
An Insecurity Flow Model

Ira S. Moskowitz and Myong H. Kang
Centerfor High Assurance Computer Systems

Information Technology Division, Mail Code 5540
Naval Research Laboratory, Washington, DC 20375 USA

ABSTRACT

We examine a new way of looking at security
violations, called insecurity flow. We express our new
paradigm via a formal mathematical model that
combines elements of graph theory and discrete
probability. Prior work by Moore and Shannon on
building reliable circuits out of unreliable components,
and the physics community’s interest in dynamical
systems, especially percolation theory, motivates our
work.

1. A New Paradigm

We wish to analyze how insecurity may spread
throughout composed protection schemes. System
(information) insecurity can be investigated in many
different ways. Previous work on this area has been
concerned with information flow; by looking at the
capacity of a covert channel [Mi], or investigating
which variants of noninterference hold upon system
composition [MC]. This previous work is limited to
multilevel security. The concept of illicit information
flow is certainly important and well documented.
However, we wish to investigate the concept of
insecurity flow, not information flow. Thus, we put
forth a new paradigm dealing with the abstract notion
of an “invader” penetrating through “security holes” of
various protective security domains. We present a
formal model of this new paradigm of insecurity flow
by using graph and discrete probability theory. Prior
work exists using graph theory and/or probability
theory [Dl], [D2], [0], [Le], [LB] to model system
reliability. However, those probabilistic models analyze
how the probability of “breaking in” varies with time.
Our paradigm views a “break in” as a O/l proposition.
The breach either happens or does not happen. It does
not, like the reliability-based work, happen
asymptotically

1997 New Security Paradigms Workshop Langdale, Cumhria IJK
O-89791-986-6/97/9

in time. In our paradigm, there is no concept of time
other than one penetration following another. The time
spent for an insecurity to flow past some protective
layer is not a factor once we set the probabilities. We
are simply concerned with whether or not an insecurity
can or cannot make it past the protection. Our model is
not concerned with whether an insecurity can “back
track” out. The security violation is simply that the
protective layers have broken down and the insecurity
has been able to flow in. In other words, something
only has to become “infected” or “burnt” for the
violation to take place.

An insecurity flow is similar to fire spreading through
an entire forest or a liquid spreading through a porous
material. Those topics have been analyzed in the
physics world via percolation theory [W],[La]. We
have extrapolated this idea of percolation to security by
looking at the abstract notion of an insecurity flowing
from a source to a sink. The source is the point where
the invader starts out and the sink is the repository of
the information that we are attempting to protect. Once
the insecurity has reached the sink, the game is over.
There is no concept of partial flow; the insecurity either
makes it through, or it does not. We are not interested
in noninterference and all of its children, since we are
not composing MLS systems. We are attempting to
protect something. What we are composing are the
protective layers, not any underlying MLS systems.

2. Introduction

2.1 Protection Domains

A motivation for our paradigm is to mathematically
model the effects of using different architectures of
various protection domains (e.g. firewalls) to protect
against insecurity flow in today’s open and distributed
computing environment. In this environment, physical
access control alone does not adequately protect
organizations’ computing resources. Now organizations
must protect their resources within globally networked
environments. Organizations can protect their
computing assets (e.g., information and resources) by
establishing protection domains [C] which contain

61

groups of related components. Protection domains can
be established by separating the components both
physically and logically.

Each protection domain may possess a security policy
and may receive insecurity flow protection via security
mechanisms such as firewalls, domain type
enforcement mechanisms [B], discretionary access
controls, mandatory access controls, etc. Some
organizations may choose to employ a combination of
security measures instead of just one security
mechanism.

When many entry points for insecurity flow exist in
security protection domains, it becomes more difficult
to analyze the system’s vulnerability as a whole. Some
questions for a security designer are:

1. Which is the most vulnerable path for insecurity
flow? What can make this vulnerable path more
secure’?

2. Is there any redundant or useless security
protection measure?

3. Is one strong security measure better than two
weaker security measures (assuming that a strong
security mechanism costs more than two weaker
mechanisms)‘?

As computer systems grow more complex, it becomes
harder to analyze the vulnerability of insecurity flow of
systems using ad hoc methods. To codify our new
paradigm, we introduce a formal model to analyze the
insecurity flow of distributed computer systems. We
model the probability of “security violation” that exists
despite security protection mechanisms. The work of
Moore and Shannon on reliable electrical components
[Ml,M2] inspired our model. After the presentation of
this paper, we came upon very similar ideas in [K]. In
particular it is the discussion of electrical circuits and
De Montmort’s theorem in Appendix A of [K] (which
was also in the original 1946 edition) that is similar.
Instead of current flow, we look at insecurity flow. We
also introduce techniques that simplify the analysis of
security vulnerability by decomposing a complex
network into many simpler networks.

2.2 Independence

In this paper, we assume that every protection domain
behaves in an independent manner. One reason for this
is that it makes our mathematics easier because
independent probabilities multiply. We are introducing
a new concept in security. Therefore, we are taking the
first steps by using simplifying assumptions. We will
study more complex interactions in future work. In fact,
the mathematics in this paper can be easily equipped to
handle dependencies between protection domains by

using conditional probabilities, instead of the atomic
probabilities that we do use.

Another reason for independence is that independence
models good architectural decisions. Arguing from the
viewpoint of strength we would not want to have the
compromise of one safeguard influence the penetration
of another safeguard. If the violation of one protection
domain influences the probability of breaking through a
different protection domain either (1) drop the
independence assumption, or (2) consider changing the
design of the protection domains so they are
independent. For example, if a specific password
allows an insecurity to flow into one protection domain,
one obviously would not want to use the same
password in another protection domain.

3. Protection Domains & Heuristic Modeling

Protection domains contain groups of related
components. Protection domains can be established by
both physical and logical separation and can be
organized as hierarchies (levels). For example, a
protection domain, PD 1, may contain two protection
subdomains, PDl 1 and PD12 (see figure 1).
Components within the smallest protection domains
(the double indexed protection domains) are assumed
to trust each other and thus have no need for security
services.

pi

Figure 1: Hierarchies of protection domains

Let the probability of an insecurity flow through the
security boundary of PD be P,, the probability of an
insecurity flow through the security boundary of PDl
be P,, and the probability of an insecurity flow through
the security boundary of PDll be Pk ,In this paper we
view the probability assignments as givens. (Of course
how one takes real systems and assigns probabilities is
extremely important. For example, the difference if an
intruder has five minutes or five months to attempt to
break into a PD must be taken into account in assigning
probabilities.) The strength of the system in figure 1,

62

with respect to insecurity flow, can be modeled as
follows:

Figure 2: Serial connection

As mentioned, we assume that the organization has
constructed protection domains to operate in an
autonomous and distinct manner (hence, the
probabilities of breaking in are independent). Thus, we
see that an insecurity has probability Pi of its insecurity
flowing into PD, P,P, of flowing into PDl, and P,P,P,
of flowing into PDI 1. Note that P;PjPk is less than any
of the PO , cc. = i&k. This accords with our intuitive
notion that the concatenation of protection domains in a
serial manner increases security. (Note, in [Le], the
cascading effects of TCBs were analyzed.)

Let us consider another example. An organization may
consist of several departments, with their computing
resources connected by the organization’s intranet. This
heuristic modeling contains organizational assets,
insiders, and outsiders. For example, the organization
may set up its security measures as follows:
I. A firewall protects the organization’s protection

boundary, and
2. Simple access controls protect the departments’

protection boundaries.

An organization may consist of geographically
distributed and distinct protection domains, some of
which may forge protected communication links into a
virtual protection domain, as shown in figure 3. We
assume that no intrusion is possible into communication
links from the exterior; hence, the bold
them in figure 3.

lines around

Interface 2 Interface 3

Figure 3: Virtual protection domain

Heuristically, we model the strength of protection
domain PD of the system in figure 3 as follows:

Figure 4: Three protection domains in parallel

Again, the protection domains are constructed in an
independent manner. That is, the probability of an
insecurity flowing through each interface is
independent. However, for the sake of simplicity they
all have the same probability Pj. In this parallel
architecture, an insecurity has three separate routes (the
interfaces) to flow into PD. Therefore, an intruder has
a chance of flowing into PD in three different ways.

The event that there is a security violation (successful
insecurity flow) is complementary to the event that
there is not a security violation. The probability that
there is not a security violation is (I-P,)“. Therefore, the
probability that there is a security violation is l- (l-P,)“.
Since I- (l-Pj)3 > Pj, the above architecture provides
less security than does a single protective domain.’
Note that the same would hold if each interface had
distinct probabilities of insecurity flow.

With respect to an insecurity flow of the system in
figure 3, we model the strength of protection domain
PDl as follows:

Figure 5: Combination of parallel and serial
connection

How much protection does the architecture in figure 5
provide? This determination requires a more subtle
probabilistic study of the various protection domains.

’ Here, as in the rest of the paper, we ignore trivial
comparisons when the probability values achieve the
boundary values of zero or one.

63

Informal model:

We use an informal model to introduce the concept of
circuit insecurity, a model that we develop formally in
section 3. We view a security violation as something
that flows, with links* that probabilistically allow an
insecurity violation to flow from node to node. The
nodes and links form a connected set that we refer to as
a circuit. Heuristically, one can think of a circuit as a
network of protection domains. The probability of a
node being open is p; conversely, it is closed with
probability l-p. If the node is open, the insecurity flows
through the node; if the node is closed, the violation
does not pass through the node. (We do not consider
the concept of partial flow.) The nodes behave
independently with respect to their associated
probabilities. The situation of dependent nodes is not
addressed in this paper. Independence implies that a
security violation does not “learn” as it passes through
different protection domains. As previously noted,
except for sequencing, time is not taken into
consideration. This does not mean that time is not a
consideration in assigning probabilities. The
probability values are taken as assumptions. Of course
when one does modeling, the actual time for an attack
is what sets the probability values. More time for an
attack would result in a higher probability value. We
are concerned with the ordering of “events”, not the
actual time intervals between them. A special node
exists, called the start node n,, from which insecurity
flows (the source), and a special node exists called the
terminal node n,, to which insecurity attempts to flow
into. Every node ni has a probability pi of permitting the
insecurity flow. The value of probability for n, or n, is
always one. We define qi as l-pi. The term qi is the
probability that the node does not allow an insecurity
flow. The higher the qi value (conversely the lower the
pi value), the more secure our node is. For an insecurity
to flow from n, to n,, at least one path must exist that
connects n, to n,, such that each node successfully
passes on the insecurity. Therefore, we see that the flow
of an insecurity can be analyzed probabilistically.

Basic Examples, various circuits 22

SINGLE NODE:

n-n -+ s “t

For our preliminary discussions, we do not discuss the
probabilities of n, or n, . (This is because they are
implicitly assigned the probabilities of one, which are
transparent to the calculations.) We concentrate our
attention on node n with respect to probabilities. Node

n has probability p of passing the insecurity to n,. Node
n has a given probability l-p of being a successful
security device. What if the level p is unacceptable?
One might simply get a “better” node n, but the cost of
a better node might well be prohibitive. Maybe two
nodes identical to node n would give us the requisite
security, e.g., a lower p value. Let us examine that
scenario.

2 SERIAL:

n,- nl----+ n2- “t

For the insecurity to flow from n, to n,, both nodes nl
and n2 must advance the insecurity. For simplicity, in
this example we assume that pI = p2 = .12; in other
words, we consider the nodes to be 88% secure.
Therefore, the probability that the circuit C is insecure
is

P(C insecure) = P(ni passes insecurity, n2 passes
insecurity).

Since we are assuming independence between the
nodes, this is simply

P(ni passes insecurity) l P(n2 passes insecurity) = (. 12)’
=.0144 < .12.

Hence, the serial circuit is more secure than the single
node circuit.

2 PARALLEL:
Now let us examine the case where there might be two
choices of entrance into n,.

In this case, it is only necessary that the insecurity flow
through either nl or n2 (of course, it is possible that it
flows through both nodes). Again, for simplicity’s
sake, we let pl = p2 = .12.

P(C insecure) = 1 -P(Z secure)
P(C secure) = P(nl secure, n2 secure) = (l-.12)(1-.12) =
.7744
Therefore, P(C insecure) = 1 - .7744 = .2256 > .12
Hence, the parallel circuit is less secure than the single
node circuit. In other words, two parallel firewalls
provide less protection than one lirewall. Let us
expand each node by two nodes in series.

2 In section four, WC will use edges instead of links.

64

2 PARALLEL/2 SERIAL than a l-circuit. What guidance does our intuition give
us? The serial part should make it more secure than the
l-circuit but the parallel part makes it less secure than
the l-circuit. The two factors must be studied together.
Let us try some other values for p and see what
happens.

We assume that each node has pi = .12 .

P(C insecure) = 1 - P(C secure)
P(C secure) = P(top nodes secure, bottom nodes
secure)
P(bottom nodes secure) = P(top nodes secure)

= 1 - P(ni insecure, n2 insecure)
P(ni insecure, n2 insecure) = P(ni insecure) P(nz
insecure) =(.12)2 = .0144, so
P(top nodes secure) = l-.0144 = .9856
P(top nodes secure, bottom nodes secure) = (.9856)2
= .9714
Therefore, P(C insecure) = l-.9714 = .0286 < .2256
In fact, since .0286 < .12, we are even more secure than
with one node! Of course, .0286 is greater than .0144,
the insecurity value associated with two nodes in series.

Thus, if we have two nodes in parallel, we are always
better off replacing them with the expanded 2 parallel/2
serial construction shown above.

Let us go through our basic architectures with a
variable value of p for all of the node insecurities.

SINGLE NODE (1 -circuit):
P(C insecure) = p

2 SERIAL (2S-circuit):
P(C insecure) = P(n, insecure, n2 insecure) = p2

2 PARALLEL (2P-circuit):
P(C insecure) = l-P@ secure)

= l-(P(ni secure, n2 secure)) = 1-(1-p)’

2 PARALLEL/2 SERIAL (2P/2S-circuit):
P(C insecure) = 1 -P(C secure)

= I-(P(top branch secure, bottom branch secure))
= I -(P(top branch secure) P(bottom branch secure))
= l-(l-py

It is intuitive that a 2S-circuit should be more secure
than a l-circuit. Since p2 < p, we see that this is true. A
2P-circuit should be less secure than a l-circuit since
we have two opportunities for insecurity flow. Since l-
(1-P>2 = p(2-p) > p , we see that a 2P-circuit is less
secure than a 1 -circuit. Using the p value of .12 from
above, we showed that the 2P/2S-circuit is more secure

For p =.12 or .5 the 2P/2S-circuit is more secure than
the l-circuit. However, for p = .88 the 2P/2S-circuit is
less secure than the l-circuit. One might assume that
this is the case because .88>.5. However, .5 is not the
magic number.

For p = .6 we may extend the above chart to

1 2s 2P 2Pf2S
P 2 l-(1-p)2 1-(1 -p2)2

.12 .0114 .2256 .0286
.5 1 .25 1 .75 .4375

.88 1 .7744 1 .9856 1 .9491
.6 1 .35 1 .84 1 .5904

For p = .6, the 2P/2S-circuit is still more (just barely)
secure than the l-circuit. Therefore, a p value of .5 is
not our holy grail. Of course, we just have to solve for
l-(l-~~)~ = p to obtain the transition value (approx.)
.618 . We have taken this laborious path with the hope
that the reader finds this phenomenon as surprising as
the authors did when they first came upon it [Ml, M2].
Therefore, before we use various node topologies to
obtain the desired level of security, we must carefully
consider what is going on.

1 ..__
_/ _a’

0.8.
, _/' ,_I' ,"^ I ,/' ,' , ,,"

_I ‘.,-
,/

0.6~
,_,' +;-

2q,-.’ ,./-

,/”

0.4 , ,' 'I ~,,,,,,,~~~~-!,
o.2

,,,, y ____.- /,'
' ' /*. *" __' 2s

0.2 0.4 0.6 0.8 1

Plot 1: Circuit Insecurity vs. node insecurity p

65

The comparison of the insecurity of 1, 2/S, 2P, and
2P/2S circuits is shown in plot 1. We see that 2P is
always the least secure, 2s the most secure and 2P/2S
lies in between the two. What is interesting is that, as a
node becomes less secure (p + 1) we see that 2P/2S
switches from being more secure than a single node to
less secure than a single node. The results are not
constant across all p values. Therefore, any
architectural solution that we use must take into
account the probabilities of the nodes. We must also
worry about situations where the p value changes from
node to node. (Note that the 2P/nS circuit that we
discuss later also has similar “alternating” behavior.)

Limiting Behavior:
If we have enough nodes linked together in series, can
we achieve any desired degree of security?

If each node ni, i = 1 , . . . ,k has the same probability p, p
-c 1, of being insecure then the probability that the
circuit is insecure is P(c insecure) = pk . Since lim k +
pk = 0, we see that we can, by adding enough nodes into
the serial link, get our security to within any tolerance
of perfect security.

Since P(c insecure) = limk-,, Hi:, pi let us analyze

P(C insecure) when the p values of the nodes are not
constant.

1. pi bounded away from 1: There exists a number
B < 1, such that Vi , pi < B, then P(C insecure)
<limk,, Bk=O

2. 1 is an accumulation point for the (pi) : An
example of this is obtained by setting pi = l-lo-‘,

so P(C insecure) = iimk,, Hi”_, (l-10.‘) = .890

This is not too startling because the pi are quickly
approaching one. However, it does tell us that stringing
enough nodes together in a serial fashion will not
always give us the security that we may desire.
However, under the realistic assumption that the
probabilities of the nodes are bounded away from one,
we may string enough together to obtain the desired
level of security. Of course, there is a finite limit to
how many nodes (protection domains) can be strung
together. Therefore, one must balance security against
performance/cost/efficiency.

What are we to do if we are forced to have a parallel
architecture in our circuit? Can we, by adding

additional nodes into the circuit, reduce our insecurity?
We have seen from above that turning a 2P into a
2P/2S circuit does increase our security, but it may not
increase it sufficiently. Consider a 2PlnS circuit.

P(C insecure) = l-P@ secure)
= I-P(top secure, bottom secure)
= l- P(top secure) l P(bottom secure)

Since P(top secure) = l-Hill pi,i and P(bottom secure)

= 1 -IIinZi p2.i we see that

P(C insecure) = 1-(l-Hi”=, pi,J(l-Hi”=, p2.i)
If, we assume as above, that the pj,i are bounded away
from one, then

lim, + Hi”=, pj,i -+ 0, and thus P(C insecure) -+ 0.

We see that analyzing each circuit on ad hoc basis does
not work to our advantage. A formal model for
calculating circuit insecurities would provide a useful
framework for analyzing both strengths and weaknesses
of various protection domain architectures.

4. Formal Model and Discussion

4.1 Formal Theory

DEFINITION: A circuit C is a connected graph (we
refer to the vertices as nodes) with the following
properties:
. There are two special nodes: the start node n, and

the terminal node n,.
. Each node ni is an independent Bernoulli random

variable and is assigned a probability pi of being
insecure and probability l- pi of being secure.

. ps=pr= 1.

Given an edge e of C, we let N(e) denote the nodes
associated with e. This is either a set of one element
(the corresponding edge is a loop) or two elements.

The interpretation of this definition is that C models the
various ways insecurities may flow from the source n,
to the sink n,. Here we apply the analogy with Moore
and Shannon’s [Ml, M2] work on the flow of
electricity in a circuit. To be specific, Moore and
Shannon examine, without our formalisms, the paths
necessary to complete an electrical circuit. Their
analysis also applies to our present problem. What

66

paths (of edges) are necessary to expose all the various
realistic insecurities of our layered protection system?

EXAMPLE fl: For example, suppose there are two
serial security mechanisms Fl and F2 protecting n,. The
insecurity flows out of n, and then must go through Fl
and F2. Although a path from n,, to Fl , to F2, to Fl, to
F2, and finally to n,, is a valid topological path, it
would be an inefficient path for a penetrator to take.

ns Fl F2 nt

Once a penetrator is past Fl, it would have no reason to
go back to Fl. The interpretation is that Fl is the first
level of security that is broken, and once it is broken,
there would no reason to re-break it.

EXAMPLE f2: This example postulates that there are
security mechanisms Fl, F2, and F2’. F2 serially
follows Fl, n, follows both F2 and F2’. However, an
edge also connects F2 to F2’.

F2’

I\
n, Fl F2 nt

Suppose an insecurity has traveled from n, to Fl to F2.
Once it passes F2, why would it attempt to go to F2’?
This would just decrease its chances of getting to n,.
Once the insecurity is past F2, it has made it to n,! Of
course, one might ask what F2’ is doing there in the
first place? We realize that we are stating the obvious
but we do so to develop a rigorous mathematical
model. One advantage of a formal model is that we can
easily identify poor system engineering architectures
(such as the above), or at least question our decisions
for further analysis.

DEFINITION: Given an edge e of C, if N(e) has two
elements we can assign an orientation to e by
designating one element of N(e) as Le, and the other
element of N(e) as eR. If N(e) is a singleton, then e has
one orientation given by Le = eR = N(e). We say that an
edge is oriented if it has been assigned an orientation.

Example:

a or A - a b

We have used the term “path” heuristically above. Now
let us give it a precise definition.

DEFINITION: An oriented path in C, is a tuple of
edges, the ilh component being edge ei , along with an
orientation for each ei , such that eiR = Lei+i. If the tuple
has m components, we say that the oriented path is of
length m.

DEFINITION: We say that an oriented path in C is
from node a to node b if Lei = a and eZR = b, where el
(e,) is the first (last) component of the oriented path.

We designate an oriented path from node a to node b
by 401 .

DEFINITION: The signature of an oriented path v[a,b]
of length m, is the m+l-tuple
-cLel,el

R
, e2R ,..., emR> (which is the same as < a, eiR,

eqR,..., b>).

We use the notation &v[a,b]) for the signature, and in
the above used <,> instead of { ,) for reasons of clarity.

EXAMPLE f3: At this point, we will use the more
generic terminology of nodes, instead of security
mechanisms/protection domains. We will also continue
to switch between the ni notation and just alphabetic
letters to designate the distinct nodes.

Consider (a subset of) the oriented paths from n, to n,
(with signatures) <n,,a,b,c,d,n,>, <n,,e,f,g,n,>, <n,,e,n,>,
<n,,a,b,c,f,g,n,>, <n,,a,b,c,f,e,n,>, and <n,,a,b,c,h,d,n,>.
The first oriented path corresponds to a layering of
protection domains a, then b, then c, and the last d.
The last oriented path is unrealistic; once the insecurity
has flowed through c, there is no reason to take a
detour through h (because it would have to go through
d to get at n,!). Therefore, we must throw out the last
oriented path. The third oriented path would provide
an efficient way for a penetrator to attempt to get to n,.
Seeing such an oriented path would cause one to ask
“Why is the system designed so that a penetrator can
bypass the protection domains f and g if you have made
it past e?” This causes us to also throw the second
oriented path out as a way of intruding into n,---there is
no reason to follow the second oriented path if you
have already gotten through e. Consider the fourth and
fifth oriented paths. The fourth is a possible means of

67

intrusion if you start out on the first oriented path and
are unable to get by d. For that matter, if one has
gotten through a,b,c and f, but are unable to get through
g, one could go through e instead, and hence the fifth
oriented path seems reasonable. However, it is not
reasonable. Using the fifth path one still has to go
through node e after node f. Therefore a smart
penetrator would use <n,,e,n,> instead. Thus, our
analysis leads to the following definitions.

DEFINITION: Consider the set of all oriented paths in
C from n, to n, . From this, form the finite subset made
up of those oriented paths that never repeat an edge.
We call this set G.

G has been defined in this way to take, oriented paths
from n, to n, that do not represent a valid attack path
(we do not want cycles between nodes), out of
consideration. Unfortunately, this set G still contains
unrealistic attack paths (those that unnecessarily branch
out).

Begin Process: If g E G (so g is of the form v[n,,n,])
we consider the j-tuple 4(g). If the Cj-k)-tuple obtained
from 4(g) by deleting k components is in fact the
signature of another element of G we form the set
G-(g). End Process
Repeat this process with G replaced by G-(g) until
there are no more elements to delete from G. The set
obtained by exhaustively performing this process is
called the set of penetratingflows in C, we let n denote
the set of penetrating flows. We abuse notation and
denote the set of signatures for all penetrating flows by
9(fi>.

Thus, a penetrating flow is simply an oriented path
from n, to n, satisfying a minimality condition that
represents a valid attack path. We do not consider the
complexity of this process. Of course, if one were to
use this in practice on a large network such things
should be considered. We do not feel that this
process/algorithm can be derived from standard
minimal path algorithms because it is not a
minimization problem alone. For example in the 2P-
circuit both paths are “counted”.

DEFINITION: Given g E G, there is a unique
penetrating flow in n corresponding to g under the
above process. We refer to this as the penetrating
representative of g, and denote it by [g].

NOTE:
I. No node is duplicated in the signature of a

penetrating flow.

2. We have an algebraic flavor to our model---we
may view R as the coset space of G under the
action of deletion. That is, G maps into Sz via
deletion and a coset representative is signified by
[Yl.

G/deletion = a, and g+[g]
Further, we see that G = R iff there are no unnecessary
(in terms of what is required for a realistic security
breach) oriented paths from n, to n,. Hence, this can be
taken as the mark of good security architecture.

Consider Example f3.
The set of penetrating flows is

R = { <ns,a,b,c,d,n,>, <n,,e,n,>, <n,,a,b,c,f,g,n,>].
The oriented paths <n,,e,f,g,n,>, <n,,a,b,c,f,e,n,> are

taken out of G because of <n,,e,n,>, and
<n,,a,b,c,h,d,n,> is removed from G because of
<n,,a,b,c,d,n,>.

The set R associated with C represents ways that an
insecurity could realistically attempt to flow from n, to
n,. The other oriented paths in G would also let an
insecurity flow from n, to n, but they would involve
unnecessary nodes; hence, we do not consider them.
Note that we have not considered the node probabilities
yet. Certain oriented paths in R will result in much
smaller probabilities of penetration to n, from n, than
others. However, we must consider all of the elements
of R when it comes to assigning a probability to C
being insecure.

At this point, we wish to carefully consider the physical
intuition behind our definitions. Assume that g E G; if
we think of n, as the source of an electrical current, we
wish to examine if the current can flow to n, (there is no
resistance along the oriented path). The nodes behave
as gates; they are open with probability pi and closed
with probability l-pi. If we examine g, there may be
nodes that do not need to be open for the current to
flow. Therefore, one does not need to take account of
the probabilities of those nodes when assigning a
probability of a security flaw flowing along g. These
are the nodes that are deleted when we obtain the
penetrating representative of g. We see that we only
need to know the probabilities of the nodes being open
in the penetrating representative of g. Since the
probabilities of the nodes of [g] are independent we see
that the probability that current flows thorough [g], and
hence g , is just the product of the node probabilities of
kl.

By using the fact that the nodes are all independent
Bernoulli random variables we may (in the standard
manner) generate a c-algebra, and probability measure

68

upon that cT-algebra, so that the following are well
defined.

DEFINITION: Given any collection of nodes N of C,
we define the event, N insecure, as the event that
every node in N is insecure, n, is insecure, n, is
insecure, and any other node is either secure or
insecure.

The complement of, N insecure, is N secure; i.e., at
least one node in N is secure.

Of course, if a node is not in N, except for n, and n,, its
value is arbitrary with respect to the event of N being
insecure. Therefore, the probability of, N insecure,
denoted P(N insecure), is simply the product of the
node probabilities of the nodes in N. This is due to our
independence assumption.

DEFINITION: Given any y E R, we define the event, y
insecure, to be the event that the set of nodes
composing 4(y) is insecure.

This is well defined since no nodes are duplicated in
4(y). The complement of, y insecure, is, y secure,
(there is at least one node in y that is secure). If a
penetrating flow is secure, an insecurity cannot flow
from the start to the terminal node, and the penetrating
flow is “safe”.

We may now view C itself in a probabilistic sense and
discuss the event that C is insecure. By this, we mean
that at least one of the penetrating flows is insecure. To
be precise:

DEFINITION: We define the event, 2 insecure, by
C insecure = U ycR (y insecure) = (3y E a, such that y

insecure}.

The complement of the event, C insecure, is the event,
Lsecure, which is the event that every penetrating flow
is secure. To be precise

C secure = f&n (y secure) = { Vy E a, y secure}

Geometrically, penetrating flows y are, aside from n,
and n, (which they all share), either disjoint or have
nodes in common. However, even if they do not share
nodes, the events, y insecure, cannot be considered
disjoint. We will illustrate this in the following
example.

Example f4:

b

The set of penetrating flows consists of the following
two oriented paths:
l= <n,,a,n,> and 2= <n,,b,n,> . P(1 insecure) = pa ,
P(2 insecure) = pb, but
P(1 insecure fl 2 insecure) = pa pb . The reason for this
is that the event, 1 insecure, can be written as the
disjoint union of two sample space elements:
1 insecure = (all nodes insecure) U (all nodes except
node b are insecure)
and similarly:
2 insecure = (all nodes insecure) U (all nodes except
node a are insecure)
Therefore, the intersection of the two events is the
sample space element
{all nodes insecure) which has a probability of
l’p,p,,*l. Thus,
P(1 insecure U 2 insecure) = P(1 insecure) + P(2
insecure)- P(l insecure ll2insecure)
=Pa+Pb -PaPb

Example f5: Consider the following more complicated
circuit:

c d

Figure 6: A complicated circuit

The set R consists of four oriented paths (which we
give by their signatures):
Cl = (1,2,3,4]
1 = <n,,a,e,b,n,>
2= q,c,e,d,n,>
3= <n,,a,e,d,n,>
4= <n,,c,e,b,n,>

69

P(C insecure) = P(U,,,(y insecure])
= P(1 insecure u 2 insecure u 3 insecure u 4 insecure)
= P(1 insecure)+ P(2insecure)+ P(3 insecure)

+ P(4 insecure) - P(1 insecure, 2 insecure)
- P(1 insecure, 3 insecure) P(1 insecure, 4 insecure) -
- P(2 insecure, 3 insecure) P(2 insecure, 4 insecure) -
- P(3 insecure, 4 insecure)
+ P(1 insecure, 2 insecure, 3 insecure)
+ P(1 insecure, 2 insecure, 4 insecure)
+ P(1 insecure, 3 insecure, 4 insecure)
+ P(2 insecure, 3 insecure, 4 insecure)
- P(1 insecure, 2 insecure, 3 insecure, 4 insecure)

Let us calculate the various terms:
P(1 insecure) = 1 ‘p,p,pt,’ 1 = papepb
P(2 insecure) = pcpepd
P(3 insecure) = papepd
P(4 insecure) = pcpepb
P(l insecure, 2 insecure) = papbpcpd pe. This is because
the intersection of the two events is the event that every
node in the circuit is insecure.
P(1 insecure, 3 insecure) = p.pbpdpe, since node c being
insecure is not in the intersection. By this, we mean that
node c can be either insecure or secure. Hence, pC does
not enter into the calculation.
P(1 insecure, 4 insecure) = papbpCpe
P(2 insecure, 3 insecure) = papcpdpe
P(2 insecure, 4 insecure) = pbp$&
P(3 insecure, 4 insecure) = p&,p&pe
P(1 insecure, 2 insecure, 3 insecure) = P(l insecure, 2
insecure, 4 insecure)
= P(1 insecure, 3 insecure, 4 insecure) = P(2 insecure, 3
insecure, 4 insecure)
= papbpCpdpe, since, in the triple intersections, all nodes
must be insecure.
and finally, P(l insecure, 2 insecure, 3 insecure, 4

p(c insecure) = papbpe + papdpe + PbPcpe + P$dPe
- PaPbPdPe - PaPbPcPe - PaPcPdPe - PbPcPdPe

+ PaPbPcPdPe .

This was a lot of work! What happens if we want to put
some extra nodes into the circuit and then analyze the
circuit insecurity after this ? We saw in the previous
section how introducing extra nodes can affect circuit
insecurities. What happens if we have a very complex
circuit? We need an easier way to calculate circuit
insecurities and to analyze modifications to the security
architecture.

4.2 Reduction Formulas

In this subsection, we extrapolate some of the
“reduction” type rules put forth in [Ml, M2] to the
concept of insecurity flow. Our reduction formulas are
not meant to be exhaustive. These rules may fall short
when the circuit topology in no longer faithfully
represented in 2-dimensions (e.g., nodes of a cube).
We view these reductions as a first step towards a full
analysis of generalized complex circuits. However, we
do view series and parallel decomposition along
bridging nodes to be an important technique and
present it in this subsection. More complicated
topologies may be analyzed and used as building
blocks for further reduction formulas. Note that any
circuit may be probabilistically analyzed by the “long
hand” methods presented in the previous subsection.

If the node e is missing from the above circuit in figure
6 (equivalent to node e being totally insecure, that is pe
= l), we have a much simpler circuit 2.“.

c d

The middle crossing designates that there are edges
from a to b, a to d, c to b, and c to d. We will use the
following “curved heuristic” in our circuit diagrams to
make this clearer.

“‘c4.t

c d

Figure 7: A simplified circuit

The left-hand circle is just node a and node c in
parallel, flowing into a node that is always insecure (the
“missing” node e), whereas the right-hand circle has
node b and node d in parallel. The two circles are glued
in series. We see that three important steps are
occurring.
1- Get rid of the central node.
2- Use a parallel composition rule.
3- Use a serial composition rule.

70

Let us make this precise.

DEFINITION: Given circuits C, with edges ‘em and
nodes ‘ni, and C2 with edges 2ep and nodes ‘nj, we may
form the serial composition of these two circuits,
written ∧?, by forming a new circuit from ‘e,, ‘ni ,
*e,,, and 2nj along with a
new edge E with orientation such that LE = ‘n, and En =
2ns

Consider the set of penetrating flows for Ctandz. If y E
atand*, then the tuple 4(y) must contain the two
consecutive components ‘n, and 2n8, respectfully. In
fact, 4(y) is the tuple formed by a valid signature of a
penetrating flow from fli being the first part of the
tuple and the valid signature of a penetrating flow from
fl2 being the second (and last) part of the tuple and visa
versa. In other words, y E &and2 iff its signature is of
the form

4(y) = <in,,. . ., In,, 2ns,. . ., 2n,>,
where &,..., In,> is the signature of a penetrating
flow from yl from Ct, and
<*ns,..., *n3, > is the signature of a penetrating flow y2
from Cz. Hence,

P(y insecure) = P(y1 insecure) l P(y2 insecure)
by the node independence condition. The same holds
for all of the penetrating paths.
What about the circuit insecurity?
P(C,andz insecure) = P(at least one element of Rlandz
is insecure). However, from above we see that this is
the same as
P(at least one element of ai is insecure n at least one
element of a2 is insecure).
Since C, and C2 share no nodes the events, at least one
element of 0, is insecure, and, at least one element of
fi2 is insecure, are independent. Therefore,
P(&and2 insecure)
= P(at least element of fi, is insecure) l P(at least
element of fi2 is insecure)
= P(C, insecure) l P(C2 insecure)

FORMULA:
P(C,and;? insecure) = P(Ct insecure) . P(& insecure)

C - &andz, if there are circuits Ct and Cl, such that if
we take the set $(R,andz) and delete the components
‘n, and *n, from the signatures, we are then left with
the set @(a). (It is understood that start and terminal
nodes are equivalent, and node probabilities are the
same.)

To illustrate this let Ct be the circuit:

n, lnt

C

and let C2 be the circuit:

n, InI

d

Let C be the circuit:

We see
the four

c d

that the four signatures of a, are the same as
signatures of illand with the middle start and

terminal nodes removed and the appropriate
correspondence of the end nodes.

Since start and terminal node probabilities are 1, we see
that circuit insecurity values are the same for the circuit
and its serial decomposition.

Therefore, if a circuit is serial decomposable, we have
an “easier” way to calculate the probability of it being
insecure. That is if C - &and?, then

P(C insecure) = P(Cland2 insecure)
= P(Ct insecure) l P(C2 insecure)

DEFINITION: Given a circuit C we say it is serial
decomposable to Clandz, written,

71

DEFINITION: Given circuits C1 with edges ‘en and
nodes ‘ni, and & with edges 2e8 and nodes 2nj, we may
form the parallel composition of these two circuits,
written &or2, by forming a new circuit from ‘en, ‘ni ,
‘ep, and ‘nj by taking ‘ns = 2n,, and ‘n, = 2n,.

The following heuristically represents CIor2 .

These formulas make precise the probability
calculations from section 2.

DEFINITION: We say that node p of C is a bridge if
there are two signatures of penetrating flows that have
p as a component with different nodes as the next
components.

Now we wish to calculate P(Clor2 insecure). If y is a
penetrating flow of C10r2, it is either (translating n,
back into Ins or 2n, and similarly for n,) in Q, or a2,
(but not both). We will calculate the complementary
probability, P(&or2 secure).
That is, what is the probability that every penetrating
flow is secure? By our above discussion, we see that
P(Clor2 secure)

= P(every penetrating flow in C, is secure n every
penetrating flow in C2 is secure).

Since the two circuits share no nodes (do not consider
start and terminal nodes),
we are taking the intersection of two independent
events. Hence,
P(&or2 secure)

= P(every penetrating flow in C, is secure)
l P(every penetrating flow in C2 is secure)

= P(& secure) l P(C2 secure).
Since for any C, P(C insecure) = I- P(C secure), we
have

P(C,or2 insecure) = I- (l- P(C, insecure))(I- P(&
insecure))

By using induction we may obviously define,
&-2or ..n and Cland2and...", and obtain (note
figures 7&8 in [Ml].)

P(C1or2or.,,, insecure) = l- ni (1- P(& insecure))
P(Cland2and.. .” insecure) = KIi P(Ci insecure)

We can also extend serial decomposability in this
manner. Note we do not discuss parallel
decomposition, unlike serial decomposition, because no
extra nodes arc introduced in parallel composition.
Hence, we can just say that a circuit is the parallel
composition of two simpler circuits.

In other words, with respect to penetrating flows, there
are two or more valid ways for an insecurity to flow
once an insecurity has breached node /3. We wish to
see what happens to the insecurity properties of C if p is
always insecure or always secure. By conditioning we
have
P(C insecure)
= P(C insecure I p insecure) l P@ insecure) + P(C
insecure I p secure) l (1- P(/? insecure))
Thus, P(C insecure) = pa l P(C insecure I p insecure) +
(1 -pp) l P(C insecure I p secure)
This formula can be very useful when calculating the
probabilities (as we shall show). Note the similarity
with [Eq. 3, Ml].

Let us return to example f5, we see that node e is a
bridge. So,
P(C insecure) = pe l P(C insecure I /3 insecure) + (l-p,)
l P(C insecure I p secure)
The event (C insecure I /3 insecure) is the event that
circuit C-’ (as given in figure 7) is insecure. The circuit
C-” is serial decomposable into Eland 2,
where Cl is

a

ns nt

and C2 is

b

ns v nt

d

72

We can further simplify both Ci and & since Ci is the
parallel composition C, or C, and C2 is the parallel
composttton &, or d . Where
c, =

Il.9
--

a I-It

c, =

ns C - nt

Cb =

ns b- nt

Cd =

ns d- nt

Therefore,
P(C, insecure) = pa
P(C, insecure) = pC
P(cb insecure) = pb
P(cd insecure) = pd
So, P(Ci insecure) = l-(1- pa)(l- pJ , and
P(& insecure) = l-(1- pb)(1- pd) .
Therefore, P&and 2 insecure)

= [l-(1- Pa)(I- PC)] l [l-(1- Pb)(I- pd) 1

=[Pil+Pc-PaPcl’[Pb+Pd-PbPdl

The event (C insecure I /3 secure) = (C insecure I e
secure) = 0 since e is in the signature of every
penetrating flow of C. Hence,
p(c insecure) = pe ’ [pa + PC - pa PC1 [Pb + pd - pb pdl

+ (I-pe)*O

= PaPbPe + PaPdPe + PbPcPe + PcPdk - PaPbPdPe - PaPbPcPe

- PaPcPdPe - PbPcPdPe + PaPbpcPdPe

This agrees with our previous result and requires much
less work.

Let us summarize our techniques for calculating circuit
insecurities.

Probabilistically condition on a bridge node being
insecure or secure, and then attempt to decompose, or
view as, serial or parallel circuits.

We will not repeat the examples of adding security
mechanisms as in the previous section (for the informal
model). Those same ideas and techniques hold for the
formal model and show how system designers can add
nodes to a circuit to increase the security to a desired
level. However, we stress that the formal model
described in this section facilitates the analysis of such
techniques. The strength of our formalism is that it

separates the “wheat from the chaff’ and provides a
framework for focusing on the significant parts of the
problem. Further, our method demonstrates how to
reduce complex calculations to relatively simple
parallel and serial constructs, and then apply our
formulas to those simpler constructs.

5. Conclusions and Future Work

Given today’s open, distributed, and complex computer
systems, security is both increasingly critical and hard
to attain. The more complex computer systems become,
the harder the analysis of the security vulnerability of
the system becomes. Ad hoc methods of analyzing
security vulnerability have limitations. We have put
forth a new paradigm of insecurity flow and quantified
its security via a formal mathematical model. Our
paradigm is useful to analyze the security vulnerability
even before the security measures are deployed. It
specifically helps the security designer to

. find the security vulnerability of the system

. find redundant or useless security measures

. find efficient ways to add security mechanisms.
This paradigm also allows the security architect to
design security measures based on security
vulnerability versus cost analysis.

When the system is too complex, the model associated
with our paradigm allows a decomposition into simpler
system models for ease of analysis. The analysis results
of simpler models can be combined to analyze the
security vulnerability of the complex model as a whole.

If the community finds our work of interest, we may

. extend our thinking beyond Bernoulli percolation
type models,

. extend our paradigm of insecurity flow to
incorporate dependencies among the protection
domains,

. investigate critical probabilities that would insure
an insecure system, and

. investigate if further concepts in dynamical
systems can be applied to security.

We also wish to contrast our work against the
complementary graph-theoretical work in [Dl], [D2],
and [0] where arcs represent security values, and nodes
represent the security-related subjects of a particular
system. In addition, further reduction formulas need to
be developed to deal with more complex circuit
topologies.

73

6. Acknowledgments

We especially thank Mara Moss for her helpful
discussions of the robustness of point of sales
transactions, which motivated this paper, along with her
insightful comments on our research in general.

We also thank Earl Boebert, LiWu Chang, Yves
Deswarte, Carl Landwehr, Cathy Meadows, Bruce
Montrose, and Rodolphe Ortalo for their helpful
comments, observations, and comments on earlier
versions of the paper. We also appreciate comments of
the anonymous referees and participants of the
workshop. Research partially supported by the Office
of Naval Research.

7. References

[B] W. E. Boebert and R. Y. Kain, “A Practical
Alternative to Hierarchical Integrity Policies,” Proc. 8”
National Computer Security Conference, Gaithersburg,
MD, 1985.

[Cl OMG, “CORBA Security,” version 1.1 OMG
document Numbers 96-08-03 through 96-08-06, 1996.

[Dl] M. Dacier, “Towards Quantitative Evaluation of
Computer Security,” Doctoral Thesis, LAAS 94488 (in
French), Institut National Polytechnique de Toulouse,
Dec.1994.

[D2] M. Dacier, Y. Deswarte, and M. Kaaniche,
“Quantitative Assessment of Operational Security:
Models and Tools,” LAAS Research Report 96493,
May 1996 (Extended version of “Models and Tools for
Quantitative Assessment of Operational Security,”
Proc. IFIP/SEC’96).

[K] B.O. Koopman, “Search and Screening,”
Pergamon Press, Inc, New York, 1980.

[La] P.M. Lam, “A Percolation Approach to the
Kauffman Model,” Journal of Statistical Physics, Vol.
50, Nos. 516, pp. 1263-1269, 1988.

[LB] B. Littlewood, S. Brocklehurst, N. Fenton, P.
Mellor, S. Page, and D. Wright, “Towards Operational
Measures of Computer Security,” Journal of Computer
Security, 2, pp. 21 l-229, 1993.

[Le] T.M.P. Lee. “Statistical Models of Trust: TCB’s
vs. People,” Proceedings of 1989 IEEE Symposium on
Security and Privacy, IEEE CS Press, 1989.

[MC] J. McLean, “A General Theory of Composition
for Trace Sets Closed Under Selective Interleaving
Functions,” Proceedings of 1994 IEEE Symposium on
Research in Security and Privacy, IEEE Press, 1994.

[Mi] J.K. Millen, “Covert Channel Capacity,”
Proceedings of 1987 IEEE Symposium on Security and
Privacy, pp. 60-73, IEEE CS Press, 1987.

[Ml] E.F. Moore and C.E. Shannon, “Reliable Circuits
Using Less Reliable Relays I,” Journal Franklin
Institute, Vol. 262, pp.l91-208, Sept., 1956.

[M2] E.F. Moore and C.E. Shannon, “Reliable Circuits
Using Less Reliable Relays II,” Journal Franklin
Institute, Vol. 262, pp.281-297, Oct., 1956.

[0] R. Ortalo, Y. Deswarte, M. Kaaniche,
“Experimenting with Quantitative Evaluation Tools for
Monitoring Operational Security,” Proc. 6’h
International Working Conference of Dependable
Computing for Critical Applications, Grainau,
Germany, March, 1997.

[W] J.C. Wierman, “Percolation Theory,” The Annals
of Probability, Vol. 10, No. 3, pp. 509-524, 1982.

74

