
A Tentative Approach to Constructing Tamper-Resistant Software

Masahiro MAMBO* Takanori MURAYAMAf Eiji OKAMOTO

School of Information Science
Japan Advanced Institute of Science and Technology

l-l Asahidai Tatsunokuchi Nomi
Ishikawa, 923-1211 Japan

Abstract

So far tamper-resistance has been considered as a prop-
erty such as information stored in (I device is hard to
read or modify by tampering. Such tamper-resistance is
quite important in many situations: superdistribution,
electronic commerce systems using IC card, pay tele-
vision systems with decoders containing secret values
for descrambling image and so on. Tamper-resistance
ensures proper operation of a program and prevents ex-
traction of secret data and abuse of the program. More-
over, tamper-resistance enables a vendor to enforce his
own conditions upon users.

A new notion of tamper-resistance is stated as follows.
Tamper-resistance means a property such as informa-
tion stored in a device or software is hard to read or
modify by tampering. A tamper-resistant device is usu-
ally expensive and not easy to handle compared with its
realization in software. It is better to achieve tamper-
resistance without relying on any physical device.

Meanwhile, intellectual property rights for a software
program can be easily violated once an attacker analyzes
the algorithm of a target program. The attacker can
create a distinct program which looks quite different
but functions just as the target program does. It is
very important for software programs to be protected
from any reverse engineering and manipulation.

From these observations we study methods to gener-
ate a tamper-resistant code and explain an elementary
tool, aO/fl/f2/f3. It replaces and shuffles operational
codes or inserts reproductive dummy codes in a pro-
gram so that t,he output becomes hard to read. After

Permission to make digital or hard copies of all or pti of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1997 New Security Paradigms Workshop Langdale, Cumbria UK
Copyright ACM 1998 O-89791-986--6/97/ 9...$5.00

these processes, an attacker conducting algorithm anal-
ysis becomes confused by a resultant program posscss-
ing unrelevant and irregularly ordered information. Re-
garding the degree of tamper-resistance, we are still at
an elementary stage, but experimental results indicate
generated codes have become harder to read.

1 Introduction

So far tamper-resistance has been considered as a prop-
erty such as information stored in a device is hard to
read or modify by tampering. Such tamper-resistance
is quite important in many situations. An example is
a pay television system. Receivers of the pay television
system need to buy a decoder of scrambled image. This
decoder includes a secret key inside, which is used di-
rectly or indirectly for decoding scrambled image. No
company wants illegal receivers to extract and change
the secret key and to watch its programs for free. There-
fore, the secret key should be protected from observa-
tion and modification.

A similar situation occurs in superdistribution
(MK90]. The superdistribution is a way of distributing
software or digital contents, and a software company
charges users for each use of software rather than sell-
ing an entire software product. The software company
should properly count the use of software and prevent il-
legal use. The proper operation of the superdistribution
system, including enforcement of the conditions set by
the software company upon users, is ensured by tamper-
resistant devices. Such a tamper-resistant device is s-
tored for instance in user’s comput,er as a coprocessor.

IC card is another example. Some of electronic cash
systems using IC cards, e.g. Mondex system, reside
their security on the tamper-resistance of IC cards. It
is also popular to use IC card for user idcntitication.

‘I’rescnt Affiliation: Education Center for Information Pro-
cessing, Tohoku IJnivcrsity, Kawauchi Aoba-ku Scndni, 980.8,576
.Japan, Email: rnambo@ecip.tohoku.ac.jp

tPresent Affiliation: Konami Enter-prisc

23

In either case, embedded secret information should be
protected. In general, tamper-resistant IC cards are
often used in electronic commerce.

In the Escrowed Encryption Standard (EES)
[NIST94] proposed by the American government, an en-
cryption algorit,hm called Skipjack and other unknown
encryption algorit,lims are stored in a tamper-resistant
Clipper Chip. A rrlcssagc in t,he EES is encrypted by the
Skipjack with a session key and the session key is em-
bcdcled in t hc: Law Enforcement Access Field (LEAF) in
a11 encrypted form. An authorized investigator extract-
s the session key from the LEAF and conducts a legal
wiretapping. The LEAF is computed from the session
key and the other values, family key, device unique key
and device unique identifier, by utilizing the unknown
algorithms (possibly including t,he Skipjack algorithm).
These device unique values are stored in the Clipper
Chip. These values, the unknown algorithms and the
Skipjack algorithm should not be manipulated by user-
s. Otherwise, the investigator may fail to recover the
session key or to decrypt, the ciphertext. For successful
wiretapping, it is necessary that the LEAF is created by
the fixed algorithm and that the device unique values
are really related to a clipper chip whose communication
the investigator tries to wiretap. A tamper-resistant de-
vice achieves the protection of stored algorithms and da-
ta. In the similar context, if Trusted Third Party (TTP)
is realized by a tamper-resistant device, its proper be-
havior is ensured by non-manipulation of the device,
and user’s non-deviation from determined operation is
ensured by the difficulty of reading secret values used
by the TTP.

Although a tamper-resistant device is quite effective
for the protect,ion of algorithms and data, consider-
ing cost performance and ease of handling, it is bet-
ter to achieve the tamper-resistance without using any
physical device. Therefore, it is important to broad-
en the notion of tamper-resistance. In a new notion,
tamper-resistance means a property such as information
stored i71 a device or software is hard to read or mod-
ify by tampering. We discuss techniques of generating
tamper-resistant software which protects software algo-
rithms and prevents an attacker from illegal use of soft-
ware packages [MMOU95, MMOU96, Mura96, h1097,
MTT97]. Such secure software is resistant to reverse-
engineering and keeps an eIlcryptiorl/tlct:ryplion algo-
rithm or dat,a secret.

In this [)i1[)(‘1. the coIlc:Cpt and the iml)ort,ance of t,lle
t,anlgcr-resist;lrit, code are clarified and an elcmt!ritary
construction for gcncrat,ing such code is shown. Her<: n-c
focus on assembly level. But that does not, mean hi&:1
lcvc~l support is III~I~:css~~~~ for securing software. Work
at, higher lcvc~l, i.e. at, source level, is also important,
ant1 Mill be discussed iu the fut,ure papers. As another
tiirc~ct.ion of rcsc~arch and clt~vc~lo~~~~ic~~~t,, we can combine

software-only approach with hardware-only approach.
However, this alternative approach is not discussed in
this paper, either.

After the introduction, we discuss effects of tamper-
resistant software in Sect.2. Then we show what kind
of program is hard or easy to read in Sect.3. Methods
used to generate an elementary tamper-resistant code
are shown in Sect.4, and their concrete constructions
arc given in Sect.5. From the experimental results de-
scribed in Sect.6, we are convinced that a code becomes
harder to read than without the tamper-resistant coding
operation. Concluding remarks are described in Sect.7.

2 Effects of tamper-resistant
software

The tamper-resistant software is expected to be sub-
stituted for the tamper-resistant device in most of the
situations described in the introduction. If the same
level of tamper-resistance is achieved in software as in
device, both a maker and a user of tamper-resistant soft-
ware can get benefit of low cost performance and ease
of handling.

One application of the tamper-resistant software is
software agent. Whenever a software agent moves to a
domain managed by other party, it is under threat of
being captured. A captured agent may be scrutinized,
and secret information the agent carries may be stolen.
Or the agent is modified so that it is abused by the par-
ty. The network-type agent should be protected from
observation and modification.

In mobile computing a computing device could be
lost, and important programs or data would be known
by its finder. As long as a program has a tamper-
resistant form, it is not revealed even if the computing
device is lost or stolen.

In the meantime, our approach has something to do
with intellectual property rights. IntelIectual property
rights of a software program can be compromised once
an attacker analyzes the algorithm of a target, comput-
er software program. The attacker can create a dis-
tinct program which looks quite different but functions
just, as the target program. He may also create com-
puter viruses, worms or Trojan horses [Ska96] which
hack various software tools, software applications and
OS 1)rograms. Without doubt, these problems preven-
t the so11nd growth of a highly computerized society.
Soft,\\-arc must be protected from reverse engineering.
‘I‘;llrll)er-I-esist,allc:c of softlvare will provide such protec
tioii.

Tliorc a~‘(’ several iterrls to b(a l)r’ot ect,ecl in a softn.arrl
l)ackage, i.e. the program code, image in the display
iLIl(l the algorithm itself, and different tyl)es of legal
measures apply to t,lieni. In IJ.S.;\., the former t.wo

items are protected by the copyright law and the last
one is protected by the Patent Act [Rem82]. On the
other hand, it is very difficult in some countries to get
a patent for an algorithm used in a software package.
The algorithm is not patented without clear relation to
the physical property of a physical device. In contrast,
a tamper-resistant code protects an algorithm of a pro-
gram even without any relation to the physical property
of a physical device.

Concerning the copyright of a program, it can be pro-
tected by combining our approach with an authentica-
tion system or a copy-protect system. Once the authen-
tication routine or the copy protection routine is discov-
ered and analyzed, it may be circumvented easily. But
if a part of the program for the authentication system
or a part of the program for the copy-protect system is
made hard to read by a tamper-resistant coding oper-
ation, then it becomes harder to find out where such a
program part exists in a program. Therefore, an attack-
er cannot forge a signature or disqualify the protective
operation. Since there are not many effective techni-
cal measures for protecting software package items, a
tamper-resistant code may become a strong candidate
for attaining the protection of software packages.

3 Programs that are hard to an-
alyze

3.1 Necessary conditions

In this section we discuss the kinds of program that are
hard to analyze. If an algorithm of a program itself
is complicated, then there is no doubt that the pro-
gram cannot be easily analyzed. Then our question is
what is the property of a program that possesses a less
complicated algorithm and is hard to analyze. In order
to proceed our discussion, let us consider what kind of
steps we will take when we try to create a program op-
erating similarly to an original program. Obviously, we
try to find an algorithm of the target program. Using
the given algorithm, we create a modified program with
better performance or a distinct program with the same
functionaiity as the original.

The other property of a program that is hard to ana-
lyze is that, one cannot, easily find a module of instruc-
tions. For instance, what is our strat,egy to void the
cop>--protect, mechanism of a software program? NO one
wants to check the operation of all parts of the program.
It is enough to find a module for a copy-protect routine
out of the entire program and to simply change a func-
tion call for the routine. In this sense, the place of the
top and the bottom of a module is important informa-
tion for the program analysis.

Therefore, a hardly analyzable program satisfies the

following property as a necessary condition:

l It is uneconomic to guess an algorithm of a given
code. In this category, we include a program with
a complicated algorithm.

This property includes a condition such as it is imprac-
tical to guess the place of a module in a given code.

At a primary stage of our tamper-resistant code
project, we attempt to generate a hardly analyzable
program without modifying an original algorithm.

3.2 Properties
program

An easily analyzable
properties:

of an easily analyzable

program possesses the following

.

.

.

3.3

The top and the bottom of a module are clearly
determined.

Instructions and registers follow an ordinary rule
of a programming, or a distinctive pattern is found
in a program.

The data structure is easily known.

Properties of a hardly analyzable
program

Contrary to the above properties, a hardly analyzable
program possesses the following properties:

l The top and the bottom of a module are ambigu-
ous.

l A program code does not have a distinctive pattern.

l The data structure is unknown, and no consistency
is found in a data sequence.

4 Methods to generate an ele-
mentary
code

tamper-resistant

4.1 Basic techniques

In order to generate a tamper-resistant code, we aim at
converting any instruction pattern useful for program
analysis, such as idiom, into unanalyzable instruction
pat,terns without, changing an original algorithm. There
are several approaches to generating such a tamper-
resistant software program. First, instruction streams
are irregularly ordered. Second, dummy codes are in-
serted. Finally, a program is formed by a self-decrypting
program. The last approach is closely related to the be-
havior of polymorphic computer viruses. In this paper,

we mainly discuss how to make instruction streams hard
to understand and how to use dummy codes.

The method to make an instruction stream hard to
understand consists of two operations. One is a re-
place operation of specific instructions, and the other
is a shuffle operation of instruction stream. The replace
operation replaces a complicated operational instruc-
tion, such as ‘jsr’ used for function call, with multiple
simple instructions. The shuffle operation shuffles in-
struction streams. An easily understandable program
code has a simple instruction structure which one can
intuitively follow. In other words, there are basic rules
of programming, and when one reads a code stream, we
follow these rules without recognizing them. A complex
instruction stream can be separated into several sets of
instructions depending on their meaning. These cate-
gories are considered to be one of unobservable rules.
The replace or shuffle operations make the partition of
instruction sets unclear and a produced code does not
look like following the rules. Thus the code becomes
harder to read.

4.2 Importance of optimization

In addition to the operations described in Sect.4.1, we
should optimize redundant instructions. Redundancy in
a code helps one to read a code. Redundant instruction
optimization removes these redundancies.

In general, a tamper-resistant code generating pro-
cess should be non-reversible, or if it can be reversed,
the reverse operation should be time consuming and
expensive. Because otherwise, an attacker can easily
recover an original program at a low cost.

Depending on an optimization process and an origi-
nal program code, the original program becomes either
harder or easier to read after the optimization. Even so,
an optimized code is composed of simple instructions
sets so that it leaves less information to the attacker. It
is considered that converting an original program into
an optimized code is easy and the the opposite conver-
sion is difficult. In other words, the optimization process
is expected to be non-reversible. Hence, we should first
optimize an original program in order to get rid of in-
formation useful for algorithm analysis. Afterwards, WC
should esccute replacement, shuffling or dummy code
insertion.

4.3 Scrambled instruction stream

We use the following rules:
1) To construct a program using only the most fun-

damental instructions, e.g. add, mov, jcc, jmp, or, and,
x01‘, etc.

2) To optimize codes and, a.ccordingly, to shuffle op-
timized instructions.

26

LyyAv &. y1 ‘cy-“=‘v “_ ” -__. --Y-v--

Original
jsr sub-r
.imp step

After replacement
add $49~ ii=-(l)
mov $sub-r - 156,-4(sp) ;jsr(2)
add $156,-4(sp) iisr(3)
mov $1 - lOO,(sp) ;.isr(4)
add $lOO,(sp) ;.isr(5)
jmp -4(sP) ;.br(6)

1: mov $step + 135,-4(sp) ;jmp(l)
add $-135,-4(sp) ;.iw(2)
jmp -4(sP) ;jmpGU

After replacement and shuffle
add $-4,s~ ;.isr(l)
mov $1 - lOO,(sp) ;.id4)
mov $step + 135,-8(sp) ;jmp(l)
add $lOO,(sp) ;.isr(5)
mov $subr - 156,-4(sp) ;jsr(2)
add $156,-4(sp) ;.isr(3)
add $-135,-8(sp) ;jmpP)
jmp -4(sP) ;jsr(f-3

1: jmp -12(sp) ;jmpP)

By these operations, patterns of a program are erased,
and the frequency of the use of sources, e.g. the frequen-
cy of the use of a register, becomes more uniform. Due
to the optimization, the recovery of an original code
becomes difficult.

3) Immediate values are not used.
In Table 1, an intuitive example’ of conversion is

shown based on these conversion rules. Since instruc-
tion jsr and instruction jmp can be constructed both by
jmp, it is not clear whether there is a function call or a
branch.

4.4 Dummy codes

There are two types of dummy codes. One is a fresh
dummy code shown in Figure 1 and the other is a re-
productive dummy code shown in Figure 2. In order
to preserve an original operation of a code the effect of
inserted fresh dummy codes has to be nullified, e.g. the
use of a pair of ‘add’ and ‘sub’. The fresh dummy code
does not escessircl:; depend on 3 target program code.
If a generated dummy code is simple, it may br removed

1 Nore that this example is not produced from our program but
written by hand. In case of the code sequence wibh replacement
and shuffle, addresses on stuck may be destroyed depending on
behavior of a routine program. Stuck pointer should bc moved
into other place.

/-
original code-

push1 %ebx
movl %eax,%ebx
shl $1 ,%ebx
add1 %ebx,%eax

POPI %ebx
leave
ret

-dummy code inserted

push1 %ebx
movl %eax,%ebx

.. incl. ” ~/&cx-.:..:

shl $1 .%ebx

.’ subt %ecx,%sw
add1 ‘.... %ebx,‘beax

,addl ... $-l.p/oecx.:.
:,: :. addl : : %eoc,y+iiax,:

:. a& $!,%eti

POP1 %ebx

leave
ret

Figure 1: Example of fresh dummy code

I-
original code

I
push1 %ebx
movl %eax,%ebx
shl $1 ,%ebx

-dummy code inserte

“1

push1 %ebx
movl %eax,%ebx

shl $1 ,%ebx
add1 %ebx,%eax .:

I I

: jc : : :. :: L .: .f : ‘y:,:::::f,:,:::,:.,

POPI %ebx add1 %ebx,%eax I
leave
ret I I

POPI %ebx
leave I

-AI ret I
,::.;+lign’ 2
L: :y;;.~.:; .:.. ..I

:.::.?::

.:. .add::. .:: O&x Max :. ?
:::::::.p4P1:.:.~:..%~bx .: J .;.
.:.‘.I leave .. ‘,I. .:.;:.:.:.;. : 1..
. . ‘. :. :. ::. :: ‘.‘.‘.“.
.(et’..... .:; :.

Figure 2: Example of reproductive dummy code

by the optimization. Hence, a fresh dummy code should
be complex enough to avoid optimization.

Reproductive dummy code operations generate a
dummy code which is a copy of a part of an original
code and inserts a conditional branch instruction into
the original code. The reproductive dummy code works
the same as the original code does. Thus, it is more
likely that a program analyst will mistakenly identify
the reproductive dummy code as the original code. But,
if we apply only a reproductive dummy code operation,
it ci\n be easily found out by simply observing the germ-
erated program code. Therefore, we should apply re-
productive dummy code operations together with the
replace operation, the shuffle operation and the fresh
dummy code operation.

In this paper, we examine only a reproductive dummy
code operation among the dummy code operations.

According to the occupation of registers,
a shuffling area is determined for each block

for(i=l;i<No. of lines;i++){
if(Can i be reordered?){

Search an area for shuffling-j.
j -Determine reordered line-j.

Move line i just before line j.
1

1

Figure 4: A shuffling algorithm

5 Tools for generation

We show programs aO/fl/f2/f3 which automatically
generate an elementary tamper-resistant code of a.n o-
riginal gee assembler code. These programs are created
by using yacc, lex and c languages.

l a0, pre-operation, analyzes register information
and outputs the register information followed by
remarks.

l fl, replace instruction operation, replaces a compli-
cated operational instruction with multiple simple
operational instructions.

l f2, shuffle instruction stream operation, shuffles an
instruction stream.

l f3, insert dummy instructions, inserts reproductive
dummy instructions into a target program.

a0 is a register analysis program and supplies infor-
mation on free registers in the original code. fl replaces
complicated operational instructions according to infor-
mation supplied by a0. Several replace operation rules
are prepared. fl applies one among these replacement
rules to a target instruction at random. f2 shuffles in-
struction streams according to information supplied by
a0. As shown in Figure 4, f2 decides the shuffle areas in
a target program and shuffle patterns at random. For
each i, f2 checks whether the line i is moved into the line
j. j is determined at random from a region less than t,he
maximum value of j. f3 is an automatic reproductive
dummy code insertion tool. First f3 discovers a possible
part of the program as the reproductive dumm>- code.
Then it produces and inserts the reproductive dummy
code. These procedures are repeated at a predetermined
number of times. So the same part is recursivcl)- repro-
duced at maximum by this predetermined number of
times. The usage of these programs is as follo\vs.

cat [in] 1 a0 1 f3 1 a0 1 fl 1 a0 1 f2 > out

These procedures are shown in Figure 3.

27

I I
a0 regtster analysis

s
a0 register analysis

-8

I

8

it!
z I

8

ii?
z

f3 dummycode

I

fl
replace
optimize

I

Figure 3: A use of tools

Table 2: Program size and execution time
1 Assembler lines Executable prog. size Execution time

Original 484 lines 41471
After replacement

bytes 58.83 sec.
510 lines 41471 bytes 58.91 sec.

After replacement* 738 lines 41471 bytes 59.28 sec.
*...with dummy codes

6 Experimental results

6.1 Experiment

In our experiment an encryption/decryption program
SAFER.C [Mass93] . IS compiled by gee and an output
assernbler code is processed by the tools explained in
Sect.5. A reproductive dummy code is inserted 7 times.
The target machine is an Intel 80386.

6.2 Program size and execution time

Table 2 shows the size of a converted assembler file, the
size of a obfuscated executable program and the execu-
tion time of the executable program. As the execution
time, the time of the encryption of a 14.5M byte file is
measured.

Without dummy codes, the assembler lines have in-
creased by about 100 lines. This is because a complicat-
ed instruction related to function call has been replaced
by multiple simple instructions.

LVith dummy codes, the assembler lines has increased
by about 2.50 lines. On top of the replacement of the
complicated instruction, generat,ed reproductive dun-
my codes make the line longer.

-411 interesting result is that the size and the execution
time of the obfuscated executable program are alrnost

a0 register analysis Q

the same as that of the original executable program.
These two executable programs are not the same. They
actually have 54.6 % different lines between them. We
presume the result on the size and the execution time is
caused by the following reasons. The most part of the
executable program may stem from a link library. In the
general compilation process, an object code is generated
after assembler process. Then the link library is linked
to it and the executable file is created. Our tool ma-
nipulates the assembler code and these process do not
affect the link library. The reasons for the similar exe-
cution time may be that a device access in the SAFER
encryption operation takes much of the time, that a
simple instruction is faster than a complex instruction
and that duplicated redundant codes are removed by
the optimization.

6.3 Distribution of opcodes

Fig.5, 6 and 7 show the distribution of opcodcs in an
assembler program. We can observe the bottom (or the
top) of functions at opcodes ret, leave, push and pop
before the filtering operation (Fig. 5). But these phe-
nomena disappear after the filtering operation and it
becomes hard to find the bottom (or the top) of func-
tions (Fig. 6,7). In the generated code the total number

28

of used opcodes is reduced and the opcodes mov and add
are more frequently used (See also Table 4).

6.4 Code patterns

If a set of consecutive opcodes works as a command,
such code pattern could give useful information to a pro-
gram analyst. It is presumed that the analyst may ob-
tain some information from a long code pattern whether
it frequently appears or not. On the other hand, a short
code pattern may have less meaning as a program analy-
sis if it frequently appears, and it may have some mean-
ing if it rarely appears.

The number of appearances is accumulated for al-
l code patterns with a certain length and it is shown in
Table 3. Before the filtering operation, there are code
patterns with the length from 2 up to 31. By the filter-
ing operation, long code patterns have disappeared and
the maximum length of code patterns becomes 22 and
23. Both with or without dummy codes, the number
of appearances of shorter code patterns have increased
and the number of appearances of longer code patterns
have decreased. The replacement operation, the shuffle
operation and their combination with the optimization
operation result in the increase of shorter instructions.
On the other hand, because of the reproductive dum-
my code, for each match length there are more matched
patterns in codes with the reproductive dummy code
than in codes without it. Hence, it is considered that
produced codes give less information than before the
filtering operation.

6.5 Clustering of opcodes

The more uniformly each opcode distributes, the harder
the program analysis becomes. As discussed in Sect.6.3,
an program analyst cannot find the bottom of a func-
tion in uniformly distributed opcodes. Table 4 shows
how each opcode are clustered in a program. The num-
ber indicates the maximum percentage of each type of
opcode as they move through a window of a certain
length. This length is set to be l/10 of the length of
the total assembler list. A large value means an opcode
are clustered in a small region. We can observe that
opcodes are less clustered after the filtering operation.
PUSH, POP, LEAVE and RET are removed after the
operation. The number of appearance of ADD, MO\’
and JMP are increased and their percentages are down.

On the other hand, there is no prominent difIerence
between the case with and the case without the repro-
ductive dummy code.

From the esperimental results shown in this section:
our tentative tools aO/fl/f2/f3 are effective in making a
program hard to understand.

Table 3: Code patterns with a certain length

2 length match
3 length match
4 length match
5 length match
6 length match
7 length match
8 length match
9 length match

10 length match
11 length match
12 length match
13 length match
14 length match
15 length match
16 length match
17 length match
18 length match
19 length match
20 length match
21 length match
22 length match
23 length match
24 length match
25 length match
26 length match
27 length match
28 length match
29 length match
30 length match
31 length match

Before After AfteF*
274 283 446
186
121
84
57
44
32
24
20
14
13
11
9
8
5
5
4
4
4
2
2
2
2
2
2
2
2
2
2
2

189
115
77
47
35
23
15
20
11
6
4
4
2
2
2
2
2
2
2
2

288
188
124
85
60
46
33
26
22
16
13
11
11
7
6
6
4
4
2
2
2

29

ADD
SUB
DIVL
INC
DEC
AND
OR
XOR
SAX
ROX
LEA
MOV
MOVZX
CMP
JCC
JMP
PUSH
POP
LEAVE
RET

Table 4: Clustering of opcodes

Before After After*
64 % (39) 37 % (67) 32 % (86)
60 % (41) 67 % (37) 69 % (42)

(1) 100% (1) 100 % (3) 100 %
40 % (32) 43 % (32) 47 % (34)
52 % (25) 36 % (25) 53 % (32)

100 %
;:;

100 % (2) 1 00 % (2)
100 % 100 % (1) 1 00 % (1)
25 % (28) 25 % (28) 22 % (35)
50 % (2) 50 % (2) 50 % (2)

100 % (3) 100 % (3) 1 00 % (3)
63 % (11) 63 % (11) 41 % (17)
15 % (220) 16 % (254) 14 % (397)
38% (21) 38% (21) 36 % (25)
45% (11) 45 % (11) 40 % (15)
45% (11) 45 % (11) 27 % (29)
50 % (2) 33 % (6) 26 % (15)
46 % (15) -
27% (11) -
25 % (4) - 0 -

ij

25 % (4) - 0 - 0
*...with dummy codes
()... No. of appearance

6.6 Security

We have only shown several evidences of security of our
approach. Because of lack of security proof, our ap-
proach may be regarded essentially as security through
obscurity. It itself is of our interest whether we can
prove security of our approach. But even without proof,
we can claim the following points. 1) Although most
security people usually disapprove of security through
obscurity, a reference [Bla96] calls for security based on
inherent properties of systems, and really lists the ob-
scurity as one of these inherent properties. 2) Since
hardware is expensive and key distribution for cryptog-
raphy is not easy, almost all copy protection and soft-
ware license management schemes are based on security
through obscurity.

7 Concluding remarks

In this paper lve have expla.ined the importance of a
t,amper-resistant, code. and a. method to generate such
a code has been examined. We have created tools to
generate an elementary version of the tamper-rcsist;ant,
code. From the cxpcriment, it has been observed that
generated coclt~s become hard t,o understand. A obfus-
cated code has increased its assembler line number com-
pared with an original program, but the executable pro-

gram size and the execution time have not deteriorated.

In terms of copyrights we can combine our method
with an authentication system or a copy-protect sys-
tem. By making authentication programs or copy-
protect programs tamper-resistant, authentication or
copy-protect operation becomes unavoidable. That is,
users have to pass the authentication operation or prop-
erly use software programs, which results in enforcement,
of copyrights. In contrast, the direct use of our method
does not always ensure copyrights on a software pro-
gram. An original program code can be easily convert-
ed, or even a converted program code may be converted,
into a code with a different appearance, and an illegal
user may claim that he has programmed it by himself.
It becomes very hard to identify which tamper-resistant
code is generated from which original program if the
enemy has created the tool from scratch and applies it
to non-tamper-resistant software packages. But if soft-
ware packages have been produced as a tamper-resistant
one, or if a user buys the tool for the tamper-resistant,
code, we shollld examine further the following prot,ec-
tive methods. 1) The tool for the tamper-resist~ant code
should insert hidden identity information into the gcner-
ated code. This information cannot be easily identified
by anyone except the producer of the tool, and it also
should be difficult to erase from the generated code. 2)
,4 tarnper-resistant code should not be processed by the

30

tool for the tamper-resistant code again. If we can con-

struct such a tool, a software company does not need to
be afraid of further modification of its products once it
has generated tamper-resistant software packages.

Another subject we should examine is if it is possi-
ble to make maintenance of converted programs. Nor-
mally a software company should be able to maintain
or update rele,ascd programs. In the present form of
conversion, even an entity who has converted programs
cannot easily rebuild original programs, which implies
that maintenance seems to be difficult.

On the other hand, it is important to discover evalu-
ation criteria regarding the difficulty of understanding
a program. The degree of difficulty of understanding
a program may differ in each analyst. In this sense, it
may be difficult to estimate the evaluation criteria. But
with such criteria one can properly construct a tool for
the tamper-resistant code. Moreover, our tool in this
paper is at an elementary stage. We need to contin-
ue to improve the fundamental techniques used in the
present tamper-resistant software.

Acknowledgment

Authors would like to thank NSP’97 participants for
their comments. We would also like to thank the
Telecommunications -4dvancement Foundation for the
supported.

References

[BlaSG]

[Ska96]

[Mass931

[MTTS’I]

[MK90]

[RIMOIJ95]

Bob Blakley: “The Emperor’s Old Armor,”

Proc. of 1996 New Security Paradigms.

R. Skardhamar: Virus Detection and Elimina-
tion, AI’ Professional (1996).

J. L. Massey: “SAFER K-64: A Byte-Oriented
Block-Czphering Algorithm,” Lecture Notes in
Computer Science 809, Fast Software Encryp-
tion, Spring-Verlag, pp. 1-17 (1994).

A. Monden, Y. Takada and K. Torii: ‘Methods
for Scrambling Programs Containing Loops, ”
Trans. of IEICE, Vol. J80-D-I, NO. 7, pp. 644.
652 (.July 1997). [In Japanese]

R. Mori and M. Kan-ahara: “Svperdistrih~tion:
The Cocncept and the Architecture,” Trans. of
IEiCE, 1.01. E73, X0. 5, pp. 1133-1146 (1990).

T. hIura,vama; M 1Iambo, E. Okamoto and T.
Uyematsu: “How to &lake a Software Program
Hard to Understand; ” Technical Report of IE-
ICE, ISEC95-25, \.ol. 95: No. 353 (Nov. 1995).
[In ,J;I~~II~]

[>IMOU96]

[SIura96]

[MO97]

[NIST94]

[Rem821

T. Murayama, M. Mambo, E. Okamoto and
T. Uyematsu: ‘%irst Step Toward a Tamper-
Proof Code, ” The Proceedings of the 1996
Symposium on Cryptography and Information
Security, SCIS96-8D (Jan. 1996). [In Japanese]

T. Murayama: “A Study on Software Protec-
tzon” Master Thesis, JAIST (Feb. 1996) [In

Japanese]

.\I. Mambo and E. Okamoto: “Research Top-
zcs in Tamper-Resistant Software,” The Pro-
ceedings of the 1997 Symposium on Cryptog-
raphy and Information Security, SCIS97-10A
(Jan. 1997). [In Japanese]

Xational Institute of Standards and Technol-
ogy: Escrowed Encryption Standard(EES),
Federal Information Processing Standards
Publication(FIPS) 185, U.S. Dept. of Con-
merce (1994).

D. Remer: Legal Care for your Software, NO-
LO PRESS (1982).

31

5 rcx -
r shx -
P sax -0

not -
xor - 0 0 0 0

or -
and - 0 0
dec -
inc - ’ 00 0 a

divl - 0
divw -
divb -
sub B 0 0

000000 co

200 250 300
code line(steps)

350 400 450 500

Figure 5: Distribution of opcodes before operation

imp
jcc

cv
test

movsbl

movzbl

move

lea

rox

rcx

:
shx

8
sax

not
xor

or

and

dec

Inc

divl

divw

dwb

sub

000
1

add L
0 300

code line(steps)
400 500 600

Figure G: Distribution of opcodes after operation(no dummy code)

32

imp
jcc

cmp
test

movsbl

movzbl

move

lea

rox

rcx

%
shx

8 sax
s+ not

xor

or

and

dec

inc

divl

divw

divb

sub

add

-

I

<

4

<

0

0

> 04&,-o

88 ’
100 200 300 400 500 600 700 800

code line(steps)

Figure 7: Distribution of opcodes after operation(with dummy codes)

33

