replacement and shuffle 
add $-4,s~ ;.isr(l) 
mov $1 - lOO,(sp) ;.id4) 
mov $step + 135,-8(sp) ;jmp(l) 
add $lOO,(sp) ;.isr(5) 
mov $subr - 156,-4(sp) ;jsr(2) 
add $156,-4(sp) ;.isr(3) 
add $-135,-8(sp) ;jmpP) 
jmp -4(sP) ;jsr(f-3 

1: jmp -12(sp) ;jmpP) 

By these operations, patterns of a program are erased, 
and the frequency of the use of sources, e.g. the frequen- 
cy of the use of a register, becomes more uniform. Due 
to the optimization, the recovery of an original code 
becomes difficult. 

3) Immediate values are not used. 
In Table 1, an intuitive example’ of conversion is 

shown based on these conversion rules. Since instruc- 
tion jsr and instruction jmp can be constructed both by 
jmp, it is not clear whether there is a function call or a 
branch. 

4.4 Dummy codes 

There are two types of dummy codes. One is a fresh 
dummy code shown in Figure 1 and the other is a re- 
productive dummy code shown in Figure 2. In order 
to preserve an original operation of a code the effect of 
inserted fresh dummy codes has to be nullified, e.g. the 
use of a pair of ‘add’ and ‘sub’. The fresh dummy code 
does not escessircl:; depend on 3 target program code. 
If a generated dummy code is simple, it may br removed 

1 Nore that this example is not produced from our program but 
written by hand. In case of the code sequence wibh replacement 
and shuffle, addresses on stuck may be destroyed depending on 
behavior of a routine program. Stuck pointer should bc moved 
into other place. 



/- 
original code- 

push1 %ebx 
movl %eax,%ebx 
shl $1 ,%ebx 
add1 %ebx,%eax 

POPI %ebx 
leave 
ret 

-dummy code inserted 

push1 %ebx 
movl %eax,%ebx 

.. incl. ” ~/&cx-.:..: 

shl $1 .%ebx 

.’ subt %ecx,%sw 
add1 ‘.... %ebx,‘beax 

,addl ... $-l.p/oecx.:. 
:,: :. addl : : %eoc,y+iiax,: 

:. a& $!,%eti 

POP1 %ebx 

leave 
ret 

Figure 1: Example of fresh dummy code 

I- 
original code 

I 
push1 %ebx 
movl %eax,%ebx 
shl $1 ,%ebx 

-dummy code inserte 

“1 

push1 %ebx 
movl %eax,%ebx 

shl $1 ,%ebx 
add1 %ebx,%eax .: 

I I 

: jc : : :. :: L .: .f : ‘y:,:::::f,:,:::,:., 

POPI %ebx add1 %ebx,%eax I 
leave 
ret I I 

POPI %ebx 
leave I 

-AI ret I 
,::.;+lign’ 2 
L: :y;;.~.:; .:.. ..I 

:.::.?:: 

.:. .add::. .:: O&x Max :. ? 
:::::::.p4P1:.:.~:..%~bx .: J .;. 
.:.‘.I leave .. ‘,I. .:.;:.:.:.;. : 1.. 
. . ‘. :. :. ::. :: ‘.‘.‘.“. 
. . . . ..(et’..... .:; :. 

Figure 2: Example of reproductive dummy code 

by the optimization. Hence, a fresh dummy code should 
be complex enough to avoid optimization. 

Reproductive dummy code operations generate a 
dummy code which is a copy of a part of an original 
code and inserts a conditional branch instruction into 
the original code. The reproductive dummy code works 
the same as the original code does. Thus, it is more 
likely that a program analyst will mistakenly identify 
the reproductive dummy code as the original code. But, 
if we apply only a reproductive dummy code operation, 
it ci\n be easily found out by simply observing the germ- 
erated program code. Therefore, we should apply re- 
productive dummy code operations together with the 
replace operation, the shuffle operation and the fresh 
dummy code operation. 

In this paper, we examine only a reproductive dummy 
code operation among the dummy code operations. 

According to the occupation of registers, 
a shuffling area is determined for each block 

for(i=l;i<No. of lines;i++){ 
if(Can i be reordered?){ 

Search an area for shuffling-j. 
j -Determine reordered line-j. 

Move line i just before line j. 
1 

1 

Figure 4: A shuffling algorithm 

5 Tools for generation 

We show programs aO/fl/f2/f3 which automatically 
generate an elementary tamper-resistant code of a.n o- 
riginal gee assembler code. These programs are created 
by using yacc, lex and c languages. 

l a0, pre-operation, analyzes register information 
and outputs the register information followed by 
remarks. 

l fl, replace instruction operation, replaces a compli- 
cated operational instruction with multiple simple 
operational instructions. 

l f2, shuffle instruction stream operation, shuffles an 
instruction stream. 

l f3, insert dummy instructions, inserts reproductive 
dummy instructions into a target program. 

a0 is a register analysis program and supplies infor- 
mation on free registers in the original code. fl replaces 
complicated operational instructions according to infor- 
mation supplied by a0. Several replace operation rules 
are prepared. fl applies one among these replacement 
rules to a target instruction at random. f2 shuffles in- 
struction streams according to information supplied by 
a0. As shown in Figure 4, f2 decides the shuffle areas in 
a target program and shuffle patterns at random. For 
each i, f2 checks whether the line i is moved into the line 
j. j is determined at random from a region less than t,he 
maximum value of j. f3 is an automatic reproductive 
dummy code insertion tool. First f3 discovers a possible 
part of the program as the reproductive dumm>- code. 
Then it produces and inserts the reproductive dummy 
code. These procedures are repeated at a predetermined 
number of times. So the same part is recursivcl)- repro- 
duced at maximum by this predetermined number of 
times. The usage of these programs is as follo\vs. 

cat [in] 1 a0 1 f3 1 a0 1 fl 1 a0 1 f2 > out 

These procedures are shown in Figure 3. 
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I I 
a0 regtster analysis 

s 
a0 register analysis 

-8 

I 

8 

it! 
z I 

8 

ii? 
z 

f3 dummycode 

I 

fl 
replace 
optimize 

I 

Figure 3: A use of tools 

Table 2: Program size and execution time 
1 Assembler lines Executable prog. size Execution time 

Original 484 lines 41471 
After replacement 

bytes 58.83 sec. 
510 lines 41471 bytes 58.91 sec. 

After replacement* 738 lines 41471 bytes 59.28 sec. 
*...with dummy codes 

6 Experimental results 

6.1 Experiment 

In our experiment an encryption/decryption program 
SAFER.C [Mass93] . IS compiled by gee and an output 
assernbler code is processed by the tools explained in 
Sect.5. A reproductive dummy code is inserted 7 times. 
The target machine is an Intel 80386. 

6.2 Program size and execution time 

Table 2 shows the size of a converted assembler file, the 
size of a obfuscated executable program and the execu- 
tion time of the executable program. As the execution 
time, the time of the encryption of a 14.5M byte file is 
measured. 

Without dummy codes, the assembler lines have in- 
creased by about 100 lines. This is because a complicat- 
ed instruction related to function call has been replaced 
by multiple simple instructions. 

LVith dummy codes, the assembler lines has increased 
by about 2.50 lines. On top of the replacement of the 
complicated instruction, generat,ed reproductive dun- 
my codes make the line longer. 

-411 interesting result is that the size and the execution 
time of the obfuscated executable program are alrnost 

a0 register analysis Q 

the same as that of the original executable program. 
These two executable programs are not the same. They 
actually have 54.6 % different lines between them. We 
presume the result on the size and the execution time is 
caused by the following reasons. The most part of the 
executable program may stem from a link library. In the 
general compilation process, an object code is generated 
after assembler process. Then the link library is linked 
to it and the executable file is created. Our tool ma- 
nipulates the assembler code and these process do not 
affect the link library. The reasons for the similar exe- 
cution time may be that a device access in the SAFER 
encryption operation takes much of the time, that a 
simple instruction is faster than a complex instruction 
and that duplicated redundant codes are removed by 
the optimization. 

6.3 Distribution of opcodes 

Fig.5, 6 and 7 show the distribution of opcodcs in an 
assembler program. We can observe the bottom (or the 
top) of functions at opcodes ret, leave, push and pop 
before the filtering operation (Fig. 5). But these phe- 
nomena disappear after the filtering operation and it 
becomes hard to find the bottom (or the top) of func- 
tions (Fig. 6,7). In the generated code the total number 
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of used opcodes is reduced and the opcodes mov and add 
are more frequently used (See also Table 4). 

6.4 Code patterns 

If a set of consecutive opcodes works as a command, 
such code pattern could give useful information to a pro- 
gram analyst. It is presumed that the analyst may ob- 
tain some information from a long code pattern whether 
it frequently appears or not. On the other hand, a short 
code pattern may have less meaning as a program analy- 
sis if it frequently appears, and it may have some mean- 
ing if it rarely appears. 

The number of appearances is accumulated for al- 
l code patterns with a certain length and it is shown in 
Table 3. Before the filtering operation, there are code 
patterns with the length from 2 up to 31. By the filter- 
ing operation, long code patterns have disappeared and 
the maximum length of code patterns becomes 22 and 
23. Both with or without dummy codes, the number 
of appearances of shorter code patterns have increased 
and the number of appearances of longer code patterns 
have decreased. The replacement operation, the shuffle 
operation and their combination with the optimization 
operation result in the increase of shorter instructions. 
On the other hand, because of the reproductive dum- 
my code, for each match length there are more matched 
patterns in codes with the reproductive dummy code 
than in codes without it. Hence, it is considered that 
produced codes give less information than before the 
filtering operation. 

6.5 Clustering of opcodes 

The more uniformly each opcode distributes, the harder 
the program analysis becomes. As discussed in Sect.6.3, 
an program analyst cannot find the bottom of a func- 
tion in uniformly distributed opcodes. Table 4 shows 
how each opcode are clustered in a program. The num- 
ber indicates the maximum percentage of each type of 
opcode as they move through a window of a certain 
length. This length is set to be l/10 of the length of 
the total assembler list. A large value means an opcode 
are clustered in a small region. We can observe that 
opcodes are less clustered after the filtering operation. 
PUSH, POP, LEAVE and RET are removed after the 
operation. The number of appearance of ADD, MO\’ 
and JMP are increased and their percentages are down. 

On the other hand, there is no prominent difIerence 
between the case with and the case without the repro- 
ductive dummy code. 

From the esperimental results shown in this section: 
our tentative tools aO/fl/f2/f3 are effective in making a 
program hard to understand. 

Table 3: Code patterns with a certain length 

2 length match 
3 length match 
4 length match 
5 length match 
6 length match 
7 length match 
8 length match 
9 length match 

10 length match 
11 length match 
12 length match 
13 length match 
14 length match 
15 length match 
16 length match 
17 length match 
18 length match 
19 length match 
20 length match 
21 length match 
22 length match 
23 length match 
24 length match 
25 length match 
26 length match 
27 length match 
28 length match 
29 length match 
30 length match 
31 length match 

Before After AfteF* 
274 283 446 
186 
121 
84 
57 
44 
32 
24 
20 
14 
13 
11 
9 
8 
5 
5 
4 
4 
4 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

189 
115 
77 
47 
35 
23 
15 
20 
11 
6 
4 
4 
2 
2 
2 
2 
2 
2 
2 
2 

288 
188 
124 
85 
60 
46 
33 
26 
22 
16 
13 
11 
11 
7 
6 
6 
4 
4 
2 
2 
2 
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ADD 
SUB 
DIVL 
INC 
DEC 
AND 
OR 
XOR 
SAX 
ROX 
LEA 
MOV 
MOVZX 
CMP 
JCC 
JMP 
PUSH 
POP 
LEAVE 
RET 

Table 4: Clustering of opcodes 

Before After After* 
64 % ( 39) 37 % ( 67) 32 % ( 86) 
60 % ( 41) 67 % ( 37) 69 % ( 42) 

(1) 100% ( 1) 100 % ( 3) 100 % 
40 % ( 32) 43 % ( 32) 47 % ( 34) 
52 % ( 25) 36 % ( 25) 53 % ( 32) 

100 % 
;:; 

100 % (2) 1 00 % ( 2) 
100 % 100 % (1) 1 00 % ( 1) 
25 % ( 28) 25 % ( 28) 22 % ( 35) 
50 % ( 2) 50 % ( 2) 50 % ( 2) 

100 % ( 3) 100 % (3) 1 00 % ( 3) 
63 % ( 11) 63 % ( 11) 41 % ( 17) 
15 % (220) 16 % (254) 14 % (397) 
38% (21) 38% (21) 36 % ( 25) 
45% (11) 45 % ( 11) 40 % ( 15) 
45% (11) 45 % ( 11) 27 % ( 29) 
50 % ( 2) 33 % ( 6) 26 % ( 15) 
46 % ( 15) - 
27% (11) - 
25 % (4) - 0 - 

ij 

25 % (4) - 0 - 0 
*...with dummy codes 
( )... No. of appearance 

6.6 Security 

We have only shown several evidences of security of our 
approach. Because of lack of security proof, our ap- 
proach may be regarded essentially as security through 
obscurity. It itself is of our interest whether we can 
prove security of our approach. But even without proof, 
we can claim the following points. 1) Although most 
security people usually disapprove of security through 
obscurity, a reference [Bla96] calls for security based on 
inherent properties of systems, and really lists the ob- 
scurity as one of these inherent properties. 2) Since 
hardware is expensive and key distribution for cryptog- 
raphy is not easy, almost all copy protection and soft- 
ware license management schemes are based on security 
through obscurity. 

7 Concluding remarks 

In this paper lve have expla.ined the importance of a 
t,amper-resistant, code. and a. method to generate such 
a code has been examined. We have created tools to 
generate an elementary version of the tamper-rcsist;ant, 
code. From the cxpcriment, it has been observed that 
generated coclt~s become hard t,o understand. A obfus- 
cated code has increased its assembler line number com- 
pared with an original program, but the executable pro- 

gram size and the execution time have not deteriorated. 

In terms of copyrights we can combine our method 
with an authentication system or a copy-protect sys- 
tem. By making authentication programs or copy- 
protect programs tamper-resistant, authentication or 
copy-protect operation becomes unavoidable. That is, 
users have to pass the authentication operation or prop- 
erly use software programs, which results in enforcement, 
of copyrights. In contrast, the direct use of our method 
does not always ensure copyrights on a software pro- 
gram. An original program code can be easily convert- 
ed, or even a converted program code may be converted, 
into a code with a different appearance, and an illegal 
user may claim that he has programmed it by himself. 
It becomes very hard to identify which tamper-resistant 
code is generated from which original program if the 
enemy has created the tool from scratch and applies it 
to non-tamper-resistant software packages. But if soft- 
ware packages have been produced as a tamper-resistant 
one, or if a user buys the tool for the tamper-resistant, 
code, we shollld examine further the following prot,ec- 
tive methods. 1) The tool for the tamper-resist~ant code 
should insert hidden identity information into the gcner- 
ated code. This information cannot be easily identified 
by anyone except the producer of the tool, and it also 
should be difficult to erase from the generated code. 2) 
,4 tarnper-resistant code should not be processed by the 
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tool for the tamper-resistant code again. If we can con- 

struct such a tool, a software company does not need to 
be afraid of further modification of its products once it 
has generated tamper-resistant software packages. 

Another subject we should examine is if it is possi- 
ble to make maintenance of converted programs. Nor- 
mally a software company should be able to maintain 
or update rele,ascd programs. In the present form of 
conversion, even an entity who has converted programs 
cannot easily rebuild original programs, which implies 
that maintenance seems to be difficult. 

On the other hand, it is important to discover evalu- 
ation criteria regarding the difficulty of understanding 
a program. The degree of difficulty of understanding 
a program may differ in each analyst. In this sense, it 
may be difficult to estimate the evaluation criteria. But 
with such criteria one can properly construct a tool for 
the tamper-resistant code. Moreover, our tool in this 
paper is at an elementary stage. We need to contin- 
ue to improve the fundamental techniques used in the 
present tamper-resistant software. 
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5 rcx - 
r shx - 
P sax -0 

not - 
xor - 0 0 0 0 

or - 
and - 0 0 
dec - 
inc - ’ 00 0 a 

divl - 0 
divw - 
divb - 
sub B 0 0 

000000 co 

200 250 300 
code line(steps) 

350 400 450 500 

Figure 5: Distribution of opcodes before operation 
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Figure G: Distribution of opcodes after operation(no dummy code) 
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imp 
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Figure 7: Distribution of opcodes after operation(with dummy codes) 
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