
Meta Objects for Access Control:
Extending Capability-Based Security

Thomas Riechmunn, Franz J. Hauck

University of Erlangen-Niirnberg
Department of Computer Science IV

Martens&. 1, D-91058 Erlangen, Germany
(riechmann,hauck} @informatik.uni-erlangen.de

http://www4.informatik.uni-erlangen.de/- (riechman,hauck}/

Abstract
Object-based programming is becoming more and more popular
and is currently conquering the world of distributed programming
models. In object-based systems, access control is often based on
capabilities, as capability-based security is a well-known paradigm.
It has been extended by means to restrict, revoke, and expire capa-
bilities.

On the other hand, capabilities have serious drawbacks. First, in ob-
ject-based systems, programming is based on the frequent exchange
of object references (i.e., capabilities). Thus, it is hard to check
which parts of an application are able to gain control of a certain ca-
pability. This becomes even harder if we consider distributed ob-
ject-based systems like Java RMI and CORBA. Second. a capability
usually cannot prevent method invocations from leaking unprotect-
ed references as return values. Transitive access control is not pos-
sible in a transparent way, which is independent of the code describ-
ing the invocation.
We present a new security paradigm based on meta objects. Meta
objects can be attached to object references and control access to the
corresponding objects. Meta objects offer the same functionality as
capability-based security. In addition. they can be used for implicit
and transitive access control of object references passed as a param-
eter or as a result. Such a reference can be automatically protected
by the meta object by attaching itself or another meta object to the
reference before passing it on.
Meta objects can implement arbitrary and user-defined security pol-
icies. They help to separate security policies from application code,
and thus support reuse.

Pemxission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
o&wise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1997 New Security Paradigms Workshop Langdale, Cumbria UK
Copyright ACM 1998 O-89791-986--6/97/ 9...$5.00

1 Introduction
The object-based programming paradigm is becoming more and
more popular. Currently, it is conquering the world of distributed
programming models. CORBA [OMG95] and DCOM [BrK96,
Mic961 are two strong candidates for very popular models of the fu-
ture. In object-based systems, access control is often based on capa-
bilities, as capability-based security is a well-known paradigm
[DeH66, L&4]. In reference-based object systems a reference to
an object is per se a capability: if you have a capability then you
have full access to the object. Thus, capabilities are a very natural
security paradigm for object-based programming.

Some capability-based systems allow restriction of access by
attaching access rights to the capability (e.g., Amoeba [Tan861 and
Mach [Ras86]). Access is denied if the client’s capability does not
include the necessary rights. Other systems allow capabilities to be
revoked--that is, withdrawn by the issuer (e.g., CORBA
[OMCZXa]). An exception is raised, if a client tries to access the
corresponding object after the revocation. Other systems allow ca-
pabilities to expire and thus to be valid only for a certain period of
time (e.g., Kerberos V5 [KoN93], which is used in DCE [OSF92]).
After expiration, clients have to get a new capability or cannot ac-
cess the corresponding object any longer. Some newer security
models allow user-defined restriction of a capability by attaching a
script to it which implements the appropriate access security policy
(Active Capabilities, [CQLt96]).

On tbe other hand, capabilities have serious drawbacks. First,
object-based programming is based on the frequent exchange of ob-
ject references (i.e., capabilities). For large applications, it is almost
impossible to verify and guarantee that a part of the application can-
not gain access to a certain capability. This becomes even harder if
we consider distributed object-based systems like Java RMI
[Sun961 or CORBA. While reviewing such an object-based system,
in this case the Spring operating system [SunXa]‘, we found that
this problem led to an almost procedural style of programming of
the application parts. Object-reference passing happens rarely and
there are only few references between application parts. This led to

1. We refer especially to the interaction between user level and
kernel and between different nodes.

17

very large interfaces and objects. Security aspects seem to contra-
dict basic principles of object-based programming and force pro-
grammers to dilute their design principles.

Second, a capability usually cannot prevent method invocations
from leaking unprotected references to untrusted objects. In Hydra
[WCC+74], it is possible to restrict propagation of references to
other objects, but this is too restrictive because object-based pro-
gramming is heavily based on the propagation of references. Thus,
we do not want to stop propagation of capabilities but add access
control. In capability-based systems, this can be done by explicitly
restricting the access rights. The involved classes (probably even
from class libraries) have to be reviewed and modified to perform
security checks and return or pass restricted references. As normal
object-based programming implies a frequent exchange of object
references, many classes and methods have to be adapted to enable
full access control. Access control becomes nonorthogonal and re-
stricts the reuse of code. What we need is implicit and transitive ac-
cess control.

Some object-based systems (e.g., Java [Fla96],[Sun95b],
DSOM [BBN96] and Legion [WWK96]) try to solve these prob-
lems with domain-based policies or ACLs, which are user-definable
in DSOM and Legion. While domain-based policies do not entail
the described problems, they suffer from proxy problems as we will
see in Section 4. ACLs also suffer from the problem of leaking un-
protected references to untrusted application parts.

In this paper, we present a novel security paradigm based on se-
curity meta objects (SMOs). One or multiple meta objects can be. at-
tached to an object reference. They control access to the target ob-
ject via this reference. A method of the meta object is automatically
invoked by the run-time system when a method is called using this
reference. The meta object’s check method can decide whether ac-
cess is to be granted or not. Meta objects offer the same functional-
ity as capabilities. In addition, they can be used to provide implicit
and transitive access control for object references passed as a pa-
rameter or as a result. These references can be automatically pro-
tected by the meta object by attaching itself or another meta object
to each of them before passing them on.

Meta objects have the advantage that they can implement arbi-
trary and user-defined security policies. They help to separate sccu-
rity policies from application code, and thus support reuse. Above
all, the application objects can be designed without considering se-
curity.

This paper is structured as follows: In Section 2, we present our
model for access control by SMOs and provide the mechanisms for
implementing the same functionality as with capabilities. Then, in
Section 3, we describe how SMOs extend the usual behavior of ca-
pability-based security by introducing transitive access control.
Section 4 will briefly compare SMOs to domain-based security sys-
tems. Finally, in Section 5, we present our conclusion and refer to
future work.

2 Access Control by Meta Objects

In this section, we describe our security model for access control
using security meta objects. We assume that we have an object-
hased programming model that does not allow any access to objects
except by invoking methods using object references, as is the case,
for example, with Java and its Bytecode Verifier [Sun95]. For sim-
plicity, we do not allow access to instance variables through refer-
ences, but our model could easily be extended to handle this. We
also assume that object references are safe, that is, they are only
generated and controlled by a trusted runtime system and cannot be
faked.

As in most object-based models, we see object references as ca-
pabilities. If a client has an object reference at hand, it can access
the corresponding object. If a client cannot get an object reference
to an object, it is not able to access it. We extend this simple model
by adding the possibility to attach one or more special objects to an
object reference. These special objects are invoked for each securi-
ty-relevant operation on the object reference. The special objects
are not visible to the application; that is, protected and unprotected
object references look the same to the application. In general, such
special objects can be considered as meta objects [Mae87]; we call
them security metu objects or SMOs for short.

.- -----) Reference

Fig. 2.1 A reference with an attached security meta object

SMOs are attached on a per-reference basis. There may be
many references to an object, each with a different set of attached
SMOs. Fig. 2.1 shows an object reference stored in variable vl,
which is protected by the meta object anSM0. The meta object re-
stricts the accessibility of the object anOb j ec t via this reference.
There may be other references to the same object in the system, like
the one stored in variable v2, which are not protected or protected
by a different meta object.

If a client invokes a method via a protected reference, a special
check method of the meta object is implicitly invoked. This method
gains access to some meta information, such as name and parame-
ters of the method to be invoked. The check method can decide
whether it wants to grant access or not. To grant access, it returns
control to the run-time system, which continues with the method in-
vocation. If access is to be denied, an exception is raised or the in-
vocation is terminated with an error result.

We allow anyone to attach an SMO to an object reference. Sev-
eral SMOs can be bound to the same reference. In this case these
meta objects am asked sequentially before access is granted. A sin-
gle SMO can be used to protect multiple references. Of course, it is
not possible to detach SMOs from a reference unless the security
meta object removes itself.

2.1 Modeling Capabilities
In principle, capabilities introduce three additional concepts to ob-
ject references: restriction of access, revocation, and expiration. Re-
striction of access is easily implemented by using the meta informa-
tion passed to the SMO with each call. The SMO can allow access
to one method and restrict access to the other, simply by distin-
guishing the invocations by method names. A restriction depending
on the values of parameters is also possible. With appropriate sup-
port from the object model we can, for example, implement a ge-
neric SMO that denies access to methods that change the object’s
state (read-only policy).

The revocation of a capability can be implemented by attaching
an SMO that generally allows access, but disallows access as soon
as a user-defined revocation method was invoked at the SMO. A
user only has to keep a reference to the SMO to revoke the capabil-
ity.

Expiration is implemented in a similar way. The SMO checks,
at each request, the current time and date against the expiration
time. If the capability has expired the SMO denies access.

All these concepts can be implemented by a special SMO at-
tached to a single reference, or by three different SMOs that are all
attached to the same reference.

I8

2.2 Example

Let us consider a simple example. We have a list and we want to im-
plement an expiring reference to that list. To achieve this we just
have to connect an SMO to the reference, which implements this
policy. In Listing 2.1, we present a code example written in a Java-

List 1 = ; // a list reference
SecurityMeta s = II create SMO

new MetaExpiretnew Datet12,12,1998));
s .attachTo (1) 1 II connect SMO to

II object reference
. . . // now the reference ‘I’ is protected.
l.Get (...); //the call to the list is checked

// The implementation of the MetaExpire class:
clam MataExpire axteuxla SacuritylUata (

final Date d; /I instance variable
N (expiration date)

MetaExpiretDate d) (// Constructor
this.d = d; /I store date in ‘d”

void incomingCal

(Object o, /I this method checks
Method m, N calls via protected ref.
ParamatorLi8t p) {
// Check if the reference is expired:

if (d.isBefore(getCurrentDate()))

(N throw exception, if ref. expired.
throw (new SecException (. . .)) ;

1 1 1

Listing 2.1 An SMO for expiring references.

like syntax. The first part shows the creation and the attachment of
the SMO; the second part presents the class of the SMO. The metb-
od incomingcal 1 is invoked on each method call done via a pro-
tected reference. It raises an exception if the reference has expired.
Otherwise, access is granted.

The protected reference 1 can then be passed to untrusted parts
of the application. In fact, assignments and parameter passing du-
plicate a reference including all attachments. Fig. 2.2 shows the
graphical representation of the example. The reference stored in 1
has been propagated to an untmsted application part, which has
stored it in variable v. All these references will expire after the ex-
piration date. The trusted part may keep an additional reference,
which allows unlimited access.

Note that the list does not need any support for security and also
note that the implementation of the security meta class does not
contain any special support for the list; it could be used for any
class. Of course, we cannot achieve this quite as elegantly if we
want to implement method-dependent security.

3 Extending Capability-Based Security
In this section, we demonstrate that SMOs are much ma& expres-
sive than pure capabilities. We concentrate on access control for
passing references to untrusted parts of an application, as is often
the case in large and distributed applications. An example is a Java
Applet that runs in a browser and gets references to local objects
while it is still connected to its origin-for example by Java RMI.

In pure capability-based systems, we face the problem that ref-
erences cannot be transitively protected and a problem that we call
the Trvjan Horse Problem of references. Both can be solved using
suitable SMOs.

3.1 Transitivity of Access Control
In the case of our initial list example, Listing 2.1, we can protect the
list with a security policy implemented in the attached SMO, but we
cannot prevent the untrusted part from getting additional references
to objects in the trusted part if they are passed as a result of a metb-
od call at the list object. For example, the list may have a method
Get that allows retrieval of objects from tire list. The references to
those objects are, by default, not protected (unless the list imple-
ments its own security policy, which is not what we want). We need
some transitive protection for those references.

class MetaExpire extends SecurityMeta 1
final Date d;
MetaExpire(Date d) { this.d = d;)

void incomingCall(...) (. . . 1

void outgoingRef(Object o) {
// object reference ‘0’ is to be returned

thia.attachTo(o);
// protect ‘0’ with myself

1

Listing 3.1 Protecting all outgoing references

To achieve this transitivity of access control we have to protect
all references that are returned as a result of a method invocation.
With SMOs this can easily be implemented. When a reference is re-
turned from a method which has been invoked via a protected ref-
erence, a special method of the SMO is called. In Listing 3.1, we
show a reimplementation of the MetaExpire SMO. If a method
has been called via a protected reference, the meta object’s method
outgoingRef is implicitly invoked for each reference that is to
be returned by the method. In the example, the mcta object attaches
itself to all of these references, thus propagating its security policy
to them.

Fig. 2.2 The expiring reference example.

19

With this implementation, the untrusted part cannot get unpro-
tected references as a result of a protected method invocation. Fig.
3.1 provides a graphical representation of the system after the Get
method of the list has been invoked and the result assigned to v2.

Fig. 3.1 Outgoing references are automatically protected.

Using this mechanism, we can apply generic security policies
to all outgoing references. Thus, we can solve the problem of un-
controlled distribution of references. For example, we can imple-
ment a revocation meta object, similar to our expire meta object,
that can be used to disable calls via all references it is bound to just
by invoking a disable method on it. With such an SMO, we can not
only revoke the initially protected reference but also all other refer-
ences that have been collected using that initial reference.

3.2 The Trojan Horse Problem of References

There is another problem, which we cannot solve with the mecha-
nisms introduced so far: the Trojan Horse Problem. Incoming refer-
ences passed as parameters of a method call via a protected refer-
ence may act like a Trojan Horse, because the protected object may
use them to invoke methods. Listing 3.2 shows a code snippet of our
example list. A method contains can be invoked to check wheth-
er an object is in the list or not. The equality of objects is tested by
a user-defined method equals that has to be implemented by each
list element.

N method ‘contains’ of ‘list’:

boolean List::contains(Entry e) (

for (Entry a=first;)

(/I iterate through the list

if (a.equals(a))

return true:
1
return false;

1

II entry found

/I entry not in the list

Listing 3.2 The contains method of the list example.

If an untrusted application part passes one of its objects (the
Trojan Horse) to the contains method of the trusted and protect-
ed list, then this object’s equals method will be called. It will get
an object reference (the current value of a), which is probably an
unprotected referecce to OX of the list elemcrrts. The Trojan Horse
object can now keep this unprotected reference and propagate it in
the untrusted part. In this sense, our security policy is not yet tran-
sitive and we have to introduce a new basic mechanism.

Fig. 3.2 shows a Trojan Horse that got an unprotected reference
because the aTro jH object was passed as a parameter e to the
contains method of the list.

Fig. 3.2 A Trojan Horse can get an unprotected reference.

The solution is to also protect references that are passed as pa-
rameters of a protected method call. Therefore, the method in-
comingRef of the SMO is implicitly invoked for each reference
passed as a parameter. In this special method, another SMO can be
attached to the potential Trojan Horse. This second SMO works ex-
actly the other way around from the first one. It protects all refer-
ences passed as parameters of method invocations at the potential
Trojan Horse with the first SMO (these are incoming references
from the SMO’s point of view) and all return values (outgoing ref-
erences) by attaching itself. The first part ensures that the Trojan
Horse can only get references with the original protection; the latter
prevents the resulting references of a method invocation at the Tro-
jan Horse from being Trojan Horses themselves.

As the second SMO does the same as the first one but in reverse,
our basic mechanisms allow us to use the same meta object for this
purpose. Instead of the usual attach method at tachTo there is an-
other one called reverseAttachTo that reverses the processing
of special methods. A full implementation for an expiring meta ob-
ject is shown in Listing 3.3.

class MetaExpire extends SecurityMeta (

final Date d;
MetaExpire(Date d) { this.d = d; 1
void incomingcall (Object o,

Method m,
ParameterList p) (

if (d . isBefore(getCurrentDate0))
throw (new SecurityException(...));

1
void outgoingCall(Object o, Method m,

ParameterList p) 0
void incomingRrf(Object o) C

this.reverse.AttachTo(o)i

1

void outgoingRef(Object o) (:
this.attachTo(o)l

1 1

Listing 3.3 Fully transitive implementation of
MetaExpire.

If an SMO is attached with reverseAttachTo to a refer-
ence, outgoingCal is invoked instead of incomingcall;
incomingRef and outgoingRef are swapped and used for re-
sulting references and parameters, respectively.

The SMO presented in Listing 3.3 also works if the untrusted
part puts a Trojan Horse into the list. The list would have a reference
to an untrusted object, the Trojan Horse, and trusted clients of the

20

list could not distinguish the new list element from trusted ele-
ments. With our SMO the list can only get a reference with the
SMO reversely attached to it. Fig. 3.3 shows such an example.

Fig. 3.3 A Trojan Horse can get only protected ref.

As shown in this example, it is possible to hand out a protected
reference and ensure that all other references exchanged via the ini-
tial one will be protected. All references into the trusted part will get
the initial protection, all references from the trusted part to the out-
side world will get a reversed protection. If all initial references be-
tween application parts are initially protected, every exchanged ref-
erence will be protected as well.

We can not only implement general transitive policies, like the
transitive expire meta object, but also special transitive policies, for
example a list-read-only meta object that may be attached to a list
and protects all retrieved list entries (via Get, Search, etc.) with
read-only mete objects. Note that such an implementation is com-
pletely transitive and also resistant to the Trojan Horse attack.

In our example, the outgoingcall method is not necessary
but it could be. used for implementing a stricter revocation seman-
tics. On revocation, incoming and outgoing calls can be denied.
Outgoing calls in this sense would be invocations done by the trust-
ed part at nontrusted objects which have been obtained by interac-
tion with the untrusted part.

4 Comparison to Domain-Based Security
In this section, we will compare our model to domain- and ACL-
based security models as they are used in addition to capabilities in
Java [Fla96] and CORBA [OMG95a]. A cross-domain call may be
checked by the target domain. The target can use knowledge about
the source domain and perhaps the called method to permit or
refuse the call. The transitivity problem does not apply to this mod-
el. as every call from another domain is checked. In such models,
we can implement policies like “domain B is not allowed to write
my files.”

There are two major disadvantages of this model. First, the im-
plementable policies are too coarse-grained. They cannot distin-
guish multiple clients within a domain. Thus, programmers have to
fall back to individual ACLs for multiple clients, but then they again
face the transitivity problem.

Second, these models suffer from what we call the proxy prob-
lem. Let us consider an example: Domain B has an object reference
to a file object in domain A. Domain A implements the general pol-
icy that domain B may call only the read method. Domain B might
know an object in domain C that is permitted to call the write
method. It can try to use domain C as a proxy, for example by pass-
ing the file reference to an object in domain C saying: “write your
contents to the file object I gave you.” As C is permitted to write, B
would succeed. Thus, domain B would be able to circumvent the
policy of domain A. Our model does not suffer from the proxy prob-
lem. As we have pure capabilities, no domain is able to circumvent
the restriction-not even domain A itself.

5 Conclusion and Future Work
We presented a new paradigm for access control in object-based
systems using security meta objects (SMOs). We showed that
SMOs can implement arbitrary and user-defined security policies.
SMOs can implement sophisticated capability-based security such
as access restriction, revocation, and expiration. In addition to these
traditional features, SMOs are able to implement transitive security
policies. References that are exchanged by method invocations via
protected references can be automatically and implicitly protected.
Programmers can stick to a pure object-based style of programming
and do not need to review all their classes and methods for security
holes.

Our model separates security policies from application code.
Security is configured at the only place. where we know “where”
and “why”: when we initially exchange object references. Our ap-
proach supports reuse of code, as in many cases SMOs can be pro-
grammed totally independently of the objects they protect and vice
versa.

We are currently implementing a proof-of-concept prototype
in the Java context. We are using the MetuJuva system [KlG96],
which already allows us to bind meta objects to object references.
It is also possible to receive so-called events from the run-time sys-
tem-for example, when a method is called via the reference. The
MetuJuva system has to be extended by a (meta) class library that
extracts parameters and results, and implements the basic mecha-
nisms described in this paper.

In tire future, we will also have to deal with the remaining prob-
lems that arise from automatically protecting exchanged references.
The set of SMOs that is attached to a reference may grow if the ref-
erence is passed back and forth between two application parts. We
are thinking about automatic extraction of redundant meta objects.
We are also thinking of allowing the owner of a meta object to de-
tach it from a reference that he got back from untrusted parts, so that
the owner may obtain unlimited access to his own object.

Although we have shown that there are many problems that can
be solved with SMOs, there are problems where access control lists
(ACLs) are needed. We intend to expand our model by adding prin-
cipal information for the implementation of ACLs with meta ob-
jects.

6 References
BBN96

BrK96

CQL+96

DeH66

Fla96

KlG96

KoN93

Benantar, M.; Blakley, B.; Nadalin, A.: Approach to
object security in Distributed SOM, IBM Sysfems
Journal, Vol. 35 No. 2, 1996, New York

Brown, N.; Kindel, C.: Distributed Component Object
Model Protocol - DCOM/l .O, Internet-Draft,
November, 1996

Campell. R.; Qian, T.; Liao, W.; Liu, Z.: Active
Capability: An unified Security Model for Supporting
Mobile, Dynamic and Application Specific Delegation.
White Paper. University of Illinois: 1996

Dennis, J.B.; Van Horn, E.C.: ‘Programming
Semantics for Multiprogrammed Computations”,
Comm. of the ACM, March 1966

Flanagan, D.: Java in a Nutshell, O’Reilly &
Associates, 1st edition, Feb 1996

Kleinoder, J.; Golm, M.: “MetaJava: An Efficient Run-
Time Mete Architecture for Java”, IWOOOS ‘96
workshop, Seattle, 1996

Kohl, J., Neuman, C.: The Kerberos Network
Authentication Set-vice (VS), IETF Network Working
Group, Request for Comments 1510, September 1993

21

Lev84

Mae87

MGH+94

Mic96

OMG95

OMG95a

OSF92

Ras86

Sun95

Sun95a

Sun95b

Sun96

WCC+74

WWK96

Levy, H.: Capability-Based Computer Systems,
Bedford, Mass.: Digital Press, 1984

Maes, P.: Computational Reflection, Ph.D. Thesis,
Technical Report 87-2, Artificial Intelligence
Laboratory, Vrije Universiteit Brussel, 1987
Mitchell, J. ; Gibbons, J.; Hamilton, G. et.al.: An
Overview of the Spring System. Proc. ofthe Compcon
Spring 1994 (San Francisco), Los Alamitos: IEEE,
1994

Microsoft: Windows NT Server, DCOM Technical
Overview, White Paper, 1996

OMG: The Common Object Request Btoker:
Architecture and Specification, Revision 2.0, July 1995
OMG: CORBA Security, OMG Document Number 95-
12-l. 1995
OSF: Security in a Distributed Computing
Environment, Open Software Foundation, White Paper,
1992
Rashid, R.: ‘Threads of a New System”. UNIX Review,
1986
Sun Microsystems Comp. Corp.: HotJava: The
Security Story, White Paper, 1995

Sun Microsystems Comp. Corp.: Spring Research
Distribution 1.1 Source, Source CD, 1995

Sun Microsystems Comp. Corp.: The Java Language
Environment, White Paper, 1995
Sun Microsystems Comp. Corp.: Java Remote Method
Invocation Specification, Revision 12, JDK 1.1 Beta
Draft, 1996
Tanenbaum, A. S.; Mullender, S. J.; van Renesse, R.:
“Using sparse capabilities in a distributed operating
system.” Proc. of the 6th bat. ConJ on Distr. Comp. Sys.,
pp. 558-563, Amsterdam, 1986

Wulf, W.; Cohen, E.; Corwin, W.; Jones, A.; Levitt, R.;
Pierson, C.; Pollack, F.: “HYDRA: The Kernel of a
Multiprocessor Operating System”. Communications
of the ACM, 1974
Wang, C.; Wulf, W.; Kienzle, D.: A New Model of
Security for Distributed Systems, In: Proceedings of the
19% ACM New Security Paradigms Workshop, 1996

22

