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ABSTRACT 

We examine a new way of looking at security 
violations, called insecurity flow. We express our new 
paradigm via a formal mathematical model that 
combines elements of graph theory and discrete 
probability. Prior work by Moore and Shannon on 
building reliable circuits out of unreliable components, 
and the physics community’s interest in dynamical 
systems, especially percolation theory, motivates our 
work. 

1. A New Paradigm 

We wish to analyze how insecurity may spread 
throughout composed protection schemes. System 
(information) insecurity can be investigated in many 
different ways. Previous work on this area has been 
concerned with information flow; by looking at the 
capacity of a covert channel [Mi], or investigating 
which variants of noninterference hold upon system 
composition [MC]. This previous work is limited to 
multilevel security. The concept of illicit information 
flow is certainly important and well documented. 
However, we wish to investigate the concept of 
insecurity flow, not information flow. Thus, we put 
forth a new paradigm dealing with the abstract notion 
of an “invader” penetrating through “security holes” of 
various protective security domains. We present a 
formal model of this new paradigm of insecurity flow 
by using graph and discrete probability theory. Prior 
work exists using graph theory and/or probability 
theory [Dl], [D2], [0], [Le], [LB] to model system 
reliability. However, those probabilistic models analyze 
how the probability of “breaking in” varies with time. 
Our paradigm views a “break in” as a O/l proposition. 
The breach either happens or does not happen. It does 
not, like the reliability-based work, happen 
asymptotically 
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in time. In our paradigm, there is no concept of time 
other than one penetration following another. The time 
spent for an insecurity to flow past some protective 
layer is not a factor once we set the probabilities. We 
are simply concerned with whether or not an insecurity 
can or cannot make it past the protection. Our model is 
not concerned with whether an insecurity can “back 
track” out. The security violation is simply that the 
protective layers have broken down and the insecurity 
has been able to flow in. In other words, something 
only has to become “infected” or “burnt” for the 
violation to take place. 

An insecurity flow is similar to fire spreading through 
an entire forest or a liquid spreading through a porous 
material. Those topics have been analyzed in the 
physics world via percolation theory [W],[La]. We 
have extrapolated this idea of percolation to security by 
looking at the abstract notion of an insecurity flowing 
from a source to a sink. The source is the point where 
the invader starts out and the sink is the repository of 
the information that we are attempting to protect. Once 
the insecurity has reached the sink, the game is over. 
There is no concept of partial flow; the insecurity either 
makes it through, or it does not. We are not interested 
in noninterference and all of its children, since we are 
not composing MLS systems. We are attempting to 
protect something. What we are composing are the 
protective layers, not any underlying MLS systems. 

2. Introduction 

2.1 Protection Domains 

A motivation for our paradigm is to mathematically 
model the effects of using different architectures of 
various protection domains (e.g. firewalls) to protect 
against insecurity flow in today’s open and distributed 
computing environment. In this environment, physical 
access control alone does not adequately protect 
organizations’ computing resources. Now organizations 
must protect their resources within globally networked 
environments. Organizations can protect their 
computing assets (e.g., information and resources) by 
establishing protection domains [C] which contain 
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groups of related components. Protection domains can 
be established by separating the components both 
physically and logically. 

Each protection domain may possess a security policy 
and may receive insecurity flow protection via security 
mechanisms such as firewalls, domain type 
enforcement mechanisms [B], discretionary access 
controls, mandatory access controls, etc. Some 
organizations may choose to employ a combination of 
security measures instead of just one security 
mechanism. 

When many entry points for insecurity flow exist in 
security protection domains, it becomes more difficult 
to analyze the system’s vulnerability as a whole. Some 
questions for a security designer are: 

1. Which is the most vulnerable path for insecurity 
flow? What can make this vulnerable path more 
secure’? 

2. Is there any redundant or useless security 
protection measure? 

3. Is one strong security measure better than two 
weaker security measures (assuming that a strong 
security mechanism costs more than two weaker 
mechanisms)‘? 

As computer systems grow more complex, it becomes 
harder to analyze the vulnerability of insecurity flow of 
systems using ad hoc methods. To codify our new 
paradigm, we introduce a formal model to analyze the 
insecurity flow of distributed computer systems. We 
model the probability of “security violation” that exists 
despite security protection mechanisms. The work of 
Moore and Shannon on reliable electrical components 
[Ml,M2] inspired our model. After the presentation of 
this paper, we came upon very similar ideas in [K]. In 
particular it is the discussion of electrical circuits and 
De Montmort’s theorem in Appendix A of [K] (which 
was also in the original 1946 edition) that is similar. 
Instead of current flow, we look at insecurity flow. We 
also introduce techniques that simplify the analysis of 
security vulnerability by decomposing a complex 
network into many simpler networks. 

2.2 Independence 

In this paper, we assume that every protection domain 
behaves in an independent manner. One reason for this 
is that it makes our mathematics easier because 
independent probabilities multiply. We are introducing 
a new concept in security. Therefore, we are taking the 
first steps by using simplifying assumptions. We will 
study more complex interactions in future work. In fact, 
the mathematics in this paper can be easily equipped to 
handle dependencies between protection domains by 

using conditional probabilities, instead of the atomic 
probabilities that we do use. 

Another reason for independence is that independence 
models good architectural decisions. Arguing from the 
viewpoint of strength we would not want to have the 
compromise of one safeguard influence the penetration 
of another safeguard. If the violation of one protection 
domain influences the probability of breaking through a 
different protection domain either (1) drop the 
independence assumption, or (2) consider changing the 
design of the protection domains so they are 
independent. For example, if a specific password 
allows an insecurity to flow into one protection domain, 
one obviously would not want to use the same 
password in another protection domain. 

3. Protection Domains & Heuristic Modeling 

Protection domains contain groups of related 
components. Protection domains can be established by 
both physical and logical separation and can be 
organized as hierarchies (levels). For example, a 
protection domain, PD 1, may contain two protection 
subdomains, PDl 1 and PD12 (see figure 1). 
Components within the smallest protection domains 
(the double indexed protection domains) are assumed 
to trust each other and thus have no need for security 
services. 

pi 

Figure 1: Hierarchies of protection domains 

Let the probability of an insecurity flow through the 
security boundary of PD be P,, the probability of an 
insecurity flow through the security boundary of PDl 
be P,, and the probability of an insecurity flow through 
the security boundary of PDll be Pk ,In this paper we 
view the probability assignments as givens. (Of course 
how one takes real systems and assigns probabilities is 
extremely important. For example, the difference if an 
intruder has five minutes or five months to attempt to 
break into a PD must be taken into account in assigning 
probabilities.) The strength of the system in figure 1, 
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with respect to insecurity flow, can be modeled as 
follows: 

Figure 2: Serial connection 

As mentioned, we assume that the organization has 
constructed protection domains to operate in an 
autonomous and distinct manner (hence, the 
probabilities of breaking in are independent). Thus, we 
see that an insecurity has probability Pi of its insecurity 
flowing into PD, P,P, of flowing into PDl, and P,P,P, 
of flowing into PDI 1. Note that P;PjPk is less than any 
of the PO , cc. = i&k. This accords with our intuitive 
notion that the concatenation of protection domains in a 
serial manner increases security. (Note, in [Le], the 
cascading effects of TCBs were analyzed.) 

Let us consider another example. An organization may 
consist of several departments, with their computing 
resources connected by the organization’s intranet. This 
heuristic modeling contains organizational assets, 
insiders, and outsiders. For example, the organization 
may set up its security measures as follows: 
I. A firewall protects the organization’s protection 

boundary, and 
2. Simple access controls protect the departments’ 

protection boundaries. 

An organization may consist of geographically 
distributed and distinct protection domains, some of 
which may forge protected communication links into a 
virtual protection domain, as shown in figure 3. We 
assume that no intrusion is possible into communication 
links from the exterior; hence, the bold 
them in figure 3. 

lines around 

Interface 2 Interface 3 

Figure 3: Virtual protection domain 

Heuristically, we model the strength of protection 
domain PD of the system in figure 3 as follows: 

Figure 4: Three protection domains in parallel 

Again, the protection domains are constructed in an 
independent manner. That is, the probability of an 
insecurity flowing through each interface is 
independent. However, for the sake of simplicity they 
all have the same probability Pj. In this parallel 
architecture, an insecurity has three separate routes (the 
interfaces) to flow into PD. Therefore, an intruder has 
a chance of flowing into PD in three different ways. 

The event that there is a security violation (successful 
insecurity flow) is complementary to the event that 
there is not a security violation. The probability that 
there is not a security violation is (I-P,)“. Therefore, the 
probability that there is a security violation is l- (l-P,)“. 
Since I- (l-Pj)3 > Pj, the above architecture provides 
less security than does a single protective domain.’ 
Note that the same would hold if each interface had 
distinct probabilities of insecurity flow. 

With respect to an insecurity flow of the system in 
figure 3, we model the strength of protection domain 
PDl as follows: 

Figure 5: Combination of parallel and serial 
connection 

How much protection does the architecture in figure 5 
provide? This determination requires a more subtle 
probabilistic study of the various protection domains. 

’ Here, as in the rest of the paper, we ignore trivial 
comparisons when the probability values achieve the 
boundary values of zero or one. 

63 



Informal model: 

We use an informal model to introduce the concept of 
circuit insecurity, a model that we develop formally in 
section 3. We view a security violation as something 
that flows, with links* that probabilistically allow an 
insecurity violation to flow from node to node. The 
nodes and links form a connected set that we refer to as 
a circuit. Heuristically, one can think of a circuit as a 
network of protection domains. The probability of a 
node being open is p; conversely, it is closed with 
probability l-p. If the node is open, the insecurity flows 
through the node; if the node is closed, the violation 
does not pass through the node. (We do not consider 
the concept of partial flow.) The nodes behave 
independently with respect to their associated 
probabilities. The situation of dependent nodes is not 
addressed in this paper. Independence implies that a 
security violation does not “learn” as it passes through 
different protection domains. As previously noted, 
except for sequencing, time is not taken into 
consideration. This does not mean that time is not a 
consideration in assigning probabilities. The 
probability values are taken as assumptions. Of course 
when one does modeling, the actual time for an attack 
is what sets the probability values. More time for an 
attack would result in a higher probability value. We 
are concerned with the ordering of “events”, not the 
actual time intervals between them. A special node 
exists, called the start node n,, from which insecurity 
flows (the source), and a special node exists called the 
terminal node n,, to which insecurity attempts to flow 
into. Every node ni has a probability pi of permitting the 
insecurity flow. The value of probability for n, or n, is 
always one. We define qi as l-pi. The term qi is the 
probability that the node does not allow an insecurity 
flow. The higher the qi value (conversely the lower the 
pi value), the more secure our node is. For an insecurity 
to flow from n, to n,, at least one path must exist that 
connects n, to n,, such that each node successfully 
passes on the insecurity. Therefore, we see that the flow 
of an insecurity can be analyzed probabilistically. 

Basic Examples, various circuits 22 

SINGLE NODE: 

n-n -+ s “t 

For our preliminary discussions, we do not discuss the 
probabilities of n, or n, . (This is because they are 
implicitly assigned the probabilities of one, which are 
transparent to the calculations.) We concentrate our 
attention on node n with respect to probabilities. Node 

n has probability p of passing the insecurity to n,. Node 
n has a given probability l-p of being a successful 
security device. What if the level p is unacceptable? 
One might simply get a “better” node n, but the cost of 
a better node might well be prohibitive. Maybe two 
nodes identical to node n would give us the requisite 
security, e.g., a lower p value. Let us examine that 
scenario. 

2 SERIAL: 

n,- nl----+ n2- “t 

For the insecurity to flow from n, to n,, both nodes nl 
and n2 must advance the insecurity. For simplicity, in 
this example we assume that pI = p2 = .12; in other 
words, we consider the nodes to be 88% secure. 
Therefore, the probability that the circuit C is insecure 
is 

P(C insecure) = P(ni passes insecurity, n2 passes 
insecurity). 

Since we are assuming independence between the 
nodes, this is simply 

P(ni passes insecurity) l P(n2 passes insecurity) = (. 12)’ 
=.0144 < .12. 

Hence, the serial circuit is more secure than the single 
node circuit. 

2 PARALLEL: 
Now let us examine the case where there might be two 
choices of entrance into n,. 

In this case, it is only necessary that the insecurity flow 
through either nl or n2 (of course, it is possible that it 
flows through both nodes). Again, for simplicity’s 
sake, we let pl = p2 = .12. 

P(C insecure) = 1 -P(Z secure) 
P(C secure) = P(nl secure, n2 secure) = (l-.12)(1-.12) = 
.7744 
Therefore, P(C insecure) = 1 - .7744 = .2256 > .12 
Hence, the parallel circuit is less secure than the single 
node circuit. In other words, two parallel firewalls 
provide less protection than one lirewall. Let us 
expand each node by two nodes in series. 

2 In section four, WC will use edges instead of links. 
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2 PARALLEL/2 SERIAL than a l-circuit. What guidance does our intuition give 
us? The serial part should make it more secure than the 
l-circuit but the parallel part makes it less secure than 
the l-circuit. The two factors must be studied together. 
Let us try some other values for p and see what 
happens. 

We assume that each node has pi = .12 . 

P(C insecure) = 1 - P(C secure) 
P(C secure) = P(top nodes secure, bottom nodes 
secure) 
P(bottom nodes secure) = P(top nodes secure) 

= 1 - P(ni insecure, n2 insecure) 
P(ni insecure, n2 insecure) = P(ni insecure) P(nz 
insecure) =(.12)2 = .0144, so 
P(top nodes secure) = l-.0144 = .9856 
P(top nodes secure, bottom nodes secure) = (.9856)2 
= .9714 
Therefore, P(C insecure) = l-.9714 = .0286 < .2256 
In fact, since .0286 < .12, we are even more secure than 
with one node! Of course, .0286 is greater than .0144, 
the insecurity value associated with two nodes in series. 

Thus, if we have two nodes in parallel, we are always 
better off replacing them with the expanded 2 parallel/2 
serial construction shown above. 

Let us go through our basic architectures with a 
variable value of p for all of the node insecurities. 

SINGLE NODE (1 -circuit): 
P(C insecure) = p 

2 SERIAL (2S-circuit): 
P(C insecure) = P(n, insecure, n2 insecure) = p2 

2 PARALLEL (2P-circuit): 
P(C insecure) = l-P@ secure) 

= l-( P(ni secure, n2 secure) ) = 1-(1-p)’ 

2 PARALLEL/2 SERIAL (2P/2S-circuit): 
P(C insecure) = 1 -P(C secure) 

= I-( P(top branch secure, bottom branch secure) ) 
= I -( P(top branch secure) P(bottom branch secure) ) 
= l-(l-py 

It is intuitive that a 2S-circuit should be more secure 
than a l-circuit. Since p2 < p, we see that this is true. A 
2P-circuit should be less secure than a l-circuit since 
we have two opportunities for insecurity flow. Since l- 
(1-P>2 = p(2-p) > p , we see that a 2P-circuit is less 
secure than a 1 -circuit. Using the p value of .12 from 
above, we showed that the 2P/2S-circuit is more secure 

For p =.12 or .5 the 2P/2S-circuit is more secure than 
the l-circuit. However, for p = .88 the 2P/2S-circuit is 
less secure than the l-circuit. One might assume that 
this is the case because .88>.5. However, .5 is not the 
magic number. 

For p = .6 we may extend the above chart to 

1 2s 2P 2Pf2S 
P 2 l-(1-p)2 1-( 1 -p2)2 

.12 .0114 .2256 .0286 
.5 1 .25 1 .75 .4375 

.88 1 .7744 1 .9856 1 .9491 
.6 1 .35 1 .84 1 .5904 

For p = .6, the 2P/2S-circuit is still more (just barely) 
secure than the l-circuit. Therefore, a p value of .5 is 
not our holy grail. Of course, we just have to solve for 
l-( l-~~)~ = p to obtain the transition value (approx.) 
.618 . We have taken this laborious path with the hope 
that the reader finds this phenomenon as surprising as 
the authors did when they first came upon it [Ml, M2]. 
Therefore, before we use various node topologies to 
obtain the desired level of security, we must carefully 
consider what is going on. 
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Plot 1: Circuit Insecurity vs. node insecurity p 
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The comparison of the insecurity of 1, 2/S, 2P, and 
2P/2S circuits is shown in plot 1. We see that 2P is 
always the least secure, 2s the most secure and 2P/2S 
lies in between the two. What is interesting is that, as a 
node becomes less secure (p + 1) we see that 2P/2S 
switches from being more secure than a single node to 
less secure than a single node. The results are not 
constant across all p values. Therefore, any 
architectural solution that we use must take into 
account the probabilities of the nodes. We must also 
worry about situations where the p value changes from 
node to node. (Note that the 2P/nS circuit that we 
discuss later also has similar “alternating” behavior.) 

Limiting Behavior: 
If we have enough nodes linked together in series, can 
we achieve any desired degree of security? 

If each node ni, i = 1 , . . . ,k has the same probability p, p 
-c 1, of being insecure then the probability that the 
circuit is insecure is P(c insecure) = pk . Since lim k + 
pk = 0, we see that we can, by adding enough nodes into 
the serial link, get our security to within any tolerance 
of perfect security. 

Since P(c insecure) = limk-,, Hi:, pi let us analyze 

P(C insecure) when the p values of the nodes are not 
constant. 

1. pi bounded away from 1: There exists a number 
B < 1, such that Vi , pi < B, then P(C insecure) 
<limk,, Bk=O 

2. 1 is an accumulation point for the (pi ) : An 
example of this is obtained by setting pi = l-lo-‘, 

so P(C insecure) = iimk,, Hi”_, (l-10.‘) = .890 

This is not too startling because the pi are quickly 
approaching one. However, it does tell us that stringing 
enough nodes together in a serial fashion will not 
always give us the security that we may desire. 
However, under the realistic assumption that the 
probabilities of the nodes are bounded away from one, 
we may string enough together to obtain the desired 
level of security. Of course, there is a finite limit to 
how many nodes (protection domains) can be strung 
together. Therefore, one must balance security against 
performance/cost/efficiency. 

What are we to do if we are forced to have a parallel 
architecture in our circuit? Can we, by adding 

additional nodes into the circuit, reduce our insecurity? 
We have seen from above that turning a 2P into a 
2P/2S circuit does increase our security, but it may not 
increase it sufficiently. Consider a 2PlnS circuit. 

P(C insecure) = l-P@ secure) 
= I-P(top secure, bottom secure) 
= l- P(top secure) l P(bottom secure) 

Since P(top secure) = l-Hill pi,i and P(bottom secure) 

= 1 -IIinZi p2.i we see that 

P(C insecure) = 1-(l-Hi”=, pi,J(l-Hi”=, p2.i) 
If, we assume as above, that the pj,i are bounded away 
from one, then 

lim, + Hi”=, pj,i -+ 0, and thus P(C insecure) -+ 0. 

We see that analyzing each circuit on ad hoc basis does 
not work to our advantage. A formal model for 
calculating circuit insecurities would provide a useful 
framework for analyzing both strengths and weaknesses 
of various protection domain architectures. 

4. Formal Model and Discussion 

4.1 Formal Theory 

DEFINITION: A circuit C is a connected graph (we 
refer to the vertices as nodes) with the following 
properties: 
. There are two special nodes: the start node n, and 

the terminal node n,. 
. Each node ni is an independent Bernoulli random 

variable and is assigned a probability pi of being 
insecure and probability l- pi of being secure. 

. ps=pr= 1. 

Given an edge e of C, we let N(e) denote the nodes 
associated with e. This is either a set of one element 
(the corresponding edge is a loop) or two elements. 

The interpretation of this definition is that C models the 
various ways insecurities may flow from the source n, 
to the sink n,. Here we apply the analogy with Moore 
and Shannon’s [Ml, M2] work on the flow of 
electricity in a circuit. To be specific, Moore and 
Shannon examine, without our formalisms, the paths 
necessary to complete an electrical circuit. Their 
analysis also applies to our present problem. What 
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paths (of edges) are necessary to expose all the various 
realistic insecurities of our layered protection system? 

EXAMPLE fl: For example, suppose there are two 
serial security mechanisms Fl and F2 protecting n,. The 
insecurity flows out of n, and then must go through Fl 
and F2. Although a path from n,, to Fl , to F2, to Fl, to 
F2, and finally to n,, is a valid topological path, it 
would be an inefficient path for a penetrator to take. 

ns Fl F2 nt 

Once a penetrator is past Fl, it would have no reason to 
go back to Fl. The interpretation is that Fl is the first 
level of security that is broken, and once it is broken, 
there would no reason to re-break it. 

EXAMPLE f2: This example postulates that there are 
security mechanisms Fl, F2, and F2’. F2 serially 
follows Fl, n, follows both F2 and F2’. However, an 
edge also connects F2 to F2’. 

F2’ 

I\ 
n, Fl F2 nt 

Suppose an insecurity has traveled from n, to Fl to F2. 
Once it passes F2, why would it attempt to go to F2’? 
This would just decrease its chances of getting to n,. 
Once the insecurity is past F2, it has made it to n,! Of 
course, one might ask what F2’ is doing there in the 
first place? We realize that we are stating the obvious 
but we do so to develop a rigorous mathematical 
model. One advantage of a formal model is that we can 
easily identify poor system engineering architectures 
(such as the above), or at least question our decisions 
for further analysis. 

DEFINITION: Given an edge e of C, if N(e) has two 
elements we can assign an orientation to e by 
designating one element of N(e) as Le, and the other 
element of N(e) as eR. If N(e) is a singleton, then e has 
one orientation given by Le = eR = N(e). We say that an 
edge is oriented if it has been assigned an orientation. 

Example: 

a or A - a b 

We have used the term “path” heuristically above. Now 
let us give it a precise definition. 

DEFINITION: An oriented path in C, is a tuple of 
edges, the ilh component being edge ei , along with an 
orientation for each ei , such that eiR = Lei+i. If the tuple 
has m components, we say that the oriented path is of 
length m. 

DEFINITION: We say that an oriented path in C is 
from node a to node b if Lei = a and eZR = b, where el 
(e,) is the first (last) component of the oriented path. 

We designate an oriented path from node a to node b 
by 401 . 

DEFINITION: The signature of an oriented path v[a,b] 
of length m, is the m+l-tuple 
-cLel,el 

R 
, e2R ,..., emR> (which is the same as < a, eiR, 

eqR,..., b> ). 

We use the notation &v[a,b]) for the signature, and in 
the above used <,> instead of { ,) for reasons of clarity. 

EXAMPLE f3: At this point, we will use the more 
generic terminology of nodes, instead of security 
mechanisms/protection domains. We will also continue 
to switch between the ni notation and just alphabetic 
letters to designate the distinct nodes. 

Consider (a subset of) the oriented paths from n, to n, 
(with signatures) <n,,a,b,c,d,n,>, <n,,e,f,g,n,>, <n,,e,n,>, 
<n,,a,b,c,f,g,n,>, <n,,a,b,c,f,e,n,>, and <n,,a,b,c,h,d,n,>. 
The first oriented path corresponds to a layering of 
protection domains a, then b, then c, and the last d. 
The last oriented path is unrealistic; once the insecurity 
has flowed through c, there is no reason to take a 
detour through h (because it would have to go through 
d to get at n,!). Therefore, we must throw out the last 
oriented path. The third oriented path would provide 
an efficient way for a penetrator to attempt to get to n,. 
Seeing such an oriented path would cause one to ask 
“Why is the system designed so that a penetrator can 
bypass the protection domains f and g if you have made 
it past e?” This causes us to also throw the second 
oriented path out as a way of intruding into n,---there is 
no reason to follow the second oriented path if you 
have already gotten through e. Consider the fourth and 
fifth oriented paths. The fourth is a possible means of 
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intrusion if you start out on the first oriented path and 
are unable to get by d. For that matter, if one has 
gotten through a,b,c and f, but are unable to get through 
g, one could go through e instead, and hence the fifth 
oriented path seems reasonable. However, it is not 
reasonable. Using the fifth path one still has to go 
through node e after node f. Therefore a smart 
penetrator would use <n,,e,n,> instead. Thus, our 
analysis leads to the following definitions. 

DEFINITION: Consider the set of all oriented paths in 
C from n, to n, . From this, form the finite subset made 
up of those oriented paths that never repeat an edge. 
We call this set G. 

G has been defined in this way to take, oriented paths 
from n, to n, that do not represent a valid attack path 
(we do not want cycles between nodes), out of 
consideration. Unfortunately, this set G still contains 
unrealistic attack paths (those that unnecessarily branch 
out). 

Begin Process: If g E G (so g is of the form v[n,,n,]) 
we consider the j-tuple 4(g). If the Cj-k)-tuple obtained 
from 4(g) by deleting k components is in fact the 
signature of another element of G we form the set 
G-( g ). End Process 
Repeat this process with G replaced by G-(g) until 
there are no more elements to delete from G. The set 
obtained by exhaustively performing this process is 
called the set of penetratingflows in C, we let n denote 
the set of penetrating flows. We abuse notation and 
denote the set of signatures for all penetrating flows by 
9(fi>. 

Thus, a penetrating flow is simply an oriented path 
from n, to n, satisfying a minimality condition that 
represents a valid attack path. We do not consider the 
complexity of this process. Of course, if one were to 
use this in practice on a large network such things 
should be considered. We do not feel that this 
process/algorithm can be derived from standard 
minimal path algorithms because it is not a 
minimization problem alone. For example in the 2P- 
circuit both paths are “counted”. 

DEFINITION: Given g E G, there is a unique 
penetrating flow in n corresponding to g under the 
above process. We refer to this as the penetrating 
representative of g, and denote it by [g]. 

NOTE: 
I. No node is duplicated in the signature of a 

penetrating flow. 

2. We have an algebraic flavor to our model---we 
may view R as the coset space of G under the 
action of deletion. That is, G maps into Sz via 
deletion and a coset representative is signified by 
[Yl. 

G/deletion = a, and g+[g] 
Further, we see that G = R iff there are no unnecessary 
(in terms of what is required for a realistic security 
breach) oriented paths from n, to n,. Hence, this can be 
taken as the mark of good security architecture. 

Consider Example f3. 
The set of penetrating flows is 

R = { <ns,a,b,c,d,n,>, <n,,e,n,>, <n,,a,b,c,f,g,n,>]. 
The oriented paths <n,,e,f,g,n,>, <n,,a,b,c,f,e,n,> are 

taken out of G because of <n,,e,n,>, and 
<n,,a,b,c,h,d,n,> is removed from G because of 
<n,,a,b,c,d,n,>. 

The set R associated with C represents ways that an 
insecurity could realistically attempt to flow from n, to 
n,. The other oriented paths in G would also let an 
insecurity flow from n, to n, but they would involve 
unnecessary nodes; hence, we do not consider them. 
Note that we have not considered the node probabilities 
yet. Certain oriented paths in R will result in much 
smaller probabilities of penetration to n, from n, than 
others. However, we must consider all of the elements 
of R when it comes to assigning a probability to C 
being insecure. 

At this point, we wish to carefully consider the physical 
intuition behind our definitions. Assume that g E G; if 
we think of n, as the source of an electrical current, we 
wish to examine if the current can flow to n, (there is no 
resistance along the oriented path). The nodes behave 
as gates; they are open with probability pi and closed 
with probability l-pi. If we examine g, there may be 
nodes that do not need to be open for the current to 
flow. Therefore, one does not need to take account of 
the probabilities of those nodes when assigning a 
probability of a security flaw flowing along g. These 
are the nodes that are deleted when we obtain the 
penetrating representative of g. We see that we only 
need to know the probabilities of the nodes being open 
in the penetrating representative of g. Since the 
probabilities of the nodes of [g] are independent we see 
that the probability that current flows thorough [g], and 
hence g , is just the product of the node probabilities of 
kl. 

By using the fact that the nodes are all independent 
Bernoulli random variables we may (in the standard 
manner) generate a c-algebra, and probability measure 
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upon that cT-algebra, so that the following are well 
defined. 

DEFINITION: Given any collection of nodes N of C, 
we define the event, N insecure, as the event that 
every node in N is insecure, n, is insecure, n, is 
insecure, and any other node is either secure or 
insecure. 

The complement of, N insecure, is N secure; i.e., at 
least one node in N is secure. 

Of course, if a node is not in N, except for n, and n,, its 
value is arbitrary with respect to the event of N being 
insecure. Therefore, the probability of, N insecure, 
denoted P(N insecure), is simply the product of the 
node probabilities of the nodes in N. This is due to our 
independence assumption. 

DEFINITION: Given any y E R, we define the event, y 
insecure, to be the event that the set of nodes 
composing 4(y) is insecure. 

This is well defined since no nodes are duplicated in 
4(y). The complement of, y insecure, is, y secure, 
(there is at least one node in y that is secure). If a 
penetrating flow is secure, an insecurity cannot flow 
from the start to the terminal node, and the penetrating 
flow is “safe”. 

We may now view C itself in a probabilistic sense and 
discuss the event that C is insecure. By this, we mean 
that at least one of the penetrating flows is insecure. To 
be precise: 

DEFINITION: We define the event, 2 insecure, by 
C insecure = U ycR (y insecure) = (3y E a, such that y 

insecure}. 

The complement of the event, C insecure, is the event, 
Lsecure, which is the event that every penetrating flow 
is secure. To be precise 

C secure = f&n (y secure) = { Vy E a, y secure} 

Geometrically, penetrating flows y are, aside from n, 
and n, (which they all share), either disjoint or have 
nodes in common. However, even if they do not share 
nodes, the events, y insecure, cannot be considered 
disjoint. We will illustrate this in the following 
example. 

Example f4: 

b 

The set of penetrating flows consists of the following 
two oriented paths: 
l= <n,,a,n,> and 2= <n,,b,n,> . P( 1 insecure) = pa , 
P(2 insecure) = pb, but 
P( 1 insecure fl 2 insecure) = pa pb . The reason for this 
is that the event, 1 insecure, can be written as the 
disjoint union of two sample space elements: 
1 insecure = (all nodes insecure) U (all nodes except 
node b are insecure) 
and similarly: 
2 insecure = (all nodes insecure) U (all nodes except 
node a are insecure) 
Therefore, the intersection of the two events is the 
sample space element 
{all nodes insecure) which has a probability of 
l’p,p,,*l. Thus, 
P(1 insecure U 2 insecure) = P( 1 insecure) + P(2 
insecure)- P(l insecure ll2insecure) 
=Pa+Pb -PaPb 

Example f5: Consider the following more complicated 
circuit: 

c d 

Figure 6: A complicated circuit 

The set R consists of four oriented paths (which we 
give by their signatures): 
Cl = ( 1,2,3,4] 
1 = <n,,a,e,b,n,> 
2= q,c,e,d,n,> 
3= <n,,a,e,d,n,> 
4= <n,,c,e,b,n,> 
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P(C insecure) = P(U,,,( y insecure]) 
= P( 1 insecure u 2 insecure u 3 insecure u 4 insecure) 
= P(1 insecure)+ P(2insecure)+ P(3 insecure) 

+ P(4 insecure) - P( 1 insecure, 2 insecure) 
- P( 1 insecure, 3 insecure) P( 1 insecure, 4 insecure) - 
- P(2 insecure, 3 insecure) P(2 insecure, 4 insecure) - 
- P(3 insecure, 4 insecure) 
+ P(1 insecure, 2 insecure, 3 insecure) 
+ P( 1 insecure, 2 insecure, 4 insecure) 
+ P( 1 insecure, 3 insecure, 4 insecure) 
+ P(2 insecure, 3 insecure, 4 insecure) 
- P( 1 insecure, 2 insecure, 3 insecure, 4 insecure) 

Let us calculate the various terms: 
P( 1 insecure) = 1 ‘p,p,pt,’ 1 = papepb 
P(2 insecure) = pcpepd 
P(3 insecure) = papepd 
P(4 insecure) = pcpepb 
P(l insecure, 2 insecure) = papbpcpd pe. This is because 
the intersection of the two events is the event that every 
node in the circuit is insecure. 
P( 1 insecure, 3 insecure) = p.pbpdpe, since node c being 
insecure is not in the intersection. By this, we mean that 
node c can be either insecure or secure. Hence, pC does 
not enter into the calculation. 
P( 1 insecure, 4 insecure) = papbpCpe 
P(2 insecure, 3 insecure) = papcpdpe 
P(2 insecure, 4 insecure) = pbp$& 
P(3 insecure, 4 insecure) = p&,p&pe 
P(1 insecure, 2 insecure, 3 insecure) = P(l insecure, 2 
insecure, 4 insecure) 
= P( 1 insecure, 3 insecure, 4 insecure) = P(2 insecure, 3 
insecure, 4 insecure) 
= papbpCpdpe, since, in the triple intersections, all nodes 
must be insecure. 
and finally, P(l insecure, 2 insecure, 3 insecure, 4 

p(c insecure) = papbpe + papdpe + PbPcpe + P$dPe 
- PaPbPdPe - PaPbPcPe - PaPcPdPe - PbPcPdPe 

+ PaPbPcPdPe . 

This was a lot of work! What happens if we want to put 
some extra nodes into the circuit and then analyze the 
circuit insecurity after this ? We saw in the previous 
section how introducing extra nodes can affect circuit 
insecurities. What happens if we have a very complex 
circuit? We need an easier way to calculate circuit 
insecurities and to analyze modifications to the security 
architecture. 

4.2 Reduction Formulas 

In this subsection, we extrapolate some of the 
“reduction” type rules put forth in [Ml, M2] to the 
concept of insecurity flow. Our reduction formulas are 
not meant to be exhaustive. These rules may fall short 
when the circuit topology in no longer faithfully 
represented in 2-dimensions (e.g., nodes of a cube). 
We view these reductions as a first step towards a full 
analysis of generalized complex circuits. However, we 
do view series and parallel decomposition along 
bridging nodes to be an important technique and 
present it in this subsection. More complicated 
topologies may be analyzed and used as building 
blocks for further reduction formulas. Note that any 
circuit may be probabilistically analyzed by the “long 
hand” methods presented in the previous subsection. 

If the node e is missing from the above circuit in figure 
6 (equivalent to node e being totally insecure, that is pe 
= l), we have a much simpler circuit 2.“. 

c d 

The middle crossing designates that there are edges 
from a to b, a to d, c to b, and c to d. We will use the 
following “curved heuristic” in our circuit diagrams to 
make this clearer. 

“‘c4.t 

c d 

Figure 7: A simplified circuit 

The left-hand circle is just node a and node c in 
parallel, flowing into a node that is always insecure (the 
“missing” node e), whereas the right-hand circle has 
node b and node d in parallel. The two circles are glued 
in series. We see that three important steps are 
occurring. 
1- Get rid of the central node. 
2- Use a parallel composition rule. 
3- Use a serial composition rule. 
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Let us make this precise. 

DEFINITION: Given circuits C, with edges ‘em and 
nodes ‘ni, and C2 with edges 2ep and nodes ‘nj, we may 
form the serial composition of these two circuits, 
written &and;?, by forming a new circuit from ‘e,, ‘ni , 
*e,,, and 2nj along with a 
new edge E with orientation such that LE = ‘n, and En = 
2ns 

Consider the set of penetrating flows for Ctandz. If y E 
atand*, then the tuple 4(y) must contain the two 
consecutive components ‘n, and 2n8, respectfully. In 
fact, 4(y) is the tuple formed by a valid signature of a 
penetrating flow from fli being the first part of the 
tuple and the valid signature of a penetrating flow from 
fl2 being the second (and last) part of the tuple and visa 
versa. In other words, y E &and2 iff its signature is of 
the form 

4(y) = <in,,. . ., In,, 2ns,. . ., 2n,>, 
where &,..., In,> is the signature of a penetrating 
flow from yl from Ct, and 
<*ns,..., *n3, > is the signature of a penetrating flow y2 
from Cz. Hence, 

P(y insecure) = P(y1 insecure) l P(y2 insecure) 
by the node independence condition. The same holds 
for all of the penetrating paths. 
What about the circuit insecurity? 
P(C,andz insecure) = P(at least one element of Rlandz 
is insecure). However, from above we see that this is 
the same as 
P(at least one element of ai is insecure n at least one 
element of a2 is insecure). 
Since C, and C2 share no nodes the events, at least one 
element of 0, is insecure, and, at least one element of 
fi2 is insecure, are independent. Therefore, 
P(&and2 insecure) 
= P(at least element of fi, is insecure) l P(at least 
element of fi2 is insecure) 
= P(C, insecure) l P(C2 insecure) 

FORMULA: 
P(C,and;? insecure) = P(Ct insecure) . P(& insecure) 

C - &andz, if there are circuits Ct and Cl, such that if 
we take the set $(R,andz) and delete the components 
‘n, and *n, from the signatures, we are then left with 
the set @(a). (It is understood that start and terminal 
nodes are equivalent, and node probabilities are the 
same.) 

To illustrate this let Ct be the circuit: 

n, lnt 

C 

and let C2 be the circuit: 

n, InI 

d 

Let C be the circuit: 

We see 
the four 

c d 

that the four signatures of a, are the same as 
signatures of illand with the middle start and 

terminal nodes removed and the appropriate 
correspondence of the end nodes. 

Since start and terminal node probabilities are 1, we see 
that circuit insecurity values are the same for the circuit 
and its serial decomposition. 

Therefore, if a circuit is serial decomposable, we have 
an “easier” way to calculate the probability of it being 
insecure. That is if C - &and?, then 

P(C insecure) = P(Cland2 insecure) 
= P(Ct insecure) l P(C2 insecure) 

DEFINITION: Given a circuit C we say it is serial 
decomposable to Clandz, written, 
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DEFINITION: Given circuits C1 with edges ‘en and 
nodes ‘ni, and & with edges 2e8 and nodes 2nj, we may 
form the parallel composition of these two circuits, 
written &or2, by forming a new circuit from ‘en, ‘ni , 
‘ep, and ‘nj by taking ‘ns = 2n,, and ‘n, = 2n,. 

The following heuristically represents CIor2 . 

These formulas make precise the probability 
calculations from section 2. 

DEFINITION: We say that node p of C is a bridge if 
there are two signatures of penetrating flows that have 
p as a component with different nodes as the next 
components. 

Now we wish to calculate P(Clor2 insecure). If y is a 
penetrating flow of C10r2, it is either (translating n, 
back into Ins or 2n, and similarly for n,) in Q, or a2, 
(but not both). We will calculate the complementary 
probability, P(&or2 secure). 
That is, what is the probability that every penetrating 
flow is secure? By our above discussion, we see that 
P(Clor2 secure) 

= P(every penetrating flow in C, is secure n every 
penetrating flow in C2 is secure). 

Since the two circuits share no nodes (do not consider 
start and terminal nodes), 
we are taking the intersection of two independent 
events. Hence, 
P(&or2 secure) 

= P(every penetrating flow in C, is secure) 
l P(every penetrating flow in C2 is secure) 

= P(& secure) l P(C2 secure). 
Since for any C, P(C insecure) = I- P(C secure), we 
have 

P(C,or2 insecure) = I- (l- P(C, insecure) )( I- P(& 
insecure) ) 

By using induction we may obviously define, 
&-2or ..n and Cland2and...", and obtain (note 
figures 7&8 in [Ml].) 

P(C1or2or.,,, insecure) = l- ni (1- P(& insecure) ) 
P(Cland2and.. .” insecure) = KIi P(Ci insecure) 

We can also extend serial decomposability in this 
manner. Note we do not discuss parallel 
decomposition, unlike serial decomposition, because no 
extra nodes arc introduced in parallel composition. 
Hence, we can just say that a circuit is the parallel 
composition of two simpler circuits. 

In other words, with respect to penetrating flows, there 
are two or more valid ways for an insecurity to flow 
once an insecurity has breached node /3. We wish to 
see what happens to the insecurity properties of C if p is 
always insecure or always secure. By conditioning we 
have 
P(C insecure) 
= P(C insecure I p insecure) l P@ insecure) + P(C 
insecure I p secure) l (1- P(/? insecure) ) 
Thus, P(C insecure) = pa l P(C insecure I p insecure) + 
(1 -pp) l P(C insecure I p secure) 
This formula can be very useful when calculating the 
probabilities (as we shall show). Note the similarity 
with [Eq. 3, Ml]. 

Let us return to example f5, we see that node e is a 
bridge. So, 
P(C insecure) = pe l P(C insecure I /3 insecure) + (l-p,) 
l P(C insecure I p secure) 
The event (C insecure I /3 insecure) is the event that 
circuit C-’ (as given in figure 7) is insecure. The circuit 
C-” is serial decomposable into Eland 2, 
where Cl is 

a 

ns nt 

and C2 is 

b 

ns v nt 

d 
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We can further simplify both Ci and & since Ci is the 
parallel composition C, or C, and C2 is the parallel 
composttton &, or d . Where 
c, = 

Il.9 
-- 

a I-It 

c, = 

ns C - nt 

Cb = 

ns b- nt 

Cd = 

ns d- nt 

Therefore, 
P(C, insecure) = pa 
P(C, insecure) = pC 
P(cb insecure) = pb 
P(cd insecure) = pd 
So, P(Ci insecure) = l-(1- pa )( l- pJ , and 
P(& insecure) = l-( 1- pb )( 1- pd) . 
Therefore, P&and 2 insecure) 

= [l-(1- Pa )(I- PC)] l [l-(1- Pb )(I- pd) 1 

=[Pil+Pc-PaPcl’[Pb+Pd-PbPdl 

The event (C insecure I /3 secure) = (C insecure I e 
secure) = 0 since e is in the signature of every 
penetrating flow of C. Hence, 
p(c insecure) = pe ’ [pa + PC - pa PC1 [Pb + pd - pb pdl 

+ (I-pe)*O 

= PaPbPe + PaPdPe + PbPcPe + PcPdk - PaPbPdPe - PaPbPcPe 

- PaPcPdPe - PbPcPdPe + PaPbpcPdPe 

This agrees with our previous result and requires much 
less work. 

Let us summarize our techniques for calculating circuit 
insecurities. 

Probabilistically condition on a bridge node being 
insecure or secure, and then attempt to decompose, or 
view as, serial or parallel circuits. 

We will not repeat the examples of adding security 
mechanisms as in the previous section (for the informal 
model). Those same ideas and techniques hold for the 
formal model and show how system designers can add 
nodes to a circuit to increase the security to a desired 
level. However, we stress that the formal model 
described in this section facilitates the analysis of such 
techniques. The strength of our formalism is that it 

separates the “wheat from the chaff’ and provides a 
framework for focusing on the significant parts of the 
problem. Further, our method demonstrates how to 
reduce complex calculations to relatively simple 
parallel and serial constructs, and then apply our 
formulas to those simpler constructs. 

5. Conclusions and Future Work 

Given today’s open, distributed, and complex computer 
systems, security is both increasingly critical and hard 
to attain. The more complex computer systems become, 
the harder the analysis of the security vulnerability of 
the system becomes. Ad hoc methods of analyzing 
security vulnerability have limitations. We have put 
forth a new paradigm of insecurity flow and quantified 
its security via a formal mathematical model. Our 
paradigm is useful to analyze the security vulnerability 
even before the security measures are deployed. It 
specifically helps the security designer to 

. find the security vulnerability of the system 

. find redundant or useless security measures 

. find efficient ways to add security mechanisms. 
This paradigm also allows the security architect to 
design security measures based on security 
vulnerability versus cost analysis. 

When the system is too complex, the model associated 
with our paradigm allows a decomposition into simpler 
system models for ease of analysis. The analysis results 
of simpler models can be combined to analyze the 
security vulnerability of the complex model as a whole. 

If the community finds our work of interest, we may 

. extend our thinking beyond Bernoulli percolation 
type models, 

. extend our paradigm of insecurity flow to 
incorporate dependencies among the protection 
domains, 

. investigate critical probabilities that would insure 
an insecure system, and 

. investigate if further concepts in dynamical 
systems can be applied to security. 

We also wish to contrast our work against the 
complementary graph-theoretical work in [Dl], [D2], 
and [0] where arcs represent security values, and nodes 
represent the security-related subjects of a particular 
system. In addition, further reduction formulas need to 
be developed to deal with more complex circuit 
topologies. 
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