
Security Engineering in an Evolutionary Acquisition
Environment,
Marshall D. Abrams
The MITRE Corporation

1820 Dolley Madison Blvd.
McLean, VA 22102

703-883-6938

abrams@ mitre.org

ABSTRACT
This paper describes the integration of the Systems
Security Engineering (SSE) process into the Evolutionary
Acquisition (EA) strategy. Spurred by inadequacies of
traditional acquisition strategies, large system acquisitions
are using EA in the Department of Defense and the
Federal Aviation Administration (FAA); this paper focuses
on the FAA. Following an introduction to EA, the
waterfall and spiral system development models are
presented as background. Security engineering is
developed as a special case of the spiral model and
integrated with EA.

1. INTRODUCTION
In this paper "acquisition process" is defined to include
the development and deployment of the result.
"Acquisition" by itself implies activities leading up to
contract award. While the duration of the acquisition itself
typically exceeds the technology and requirement cycle by
a multiple of two to three, this paper is not restricted to
that portion of the problem.

Experience with system acquisition has shown that the use
of conventional Government acquisition strategies has
often led to unsatisfactory results. Participants in the
commercial acquisition process have not followed the
same path. They have "outsourced" the service, in general,
after their internal information resources management
shops fail to achieve the specific goals. The principal
difficulties with traditional Government acquisition
activities have been:

• Imbalance between duration of the acquisition and
changes in the environment

The time required to complete the acquisition has
been too long.

Changes in requirements and technology have
overtaken the acquisition process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without lea provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
"[o cop? otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
1998 NSPW 9198 Cherlottsville, VA, USA
© 1999 ACM 1-5B113-168-2/9910007.,.$5.00

• Immature and evolving requirements and immature
and evolving software development tools

• Entrenched legacy systems, established bureaucracy,
and existing culture to new technology and ways of
doing business

Often the new technology cannot do the same job
as fast, cheaply, or as familiar as the old
application)

Business process re-engineering may be necessary
for new technology acceptance.

EA has been developed in response to this challenge. An
introduction to EA in weapons systems acquisition may be
found in (JLC, 1995). EA is part of a revised acquisition
strategy. EA is the salient characteristic for the purposes of
this paper and is, therefore, used as the identifier for the
larger acquisition strategy (AFMC, 1998). Other aspects
include the use of commercial off the shelf (COTS)
products, performance based specifications, cost as an
independent variable (CAIV), and project risk
management. The Defense Department 5000 series of
acquisition documents has been revised.

The planned evolution of the National Airspace System
(NAS) (FAA, I996) fits the EA. concept very well. NAS,
an international system-of-systems, is envisioned to evolve
over a 20-year period from dependence on proprietary and
obsolete hardware and software toward open systems and
COTS hardware and software. Legacy components will be
replaced as system requirements evolve and budgetary
constraints permit. NAS operational requirements axe
evolving in such areas as free flight z and transition from

1 The contents of this material reflect the views of the
author. Neither the Federal Aviation Administration
nor the Department of Transportation makes any
warranty or guarantee, or promise, expressed or
implied, concerning the content or accuracy of the
views expressed herein.

Freeflight describes aircraft operations that allow pilots
more autonomy and independence while operating
aircraft than is permitted today in maneuvering their
aircraft without the prior approval of air traffic
controllers (RTCA, 1995).

11

terrestrial navigation aids to those based on the Global
Positioning System (Dana, 1995). It is anticipated that the
NAS vision will continue to evolve. The requirements for
the next year or two are in sharp focus while the vision of
the far-term is seen only as meeting general objectives.

The security requirements are similarly evolving. The
legacy systems relied on "security through obscurity,"
predicated on a threat model focused on low-resourced
malicious activity. Executive Order 13010, recognizing
contemporary concerns for integrity and availability of the
National Information Inffrastructure (Nil)--of which NAS
is a recognized component--has stimulated the FAA to
revise its information security posture. The shift to COTS
platforms and public protocols, and the emergence of a
potential well-resourced terrorist threat also contribute
new vulnerability elements driving the pace of the
evolving security requirements.

The purpose of this paper is to present acquisition/system
development and security engineering models as a way of
understanding, examining, and managing change. All
models involve abstraction, simplification, and
suppression of detail. Nevertheless, they are useful in
describing major paradigm shifts, such as those described
in this paper.

Security engineering involves concerns such as protecting
information and information technology systems from
unauthorized policy violations to integrity, availability,
and confidentiality. Information systems security
(INFOSEC) encompasses the automated elements of such
concem.

Following an overview of evolutionary acquisition and
system development models, the paper introduces the
system security engineering model and practice steps of
understanding context, analyzing security risks,
developing a plan, developing the system, and managing
the subsequent release. The beginnings of a case study are
introduced and future studies identified.

2. EVOLUTIONARY ACQUISITION
MODEL
The EA environment incorporates a strategy for system
development and use when achievement of the desired
overall capability will require the system to evolve during
its development, manufacture, or deployment. EA
accommodates both the lack of COTS technology and
evolving requirements as the users get their hands on the
system and evolve new expectations. EA has evolved from
the Pre-Planned Product Improvement (P3I) acquisition
strategy. The major approach that underlies EA is the
encouragement of early fielding of a well-defined core
capability in response to a validated requirement that is
expected to persist over a significant portion of the
evolution.

Incremental releases providing additional or revised core
capabilities will then follow, the requirements for which
will result from (1) continuous feedback from the
developer, independent testing, and the user; and (2)

application of desirable technology within the constraints
of time, requirements, cost, and risk. Many of the
following characteristics and objectives of EA were
formally espoused in an AFCEA report (1982) and have
evolved since then. The basic definitions and core
concepts have been maintained.

EA is particularly appropriate to most projects of large
size, high complexity or long duration. Often the
individuals who documented the requirements are no
longer around when the design is reviewed, and the design
reviewers aren't there for the deployment. Experience
indicates that change to one or more of the following
factors is likely to surface during system definition and
development:

* Requirements and technical uncertainties

* Funding availability

• Technology

• Scheduling

• Interoperability and commonality requirements

• The need in some kinds of systems for continuous
user involvement

• Instabilities due to environmental constraints

When any of the following conditions are true, the use of
an EA strategy is indicated:

• Complete requirements cannot be adequately stated at
the initiation of complex programs.

• Requirements are expected to change frequently over
the life of the program.

* Users cannot specify acceptability criteria in advance
due to their subjective nature.

When technological uncertainties exist, an evolutionary
approach may be adopted even when the desired goal can
be rather precisely defined and achievement can be
objectively measured. EA has been identified as a means
of dealing with the following considerations:

• Risk associated with technological uncertainties

• Necessity to incorporate research results

• Prolonged development periods

• Complexity of very large systems

• Changes occurring at the limits of a state-of-the-art
technology

When requirement uncertainties indicate an EA approach,
the program may involve little or no advance development.
The FAA has adapted a "build a little, field a little"
approach. For programs with requirements uncertainties,
succeeding blocks of work after completing the first block
cannot be adequately specified until feedback from some
user, technology, or policy maker is received on the
usefulness of the solution and modifications which are
perceived as needed.

12

The objectives of EA as stated as follows:

• Develop a vision of the functional capability desired
for the full system. Some definitions identify the lack
of specificity and detail in describing the final system
capability as the distinguishing characteristic of EA.

• Provide a concise statement of operational concepts
for the full system.

• Develop a flexible, well-planned overall architecture
that includes process for change. This process for
change allows the system to be designed and
implemented in an incremental fashion with
minimum regression testing. The following recent
advances are enabling change at reasonable cost and
impact:

Open systems

Domain architectures

Software development tools

• Develop a plan for incrementally achieving the
desired total capability that adheres to life-cycle cost
effectiveness.

* Construct mutually consistent definitions for each
increment among concept of operations,
requirements, and architecture

* Ensure early definition, funding, development,
testing, fielding, supporting, and operational
evaluation of an initial operational core capability.

• Promote continual dialogue and feedback among
users, developers, supporters, and testers.

EA heightens, rather than obviates, the need for early
program planning and engineering activity. Significant
effort is reqmred early in the program to permit adopting a
strategy that accommodates change. Proper process control
must be provided. It is important to define the
developmental increments and the system performance
that should be achieved. Doing so will provide a basis for
review of changing functional requirements that appear
during the development process.

To retain control and show discrete progress, EA allows
changes in requirements between incremental releases. 3
Allowing requirements to change during the construction
of an increment can be costly in time, dollars, and
performance. Completion of a release may be marked by
establishing a new baseline. There is a varying level of
requirements control. Requirements are accumulated
against a planned release and then frozen to stabilize
content of that release. Requirements which are outside
the frozen baseline for a release are queued for a
subsequent release. Additionally, filtering of user feedback
is necessary to prevent requirement whiplash (I liked the
old one better, I want a new one, etc.).

3 Incremental releases have also been called "builds" and
"blocks".

Changes to functional requirements (especially additions
to current requirements) can be controlled within each
incremental release by accepting only customer or user-
designated high-priority changes. It is also necessary to
collect lower priority change requests and select these for
accomplishment concurrent with related high priority
changes. EA gives one a better feel for how to solve the
high-priority issues and gives better long-term statistics on
achievement. Crucial requirement changes are identified
on the basis of feedback concerning effectiveness and
suitability from actual operation and maintenance of
earlier releases.

The need to manage requirements change is perhaps
greatest when the changes affect software in the
development cycle. It is often possible to effect a
performance change through a change to the system
software. However, if the performance improvement
affects the release schedule, then careful consideration of
the tradeoff is necessary at all level of the organization.
The further along the development process, the more
difficult it is to make software changes and retain release
integrity for test and documentation. Significant security
engineering is also required as part of the integration
process if the system changes affect the security
requirement or solution sets.

Configuration management and full system design
documentation are important for any acquisition process.
In an evolutionary process, careful attention to the
evolving architecture and the corresponding system
increments is of paramount importance.

The EA approach may be tailored to accommodate the
following characteristics:

• The degree of user and developer knowledge and
involvement required

• Requirements or technological uncertainties

• The amount and complexity of required development

* Opportunities for using COTS products

• The selection of software language, technology, and
development tools

3. SYSTEM DEVELOPMENT
MODELS
The waterfall and spiral models of system development
inspired the .system security engineering present below.
Accordingly, they are briefly reviewed. Thee models can
be viewed as being centered on each lifecycle phase, as
presented by a DoD 500 milestone.

3.1 Waterfall Model
The most common of the formal system development
techniques, first developed by Royce (Royce, 1970) and
popularized by Boehm (Boehm, 1976), was known as the
waterfall model because of the way the model was
depicted (see figure 1). In this model, phases of
information system development are shown as steps
cascading downward, with information flowing from one
step to the next step through a formal signoffprocess.

13

I So.ware
I Requirements Software SpecifieaUon Review (SSR)
I Analysis

Preliminary Preliminary Design Review (PDR)
Design t

Detailed ~ Critical Design Review (CDR)
Design

Code & Unit ~ Test Readiness
Test, Review (TRR) Integration I -

I LR.,0.0 s i VSy.,em

System
Requirements System Requirements Review (SRR)

Analysis t

~ _ ~ System ~ System Design Review (SDR) Design

Figure 1. Waterfall Model of Software Development

The resulting system was expected to satisfy the end-user's
needs when it was delivered as the end user had reviewed
and approved its functional design. This approach was
successful as long as systems could be built in a relatively
short period of time (measured in terms of fractions of the
technology cycle) and when such systems spanned only a
single operational entity of an organization. When
implementation exceeds one technological cycle, user
acceptance is doubtful.

The waterfall model became the most widely known and
used system development approach in the software industry.
If a system being built using the waterfall model failed to
meet user expectations at the time of its delivery, the failure
was generally ascribed to inadequate requirements analysis
or possibly to poor change control. As the information
systems became more ambitious and complex, it took longer
to build them, increasing the probability that some event(s)
would occur to cause a change in system requirements
necessitating requirements change management.

System developers also discovered that no matter how hard
they tried to understand the end-user's requirements,
requirements creep and defects in their understanding might
result in a change in the design. There was also the risk that
the end users could discover they had misunderstood the
implications of a particular design solution and ask for a
change that impacted some element of the system design.
Or, in the process of implementing a solution, an
implementer could decide that the solution was unworkable
or ineffective, and decide to change the way it would be

implemented. This too might result in a change to the
system requirements.

Thus, despite the best practice approach using the waterfall
model, some system development projects continued to fail.
This paper can only hint at some of the contributing factors.
Sometimes, the system requirements could not be defined
with rigor at the outset, because the end user could not
articulate them well. System requirements also could be
difficult to define initially if the system, when implemented,
might make significant changes in the way the organization
did business. In these cases, system requirements were often
cast in terms of how the business currently worked rather
than in terms of how the business should work. Sheer size
and complexity are also limiting factors. Some systems are
too complex and difficult to comprehend, specify, and
develop. A long development phase relative to the rate of
technological change can make the system's technology out
of date as soon as the system is fielded. User expectations
changed during the development cycle due to techno-hype in
trade journals, use of computers at home, and the general
rate of technological turnover.

3.2 SPIRAL MODEL
An alternative system development model that supports
evolutionary development is Barry Boehm's spiral model
(Boehm, 1987) (see figure 2). To some observers the
waterfall model appeared to focus on a linear-bounded
process while the spiral model emphasized cyclic recurring
activities. Others observe that the waterfall can be rolled up

14

Determine Objectives
Alternatives and
Constraints /

Review
Commitment
Partition

Plan Next Phases

analysis

Life-cycle plan

plan

Integration
~1 test plan

Evaluate Alternatives,
Identify, Resolve Risks

" ~ Risk
analysis

Risk
f i

Risk
---...........~al~ sis ~ ~ ~
Risk : -"-,,,,,,,,~ ~ Prototype 3

"~)r°t°type 2 /
! P_____rototyps

concept o T - ' ~ o ~ Simulations,
operation requirem~ts

--.----'~Heql

/ Detailed / Software design
ulrements / product desig/ /

validation / Z T 7
/ i onit Cod.

Design validation / . . . ! ! ~
and verification ~ ;, Integration ~

. ~ _ _ _ . - - ~ p t a n c e i and test y
Implementation test i /

Develop, Verify
Next-Level Product

Figure 2. Spiral Model of Software Development

or the spiral can be unrolled, thereby mapping one model to
the other. Boehm saw the spiral model as risk- driven
because the activities at any particular point in the process
are determined by the need to identify and resolve risks. In
this paper we focus on the recurring security engineering
activities using the spiral form as they apply to EA.

From an SSE solutions perspective, a potential vulnerability
is anything that could reduce integrity, availability,
confidentiality, or other SSE objectives. The
countermeasures applied to reduce or eliminate
vulnerability need not be specific to SSE. For example,
procedural approaches and countermeasures based on safety
engineering may be effective and sufficient for particular
SSE vulnerabilities. Security engineering shares certain
concerns and countermeasures with safety engineering. It is
efficient to capitalize on the overlap. Attempts to draw a
sharp distinction between security and safety have not been
productive. The interested reader is referred to (Burns,
1992).

Security engineering should be a continuing activity of the
systems engineering life cycle. Security engineering
findings, like many systems engineering findings, are
reviewed and revised, as appropriate, at various milestones
in the system development. The milestones of either
waterfall or spiral software development models are
appropriate.

4. SSE MODEL AND PRACTICE
EA involves refining discipline and control throughout SSE
development and maintenance. Confidence in the
correspondence between the SSE requirements and their
implementation, is greater if SSE analysis and
documentation are made an integral part of the development
and maintenance activities. The thesis is that since each can
be applied to the spiral model, SSE to match it must be
spiral as well. Poorly controlled development and
maintenance can result in a flawed implementation or an
implementation that does not meet all of its SSE
requirements. This lack of control, in turn, increases the risk
of security failures.

Figure 3 illustrates the SSE spiral model. It is derived from
aspects of a spiral systems development model, but does not
presuppose that development should formally adhere to the
spiral model. Representative activities are shown inside the
spiral. Milestones and decision points mark the transitions
between SSE stages. The five stages of SSE, described
below, are performed for each EA cycle.

4.1 UNDERSTAND CONTEXT
The first stage in SSE engineering is attempting to
understand the business process and system context. In the
first iteration this knowledge will probably be highly
imperfect. Future iterations will refine the understanding by
virtue of experience. Anticipation of multiple iterations
reduces the pressure to place premature emphasis on
assuring a perfect understanding or getting the customer to

15

1. Underst
Context

Commit to
Proceed

Plan Next
Iteration of
Spiral Plan

. M a n a g e r
and Plan
Next Release

Review
Context

Develop/Update
Estimate of the
Situation (EoS)

Define/Refine Approach
- Stakeholders
- Objectives
- Alternatives
- Constraints

Review
Progress

Execute
Change
Management

2. Analyze Security Risks

Perform Risk [
Analysis

Review Risk " 7 " - - "
Analysis /

Plan Risk / E x e c u t e Risk
A v o i d e r f Avoidance

/ Review
Altern ative(s)

Commit to Risk I
Avoidance Strategy]

Review
Technical

Product

I

Develop and
Verify System

Monitor and
Review

Plan and
Schedule

Commit to Risk
ReduetionPlan

4. Develop
the System

Develop
a Plan

Figure 3. SSE Spiral Model

agree. The business process and system context does not
exist in a vacuum. Stakeholders, objectives, alternatives,
and business constraints must be identified and incorporated
into the understanding. The first stage culminates in a
summary review of the context.

4.2 ANALYZE SECURITY RISKS
Risk analysis occurs in the second stage. Security threat is
an agency of risk in addition to the business risks addressed
in EA. This stage often involves considerable judgment in
identifying the nature of the security threat and the
probability of that threat materializing. The idea is to
establish a level of security for all information systems that
is commensurate with the risk and magnitude of the harm
resulting from the loss, misuse, or unauthorized access to or
modification o f the information contained in these
information systems (OMB, 1996). With the establishment
of this level of security, preparation of formal risk analyses
is no longer required. OMB guidance concerning risk
analysis is well adapted to EA:

In the past, substantial resources have been
expended doing complex analyses of specific
risks to systems, with limited tangible benefit in
terms of improved security for the systems.
Rather than continue to try to precisely measure
risk, security efforts are better served by
generally assessing risks and taking actions to
manage them.

While formal risk analyses need not be
performed, the need to determine adequate
security will require that a risk-based approach
be used. This risk assessment approach should
include a consideration of the major factors in
risk management: the value of the system or
application, threats, vulnerabilities, and the
effectiveness of current or proposed safeguards
(OMB, 1996).

The second stage culminates in a documented risk
management strategy.

4.3 DEVELOP A PLAN
Having determined the risk environment, the third stage
addresses a plan for risk management. A 1994 Joint Security
Commission report best describes the process:

In the past, [in certain environments] most
security decisions have been linked one way or
another to assumptions about threats. These
assumptions frequently postulated an all-
knowing, highly competent enemy. Against this
danger, we have striven to avoid security risks
by maximizing our defenses and minimizing our
vulnerabilities. Today's threats are more diffuse,
multifaceted, and dynamic. We also know that
some vulnerabilities can never be eliminated
fully nor would the costs and benefits warrant

16

trying In most cases it is possible to balance
the risk of loss or damage of disclosure against
the costs of countermeasures. We can then
select a mix that provides adequate protection
without excessive cost in dollars and without
impeding the efficient flow of information to
those who require ready access to it.

The third stage produces the specifications and a risk
management plan.

4.4 DEVELOP THE SYSTEM
The fourth stage implements the plan by developing the
system. Note that the products of figure 2 correspond to the
system of figure 3. The system is then implemented, tested,
and verified. This stage exhibits major challenges to the
practice of SSE. Integrating secure products into secure
systems is a formidable challenge in conventional
acquisition (Gambel, 1995).

EA, with its emphasis on COTS product use, exacerbates
the SSE integration problem. Security designers have
attempted to implement a modular solution, first building
trusted operating systems, and then adding trusted networks,
trusted database systems, and trusted applications. On top of
this layering, user applications which have no basis for trust
were integrated. In many cases, the term "Trusted" was
applied, not because the confidence was high, but because
the privilege set required that terminology to be used. The
result was low confidence "trusted" system solutions.

This modular solution has failed (JSC, 1994). The business
part of the failure was the inability to deliver the market
demand for trusted products. The strategy did not represent
an unavoidable commitment on the part of the DoD and
Intelligence Community. Rather, it expressed the aspirations
of the computer security core group. Producers failed to reap
the rewards of selling evaluated products in sufficient
quantity to recover the costs of participation in the program.

The technical part of the failure was the incompatibility
among trusted products. Each product used similar but
different security policy models and represented them in a
different structure. Assumptions and design decisions were
different and were often unavailable. Some evaluation
reports contained censored documentation. The system
integrator might be able to reverse engineer the products to
determine and revamp their models and structures, but
design decisions remained as potential points of failure.
This reverse engineering and revamping severely reduced
the value of prior evaluations. Integrators were required to
encapsulate the security solution in a manner that did not
impact their systems solution, that is, independent of
whether security works or fails, the system will work.

The practical alternative is the application of correctness
methods from the security engineer's toolkit, represented in
table 1, includes formal methods, simulation, testing,
process modeling, structured programming, use of

computer-aided software engineering (CASE) tools, object-
oriented design, and reuso of existing code. The following
four interrelated strategies, evolved from recommendation
by Abrams and Zelkowitz (1995), recognize that SSE is an
empirical discipline:

* Evaluation of process, personnel, and abilities to
identify and reinforce what is working well

• Thorough review and analysis by qualified independent
security professionals of intermediate products during
development with sufficient time and resources
allocated to correct deficiencies

• Rigorous testing based on the assertions not
specifically validated as having been corrected by the
preceding analysis

• Recognition of critical milestones in system
development. This recognition includes understanding
of risk of failure and conducting a cost/benefit analysis
for reducing this risk further

Table 1 presents representative security engineering
methods and allocates them to the stages of the security
engineering spiral model. The selection of methods and the
table entries are not rigorously derived; they are presented
for illustrative purposes only. Completing such a table for a
specific cycle of a particular system is only one part of the
overall security engineering process. The fourth stage
culminates in a review of the technical product.

Consider, for example, the testing row of table 1. Testing
occurs during the system development stage. The skills
required to conduct the tests (as differentiated from test
design) are readily available. The cost of testing and the
cost-effectiveness are average among the methods. Testing
is well suited to the evaluation of complex systems.

4.5 MANAGE AND PLAN NEXT
RELEASE
The fifth stage builds on the four previous stages, reviewing
progress, revising the plan in light of experience, and
making plans for the next cycle's incremental release.
Change management is an important technique for
completion of a cycle. During the conduct of the cycle, many
ideas for improvements will undoubtedly occur. Although
difficult to resist the temptation to implement the best ideas,
prudence dictates that plans and objectives be held as
constant as possible for one cycle.

To be most effective in an EA environment security
engineering must also adapt to near-sighted focus. High-
level long-term security objectives probably change little
and slowly while short-term strategies and mechanisms will
be more dynamic. Similarly, changes in risk, threat, and
vulnerability are more in focus the more immediate they are.
During this stage the security engineer should reconfirm the
long-term strategy and plan the tactical solutions for the
next cycle.

17

Method

Formal Methods

"Simulation

Testing

Structured
Programming

CASE Tools

Object-Oriented
Methods*

Code Reuse

When
Used

Skill
Required

Cost Cost Effectiveness Applicable to
Complexity

2 ,3 •

1 ,2 ,3 • • • •

4 • • • •

4 • • • •

4 • • • I •

3 ,4 • • • •

4 • • • •

Table 1. Characteristics of Correctness Methods

Key:

Security Engineering Stages Skill Rating

1. Understand Context • above average, rare

2. Analyze Risks • average

3. Develop Plan • below average, common

4. Develop System

* Object-oriented methods and code reuse are functions of the software development tools, language, and
architecture selected.

Reviewing progress includes ascertaining the extent to
which the objectives have been achieved. Progress is
reviewed against both old and new objectives. The view
backward can be used as input to process improvement as
well as reward to the implementers. In an EA environment
we expect that the target may change. Separating the
measurement of achievement from change in plans is
important.

The fifth stage produces a commitment to proceed based on
an understanding of past accomplishments and the refined
view of the future inherent to EAr

5. BEGINNING A CASE STUDY
The NAS Infrastructure Management System (NIMS)
acquisition, an ongoing example of EA with an SSE
component, is a test case for the approach described in this
paper.

One of the first steps for NIMS security is creation of a
reference security architecture, i.e., an architecture that is
not implementation specific. Eventually, the security
architecture will also need to address security from the
functional and application perspective.

This reference security architecture provides a generic
technical reference model of security that is "neutral" in
terms of the specific implementation details. It allows
flexibility in the design and development of INFOSEC in

different phases of the NIMS system life cycle. The
reference security architecture lends itself to open systems
and industry standards to minimize life-cycle costs,
maximizes the use of COTS hardware and software
solutions, and supports incremental development of
functions. The reference security architecture supports
incremental changes as the design moves toward alignment
with the client's system architecture. The goal of the
reference security architecture strategy is to mitigate
controllable risk of security failures during the EA life cycle.
It will hopefully contribute to a reduction in costs by
minimizing large-scale security changes. It is also intended
to support security for the distribution of processing across
the different nodes that provide centralized management of
the client system infrastructure.

In summary, the reference security architecture has the
following features

* Allows for extensions that support new functionality,
technology, devices, applications, information, and
capacity

Q Allows maximum use of COTS security products and is
not dependent on any particular vendor or specific
system design

• Will evolve with advances in security technology

18

• Allows flexibility and scalability to accommodate
changes in requirements and to allow rapid integration
of new capabilities and technologies

• Is consistent with the Information Technology Security
Evaluation Common Criteria, version 1.0 (1996); the
Office of Management and Budget (OMB) Risk
Management Paradigm, OMB Circular A-130 (1996);
and the President's Commission on Critical
Infrastructure Protection, Executive Order 13010
(1996)

The reference security architecture for computing resources
is an architectural view of security for a distributed
computing system. The reference security architecture
addresses both hardware and software in the distributed
network. Security services include:

• Authentication services provide a means for one entity
to validate the identity of another.

• Secure access management services protect the
resources of messages and the data-handling network
from unauthorized use. Once a user has been identified
and validated using the authentication service, access
management ensures that the user receives or modifies
only that information that he/she is authorized to have.

• Data confidentiality services as needed ensure that the
content of messages or data is known only to the sender
or user and the intended recipients. They also include a
service to protect against traffic flow analysis attacks.

• Auditing services maintain a log of security-related
activities, including successful logons, failed logons,
failed authentication attempts, and
en cryption/decryption events.

• Data integrity services protect against the modification
of message and data contents.

A primary objective of the reference security architecture is
to provide security management of the infrastructure, which
will consolidate a large number of facilities currently
performing infrastructure monitoring and control. This does
not, however, dictate that security management resources
must be centralized or that all functions must reside at
centralized management facilities.

N/MS will provide the flexibility to distribute the
processing of management information, while providing an
integrated view of the system infrastructure status and
centralized monitor and control capabilities at centralized
operational control centers. Distributed services are used
within and between operational control centers.

Three possible systems that may exist at operational control
centers will require security protection:

• A core system server that hosts fundamental system-
related server services

• A system that has the management application of
Operational Configuration Management (OCM)

• A workstation

In addition, the reference security architecture protects
pelripherals that attach directly to corresponding hardware or
are attached to the local area network (LAN) within the
command node.

NIMS will provide comprehensive, precise and timely
management information. The system is based on industry
and international standards for information exchange,
extended as necessary for information unique to]filMS.
Database servers will be located at each operations control
center and at selected locations of high system management
activity (e.g., large work centers). Object-oriented or
relational database technology will be used to implement the
databases. The NIMS information architecture is a seamless,
distributed information domain shared by the operational
control centers, and multiple work centers and other system
management facilities. External information systems may be
sources and/or receivers of data from NIMS.

6. FUTURE STUDIES
This paper has introduced a model for SSE is a reasonable
framework for further development. In data-centric systems,
emphasis is placed on protecting data from software. It has
been suggested that EA systems tend to not be data-centric,
but functionality-centric. Software doesn't attack the assets;
software and data are the assets. The Joint Security
Commission has said that the old strategy has failed. We
need to explore how security engineering in an EA
environment may be part of a successful new strategy.

In order to be made more concrete, the concepts presented in
this paper need to be applied to real systems. In addition to
the ongoing NIMS acquisition, it would be valuable to
reexamine recent system developments from the perspective
of this paper in order to refine the methodology and generate
detailed procedures and processes. We must identify key
parameters and issues within the process that impact success
from both EA and SSE perspectives. An initial set of key
parameters includes the following:

• Product development versus use of COTS products

• Frequency, amount, and complexity of changes

• Quality of specifications

• Key personnel competency and stability

7. SUMMARY
Evolutionary acquisition techniques are being used for large
system development efforts to reduce the time required to
complete a system relative to the rate of changes in
requirements and technology. The practice of security
engineering can adapt to EA by following a variant of the
spiral systems development model applied to each
incremental release. SSE is one of the continuing activities
of the systems engineering life cycle.

The probability of success is greater if security engineering
analysis and documentation are made an integral part of the
development and maintenance activities. The security
engineering spiral model is presented as having five stages:
understanding the context, analyzing security risks,

19

developing a plan, developing the system, and managing
and planning subsequent release(s).

8. REFERENCES
[1] Abrams, M. D., and M. V. Zelkowitz, December 1995,

"Striving for Correctness," Computers & Security, Vol.
14, No. 7, pp. 719 - 738, Elsevier Advanced
Technology, Oxford, UK.

[2] Armed Forces Communications and Electronics
Association (AFCEA), 1 September 1982, Command
And Control (C e) Systems Acquisition Study Final
Report, Falls Church, VA~

.[3~[Air Force Material Command, 1998, Acquisition
Strategy, http:llwww.afmcwpafb.af.millorganizationsl
HQ-AFMC/DR/drihome/acqref/aqustrat/aqstrat .htm

[4] Boehm, B. W., 12 December 1976, "Software
Engineering," IEEE Transactions on Computers, Vol.
C-25, No. 12, pp. 1226-1241.

[5] Boehm, B. W., 1987, "A Spiral Model of Software
Development and Enhancement," Software
Engineering Project Management, IEEE, Inc., pp. 128-
142.

[6] Burns, A., J. McDermid, and J. Dobson, 1992, "On the
Meaning of Safety and Security," The Computer
Journal, Vol. 35, No. 1, pp. 1-15.

171 Dana, P. H., 1995, Global Positioning System
Overview, Department of Geography, University of
Texas at Austin, Texas and at
http:llwww.utexas.eduldeptslgrglgcraftlnotes/gpslgps.h
tml

[8] Federal Aviation Administration, October 1996,
National Airspace System Architecture, Version 2.0 (or
most recent version), Office of System Architecture and
Program Evaluation (ASD), Washington, DC.

[9] Gambel, D., and J. Hemenway, October 1995, "The
Use of Generic Architectures in System Integration,"
Proceedings of the 18th National Computer Security
Conference, pp. 431-446.

[10] Joint Logistics Commanders (JLC), May 1995,
Guidance for Use of Evolutionary Acquisition Strategy
To Acquire Weapon Systems, Defense Systems
Management College Press, Fort Belvoir, VA.

[11] Joint Security Commission (JSC), 28 February 1994,
Redefining Security--A Report to the Secretary of
Defense and the Director of Central Intelligence,
Washington, DC.

[!2] Office of Management and Budget (OMB), 8 February
1996, Management of Federal Information Resources
(Transmittal Memorandum No. 3), Circular A-130,
Washington, DC.

[13] President of the United States, 15 July 1996, Critical
Infrastructure Protection, Executive Order
13010,Federal Register.

[14] Royce, W. W., August 1970, "Managing the
Development of Large Software Systems: Concepts and
Techniques," Proceedings, IEEE WESCON, pp. 1-9.

[15] RTCA, Incorporated, January 1995, Report of the
RTCA Board of Directors' Select Committee on Free
Flight.

20

