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Abstract 
Object-based programming is becoming more and more popular 
and is currently conquering the world of distributed programming 
models. In object-based systems, access control is often based on 
capabilities, as capability-based security is a well-known paradigm. 
It has been extended by means to restrict, revoke, and expire capa- 
bilities. 

On the other hand, capabilities have serious drawbacks. First, in ob- 
ject-based systems, programming is based on the frequent exchange 
of object references (i.e., capabilities). Thus, it is hard to check 
which parts of an application are able to gain control of a certain ca- 
pability. This becomes even harder if we consider distributed ob- 
ject-based systems like Java RMI and CORBA. Second. a capability 
usually cannot prevent method invocations from leaking unprotect- 
ed references as return values. Transitive access control is not pos- 
sible in a transparent way, which is independent of the code describ- 
ing the invocation. 
We present a new security paradigm based on meta objects. Meta 
objects can be attached to object references and control access to the 
corresponding objects. Meta objects offer the same functionality as 
capability-based security. In addition. they can be used for implicit 
and transitive access control of object references passed as a param- 
eter or as a result. Such a reference can be automatically protected 
by the meta object by attaching itself or another meta object to the 
reference before passing it on. 
Meta objects can implement arbitrary and user-defined security pol- 
icies. They help to separate security policies from application code, 
and thus support reuse. 
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1 Introduction 
The object-based programming paradigm is becoming more and 
more popular. Currently, it is conquering the world of distributed 
programming models. CORBA [OMG95] and DCOM [BrK96, 
Mic961 are two strong candidates for very popular models of the fu- 
ture. In object-based systems, access control is often based on capa- 
bilities, as capability-based security is a well-known paradigm 
[DeH66, L&4]. In reference-based object systems a reference to 
an object is per se a capability: if you have a capability then you 
have full access to the object. Thus, capabilities are a very natural 
security paradigm for object-based programming. 

Some capability-based systems allow restriction of access by 
attaching access rights to the capability (e.g., Amoeba [Tan861 and 
Mach [Ras86]). Access is denied if the client’s capability does not 
include the necessary rights. Other systems allow capabilities to be 
revoked--that is, withdrawn by the issuer (e.g., CORBA 
[OMCZXa]). An exception is raised, if a client tries to access the 
corresponding object after the revocation. Other systems allow ca- 
pabilities to expire and thus to be valid only for a certain period of 
time (e.g., Kerberos V5 [KoN93], which is used in DCE [OSF92]). 
After expiration, clients have to get a new capability or cannot ac- 
cess the corresponding object any longer. Some newer security 
models allow user-defined restriction of a capability by attaching a 
script to it which implements the appropriate access security policy 
(Active Capabilities, [CQLt96]). 

On tbe other hand, capabilities have serious drawbacks. First, 
object-based programming is based on the frequent exchange of ob- 
ject references (i.e., capabilities). For large applications, it is almost 
impossible to verify and guarantee that a part of the application can- 
not gain access to a certain capability. This becomes even harder if 
we consider distributed object-based systems like Java RMI 
[Sun961 or CORBA. While reviewing such an object-based system, 
in this case the Spring operating system [SunXa]‘, we found that 
this problem led to an almost procedural style of programming of 
the application parts. Object-reference passing happens rarely and 
there are only few references between application parts. This led to 

1. We refer especially to the interaction between user level and 
kernel and between different nodes. 
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very large interfaces and objects. Security aspects seem to contra- 
dict basic principles of object-based programming and force pro- 
grammers to dilute their design principles. 

Second, a capability usually cannot prevent method invocations 
from leaking unprotected references to untrusted objects. In Hydra 
[WCC+74], it is possible to restrict propagation of references to 
other objects, but this is too restrictive because object-based pro- 
gramming is heavily based on the propagation of references. Thus, 
we do not want to stop propagation of capabilities but add access 
control. In capability-based systems, this can be done by explicitly 
restricting the access rights. The involved classes (probably even 
from class libraries) have to be reviewed and modified to perform 
security checks and return or pass restricted references. As normal 
object-based programming implies a frequent exchange of object 
references, many classes and methods have to be adapted to enable 
full access control. Access control becomes nonorthogonal and re- 
stricts the reuse of code. What we need is implicit and transitive ac- 
cess control. 

Some object-based systems (e.g., Java [Fla96],[Sun95b], 
DSOM [BBN96] and Legion [WWK96]) try to solve these prob- 
lems with domain-based policies or ACLs, which are user-definable 
in DSOM and Legion. While domain-based policies do not entail 
the described problems, they suffer from proxy problems as we will 
see in Section 4. ACLs also suffer from the problem of leaking un- 
protected references to untrusted application parts. 

In this paper, we present a novel security paradigm based on se- 
curity meta objects (SMOs). One or multiple meta objects can be. at- 
tached to an object reference. They control access to the target ob- 
ject via this reference. A method of the meta object is automatically 
invoked by the run-time system when a method is called using this 
reference. The meta object’s check method can decide whether ac- 
cess is to be granted or not. Meta objects offer the same functional- 
ity as capabilities. In addition, they can be used to provide implicit 
and transitive access control for object references passed as a pa- 
rameter or as a result. These references can be automatically pro- 
tected by the meta object by attaching itself or another meta object 
to each of them before passing them on. 

Meta objects have the advantage that they can implement arbi- 
trary and user-defined security policies. They help to separate sccu- 
rity policies from application code, and thus support reuse. Above 
all, the application objects can be designed without considering se- 
curity. 

This paper is structured as follows: In Section 2, we present our 
model for access control by SMOs and provide the mechanisms for 
implementing the same functionality as with capabilities. Then, in 
Section 3, we describe how SMOs extend the usual behavior of ca- 
pability-based security by introducing transitive access control. 
Section 4 will briefly compare SMOs to domain-based security sys- 
tems. Finally, in Section 5, we present our conclusion and refer to 
future work. 

2 Access Control by Meta Objects 

In this section, we describe our security model for access control 
using security meta objects. We assume that we have an object- 
hased programming model that does not allow any access to objects 
except by invoking methods using object references, as is the case, 
for example, with Java and its Bytecode Verifier [Sun95]. For sim- 
plicity, we do not allow access to instance variables through refer- 
ences, but our model could easily be extended to handle this. We 
also assume that object references are safe, that is, they are only 
generated and controlled by a trusted runtime system and cannot be 
faked. 

As in most object-based models, we see object references as ca- 
pabilities. If a client has an object reference at hand, it can access 
the corresponding object. If a client cannot get an object reference 
to an object, it is not able to access it. We extend this simple model 
by adding the possibility to attach one or more special objects to an 
object reference. These special objects are invoked for each securi- 
ty-relevant operation on the object reference. The special objects 
are not visible to the application; that is, protected and unprotected 
object references look the same to the application. In general, such 
special objects can be considered as meta objects [Mae87]; we call 
them security metu objects or SMOs for short. 

.- -----) Reference 

Fig. 2.1 A reference with an attached security meta object 

SMOs are attached on a per-reference basis. There may be 
many references to an object, each with a different set of attached 
SMOs. Fig. 2.1 shows an object reference stored in variable vl, 
which is protected by the meta object anSM0. The meta object re- 
stricts the accessibility of the object anOb j ec t via this reference. 
There may be other references to the same object in the system, like 
the one stored in variable v2, which are not protected or protected 
by a different meta object. 

If a client invokes a method via a protected reference, a special 
check method of the meta object is implicitly invoked. This method 
gains access to some meta information, such as name and parame- 
ters of the method to be invoked. The check method can decide 
whether it wants to grant access or not. To grant access, it returns 
control to the run-time system, which continues with the method in- 
vocation. If access is to be denied, an exception is raised or the in- 
vocation is terminated with an error result. 

We allow anyone to attach an SMO to an object reference. Sev- 
eral SMOs can be bound to the same reference. In this case these 
meta objects am asked sequentially before access is granted. A sin- 
gle SMO can be used to protect multiple references. Of course, it is 
not possible to detach SMOs from a reference unless the security 
meta object removes itself. 

2.1 Modeling Capabilities 
In principle, capabilities introduce three additional concepts to ob- 
ject references: restriction of access, revocation, and expiration. Re- 
striction of access is easily implemented by using the meta informa- 
tion passed to the SMO with each call. The SMO can allow access 
to one method and restrict access to the other, simply by distin- 
guishing the invocations by method names. A restriction depending 
on the values of parameters is also possible. With appropriate sup- 
port from the object model we can, for example, implement a ge- 
neric SMO that denies access to methods that change the object’s 
state (read-only policy). 

The revocation of a capability can be implemented by attaching 
an SMO that generally allows access, but disallows access as soon 
as a user-defined revocation method was invoked at the SMO. A 
user only has to keep a reference to the SMO to revoke the capabil- 
ity. 

Expiration is implemented in a similar way. The SMO checks, 
at each request, the current time and date against the expiration 
time. If the capability has expired the SMO denies access. 

All these concepts can be implemented by a special SMO at- 
tached to a single reference, or by three different SMOs that are all 
attached to the same reference. 
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2.2 Example

Let us consider a simple  example.  We have a list and we want to im-
plement  an expiring  reference  to that list. To achieve  this we just
have to connect  an SMO  to the reference,  which  implements  this
policy. In Listing 2.1, we present  a code  example  written in a Java-

List 1 = . . . . . ; // a list reference
SecurityMeta s = II create SMO

new MetaExpiretnew Datet12,12,1998));
s .attachTo  ( 1 ) 1 II connect  SMO to

II object  reference
. . . // now the reference  ‘I’ is protected.
l.Get (...); //the call  to the list is checked

// The implementation  of the MetaExpire  class:
clam MataExpire  axteuxla SacuritylUata  (

final Date d; /I instance  variable
N (expiration  date)

MetaExpiretDate  d) ( // Constructor
this.d = d; /I store date  in ‘d”

void incomingCal

( Object  o, /I this method  checks
Method m, N calls  via protected ref.
ParamatorLi8t  p) {
// Check  if the reference  is expired:

if (d.isBefore(getCurrentDate()))

( N throw  exception,  if ref. expired.
throw  (new SecException  ( . . . ) ) ;

1 1 1

Listing 2.1 An SMO for expiring references.

like syntax.  The  first part shows the creation  and the attachment  of
the SMO;  the second  part presents  the class  of the SMO. The  metb-
od incomingcal 1 is invoked  on each  method  call  done via a pro-
tected reference.  It raises  an exception  if the reference has expired.
Otherwise,  access  is granted.

The protected  reference 1 can then be passed  to untrusted  parts
of the application.  In fact, assignments  and parameter  passing  du-
plicate  a reference  including all attachments.  Fig. 2.2 shows the
graphical  representation  of the example.  The reference stored  in 1
has been propagated  to an untmsted application  part, which  has
stored it in variable  v. All  these references  will  expire  after  the ex-
piration  date. The  trusted part may keep an additional  reference,
which allows  unlimited access.

Note  that the list does not need any support  for security  and also
note that the implementation  of the security  meta class  does not
contain any special  support  for the list;  it could  be used for any
class.  Of course,  we cannot achieve  this quite as elegantly  if we
want to implement  method-dependent  security.

3 Extending  Capability-Based  Security
In this section,  we demonstrate  that SMOs  are much  ma& expres-
sive than pure capabilities.  We concentrate on access  control  for
passing  references  to untrusted  parts of an application,  as is often
the case  in large and distributed  applications.  An example  is a Java
Applet  that runs in a browser  and gets references  to local objects
while it is still connected to its origin-for  example  by Java RMI.

In pure capability-based  systems,  we face the problem  that ref-
erences  cannot  be transitively protected  and a problem  that we call
the Trvjan  Horse Problem  of references.  Both can be solved  using
suitable  SMOs.

3.1 Transitivity of Access Control
In the case  of our initial  list example,  Listing 2.1, we can protect  the
list with a security  policy implemented  in the attached  SMO, but we
cannot prevent  the untrusted part from getting  additional  references
to objects  in the trusted  part if they are passed  as a result  of a metb-
od call  at the list object.  For example,  the list may have  a method
Get that allows  retrieval  of objects  from tire list. The  references  to
those  objects  are, by default, not protected  (unless the list imple-
ments  its own security  policy,  which  is not what we want). We need
some  transitive  protection  for those references.

class MetaExpire  extends  SecurityMeta  1
final Date d;
MetaExpire(Date  d) { this.d = d; )

void incomingCall(...)  ( . . . 1

void  outgoingRef(Object  o) {
// object  reference  ‘0’ is to be returned

thia.attachTo(o);
// protect  ‘0’ with myself

1

Listing 3.1 Protecting all outgoing references

To achieve  this transitivity of access  control  we have to protect
all references  that are returned  as a result of a method invocation.
With SMOs this can easily be implemented.  When a reference  is re-
turned  from a method  which has been  invoked  via a protected  ref-
erence,  a special  method of the SMO is called.  In Listing 3.1, we
show a reimplementation  of the MetaExpire SMO. If a method
has been  called via a protected  reference,  the meta object’s  method
outgoingRef is implicitly invoked  for each reference  that is to
be returned by the method.  In the example,  the mcta object  attaches
itself to all of these references,  thus propagating  its security  policy
to them.

Fig. 2.2 The expiring reference example.
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With this implementation,  the untrusted part cannot get unpro-
tected  references as a result of a protected method invocation. Fig.
3.1 provides a graphical  representation  of the system after the Get
method of the list has been invoked and the result assigned to v2.

Fig. 3.1 Outgoing  references  are automatically  protected.

Using this mechanism, we can apply generic  security policies
to all outgoing references.  Thus,  we can solve the problem of un-
controlled  distribution  of references.  For example,  we can imple-
ment  a revocation meta object, similar  to our expire meta object,
that can be used to disable calls via all references it is bound to just
by invoking a disable method on it. With such  an SMO,  we can not
only revoke the initially protected  reference but also all other refer-
ences that have  been collected  using that initial  reference.

3.2 The Trojan Horse Problem of References

There is another problem,  which we cannot solve with the mecha-
nisms introduced so far: the Trojan Horse Problem. Incoming refer-
ences passed as parameters  of a method call via a protected refer-
ence may act like a Trojan Horse, because the protected object  may
use them to invoke  methods. Listing  3.2 shows  a code snippet of our
example list. A method contains can be invoked to check wheth-
er an object  is in the list or not. The equality of objects is tested by
a user-defined method equals that has to be implemented  by each
list element.

N method  ‘contains’ of ‘list’:

boolean  List::contains(Entry  e) (

for (Entry  a=first; . . . .)

( /I iterate through  the list

if (a.equals(a))

return true:
1
return false;

1

II entry found

/I entry not in the list

Listing  3.2 The  contains method  of the list  example.

If an untrusted application  part passes one of its objects (the
Trojan Horse) to the contains  method of the trusted and protect-
ed list, then  this object’s equals method will be called. It will get
an object  reference (the current value of a), which is probably  an
unprotected  referecce  to OX of the list elemcrrts.  The Trojan Horse
object  can now keep  this unprotected  reference  and propagate  it in
the untrusted  part. In this sense, our security  policy  is not yet tran-
sitive and we have  to introduce a new basic mechanism.

Fig. 3.2 shows  a Trojan  Horse  that  got an unprotected  reference
because the aTro jH object  was passed as a parameter  e to the
contains  method  of the list.

Fig.  3.2 A Trojan  Horse can get an unprotected  reference.

The  solution is to also protect  references that are passed as pa-
rameters of a protected method call. Therefore, the method in-
comingRef  of the SMO  is implicitly  invoked for each reference
passed as a parameter. In this special  method, another SMO can be
attached to the potential Trojan Horse. This second SMO works ex-
actly the other way around from the first one.  It protects  all refer-
ences  passed as parameters  of method invocations at the potential
Trojan Horse with the first SMO (these are incoming references
from the SMO’s  point of view) and all return values (outgoing ref-
erences) by attaching itself. The first part ensures that the Trojan
Horse can only get references with the original  protection;  the latter
prevents  the resulting references  of a method invocation at the Tro-
jan Horse from being Trojan Horses themselves.

As the second SMO  does the same as the first one but in reverse,
our basic mechanisms allow us to use the same meta object  for this
purpose.  Instead of the usual attach method at tachTo there is an-
other one called  reverseAttachTo  that reverses the processing
of special methods.  A full implementation  for an expiring  meta ob-
ject is shown  in Listing 3.3.

class MetaExpire  extends  SecurityMeta  (

final  Date d;
MetaExpire(Date d) { this.d = d; 1
void incomingcall  ( Object o,

Method  m,
ParameterList  p) (

if (d . isBefore(getCurrentDate0))
throw (new  SecurityException(...));

1
void outgoingCall(Object  o, Method  m,

ParameterList  p) 0
void incomingRrf(Object o) C

this.reverse.AttachTo(o)i

1

void outgoingRef(Object o) (:
this.attachTo(o)l

1 1

Listing 3.3 Fully transitive  implementation  of
MetaExpire.

If an SMO is attached with reverseAttachTo to a refer-
ence,  outgoingCal  is invoked  instead of incomingcall;
incomingRef  and outgoingRef  are swapped and used for re-
sulting  references and parameters,  respectively.

The SMO presented in Listing 3.3 also works if the untrusted
part puts a Trojan Horse into the list. The list would have  a reference
to an untrusted  object,  the Trojan Horse, and trusted clients  of the
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list could not distinguish  the new list element from trusted ele-
ments.  With our SMO  the list can only get a reference  with the
SMO  reversely  attached to it. Fig. 3.3 shows  such an example.

Fig.  3.3 A Trojan Horse can get only  protected  ref.

As shown  in this example,  it is possible to hand out a protected
reference and ensure that all other references  exchanged  via the ini-
tial one will be protected. All references  into the trusted part will get
the initial  protection,  all references  from the trusted part to the out-
side world will get a reversed protection.  If all initial references be-
tween  application  parts are initially protected,  every exchanged ref-
erence will be protected  as well.

We can not only implement  general transitive  policies, like the
transitive expire meta object, but also special  transitive  policies,  for
example a list-read-only  meta object  that may be attached to a list
and protects all retrieved list entries (via Get, Search,  etc.) with
read-only  mete objects. Note that such  an implementation  is com-
pletely  transitive  and also resistant  to the Trojan Horse attack.

In our example,  the outgoingcall method is not necessary
but it could be. used for implementing  a stricter revocation seman-
tics. On revocation,  incoming and outgoing calls can be denied.
Outgoing calls in this sense would be invocations done by the trust-
ed part at nontrusted objects which have been obtained  by interac-
tion with the untrusted part.

4 Comparison to Domain-Based  Security
In this section, we will compare  our model to domain-  and ACL-
based security models as they are used in addition to capabilities  in
Java [Fla96] and CORBA [OMG95a]. A cross-domain  call may be
checked by the target domain. The target can use knowledge about
the source domain and perhaps the called  method to permit or
refuse the call. The transitivity  problem does not apply to this mod-
el. as every call from another domain is checked. In such  models,
we can implement  policies  like “domain B is not allowed to write
my files.”

There are two major disadvantages  of this model. First, the im-
plementable  policies  are too coarse-grained.  They cannot distin-
guish multiple  clients  within a domain. Thus, programmers  have to
fall back to individual  ACLs for multiple  clients, but then they again
face the transitivity  problem.

Second, these models suffer from what we call the proxy prob-
lem. Let us consider  an example: Domain B has an object  reference
to a file object in domain A. Domain A implements  the general pol-
icy that  domain B may call only the read method.  Domain B might
know  an object  in domain C that is permitted to call the write
method.  It can try to use domain C as a proxy, for example by pass-
ing the file reference  to an object  in domain C saying: “write your
contents to the file object I gave you.” As C is permitted  to write,  B
would  succeed. Thus,  domain B would be able to circumvent the
policy of domain A. Our  model does not suffer from the proxy prob-
lem. As we have  pure capabilities,  no domain is able to circumvent
the restriction-not  even  domain A itself.

5 Conclusion and Future Work
We presented a new paradigm for access control in object-based
systems using  security meta objects (SMOs). We showed that
SMOs  can implement  arbitrary  and user-defined security policies.
SMOs  can implement  sophisticated  capability-based  security  such
as access restriction,  revocation, and expiration.  In addition  to these
traditional  features, SMOs are able to implement  transitive security
policies.  References that are exchanged by method invocations via
protected references can be automatically  and implicitly  protected.
Programmers can stick to a pure  object-based  style of programming
and do not need  to review all their classes and methods  for security
holes.

Our model separates  security policies  from application  code.
Security is configured at the only place. where we know  “where”
and “why”: when  we initially  exchange object  references. Our ap-
proach supports reuse of code, as in many cases SMOs  can be pro-
grammed totally independently  of the objects they protect  and vice
versa.

We are currently implementing  a proof-of-concept  prototype
in the Java context. We are using the MetuJuva system [KlG96],
which  already allows us to bind meta objects to object references.
It is also possible to receive so-called  events from the run-time  sys-
tem-for example, when  a method is called via the reference.  The
MetuJuva  system has to be extended by a (meta) class library that
extracts parameters and results, and implements  the basic mecha-
nisms  described  in this paper.

In tire future,  we will also have to deal with the remaining  prob-
lems that arise from automatically  protecting  exchanged references.
The set of SMOs  that is attached to a reference may grow if the ref-
erence is passed back and forth between two application  parts. We
are thinking about automatic  extraction of redundant meta objects.
We are also thinking of allowing the owner of a meta object to de-
tach  it from a reference that he got back from untrusted parts, so that
the owner may obtain unlimited  access to his own object.

Although we have shown  that there are many problems  that can
be solved with  SMOs, there are problems  where access control  lists
(ACLs) are needed. We intend to expand our model by adding  prin-
cipal information for the implementation  of ACLs with meta ob-
jects.
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