
Server-Assisted Cryptography

D o n a l d B e a v e r *
IBM/Transarc Corp.

A b s t r a c t .

Cryptographic tools to protect data and joint
computations abound. But they tend to
carry trust relationships to the extreme, re-
lying on full trust in third parties, on heavy-
weight, "do-it-yourself" mechanisms, or on
masses of equally-trusted peers (as in secret
sharing and secret computation). Trusted
parties provide simple, elegant and efficient
solutions but necessitate concentrated risk;
threshold computations are prohibitively ex-
pensive but enjoy greater robustness.

This work investigates tools to change and
accommodate trust relationships in a more
flexible and gradual fashion, replacing dis-
crete trade-offs between risk and complex-
ity by a continuum of options. In particu-
lar, it proposes a new architecture for cryp-
tographic tools, cMled server-assisted cryp-
tography, in which lightweight clients obtain
transferable and composable cryptographic
resources from one or more third-party ser-
vice providers. In contrast to T T P architec-
tures, however, information flows in one di-
rection only - from service provider to client
- greatly reducing the trust placed in third
parties.

Currently at: CertCo, 55 Broad St., Ste. 22, New York,
NY 10004; beaverd©certco.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted wi thout fee provided that
copies are not made or distr ibuted for profit or commercial advan-
tage ,and that copies bear this noltce and the fuel citat ion on the first page.
-fo copy otherwise, to republish, to post on servers or to
redistribute to lists, requires pnor specHm permission and/or a fee.
1998 NSPW 9/98 Charlottsvil le, VA, USA
© 1999 ACM 1-58t 13 -168 -2 /99 /0007 . . . $5 .00

1 I n t r o d u c t i o n

The na tura l evolution of large sys tems follows sev-
eral common pat te rns , including division of labor,
specialization, compar tmenta l i za t ion , decentraliza-
tion, and differentiation. As overall functionali ty
increases, simpler and specialized tasks are identi-
fied and offloaded to specialists.

To some extent , the design of securi ty archi-
tec tures follows these evolut ionar i ly-proven tenden-
cies. Kerberos [SNS88], for example, assigns re-
sponsibilit ies for manag ing principal and password
informat ion to specialized securi ty servers, so tha t
o ther components (i.e. clients and generic servers)
do not have to mainta in , secure, and coordinate
individual databases . But security seems to face
obstacles to a continued evolution, par t icular ly in
tha t increasing the number of "specialists" para-
doxically decreases securi ty by enlarging the vul-
nerable t rus ted comput ing base.

In fact, the idea of using a t rus ted comput ing
base is itself a l imiting factor, since it implies a very
simplistic t rus t model: one set of components is
comple te ly t rusted, and the rest are not. While this
may suitable for a world of isolated, fortress-like
domains , it is hardly rich enough for large-scale,
decentralized, societal systems.

The c ryp tographic tools on which much of in-
format ion security relies are not much help. They,
too, rely on oversimplified t rus t models: t rus t your-
self and nobody else; t rus t yourself and a t rus ted
th i rd pa r ty (T T P) ; or t rus t society (i.e. t rus t tha t
a ma jo r i t y of components are reliable). These t rus t
relat ionships have one thing in common: t rus t is
al l-or-nothing.

Jus t as grant ing least privilege to users has
been identified as a desirable character is t ic for au-
thorizat ion, we look to least reliance on thi rd par-
ties as a compell ing design principle for decentral-
ized systems. When reliance is l imited to certain
proper t ies or behaviors, there is no need to describe
t rus t relat ionships in the crudest , a l l -or-nothing

92

fashion.
The obvious problem is whether it is possible to

produce feasible security architectures with richer
(and more complicated) trust models. This work
takes a look at ways in which specialists can as-
sist in increasing security and robustness without
having to be absolutely trusted. Because existing
cryptographic tools do not suffice, we also describe
new cryptographic techniques to support this en-
richment of trust models in information security.

1.1 Systems Evolution

To motivate our demands for different infrastruc-
ture and richer trust relationships, we first take a
quick, ad hoc look at the evolution of large sys-
tems, both passively (as in nature) and artificially
(guided by human design). Certain patterns reveal
themselves time and again:

• Divis ion of labor . By assigning a class of tasks
to a particular individual, the individual is freed of
the costs of context switching, and task manage-
ment and completion is simplified.

• Special izat ion. As system functionality in-
creases, all-purpose components become too large
and complex to maintain~ let alone design and ana-
lyze. It is easier to analyze and control the behavior
of the overall system when the behaviors of compo-
nents are restricted and simplified. Improvements
in the performance of specialized tasks are easier
to implement when they affect only a small frac-
tion of components, namely those responsible for
the given tasks. When any general-purpose compo-
nent can be called to perform a critical task, every
component must be equally protected; in contrast,
specialization permits efforts to maintain integrity
and assurance to be focused on critical components.

• Repl ica t ion . Specialization can increase insta-
bility insofar as specialists become more critical.
The simplest way to avoid risky dependence on
unique or overloaded specialized components is to
replicate them. Of course, when the compromise
of a component can lead not just to loss of its
functionality but to compromise of other proper-
ties (such as privacy), replication can increase risk.
Note that certain cryptographic tools such as risk
dissipation can enable replication without incurring
this increased threat of compromise - at least, the-
oretically speaking.

• C o m p a r t m e n t a l i z a t i o n . The reach of error or

maliciousness can be confined by dividing a large
system into autonomous domains. Scalability is
difficult without the simplifications provided by
compartmentalizing system management.

• Di f fe ren t i a t ion . Robustness can be enhanced
by diversity, both in implementation of given ser-
vices and in the way those services are divided and
assigned. Regardless of its benefits, differentiation
often occurs as an inevitable result of enormous
scale and local autonomy.

• Increased functionality. As efficiency and sta-
bility increase, there is greater room to expand
the functionality provided by and within a system.
Thus complexity continues to grow, leading to fur-
ther division of labor and specialization.

• T rans l a t ion . Interoperability requires that the
functionality provided by one domain be mapped
into that requested by another. The larger the
scale, and the looser the coupling across the entire
system, the greater the need for translation and
"glue."

In artificial systems in particular, there are the
additional constraints of simplicity and scalability.
These put greater pressure on division of labor and
tend to increase the number of critical components.
In order to scale reliably, however, blind reliance on
such components must be lessened.

1 .2 S e c u r i t y A r c h i t e c t u r e : A n E x -

c e p t i o n ?

Clearly, many systems architectures have applied
the patterns listed above to security itself, dividing
the labor of specialized authentication and princi-
pal management and assigning the lion's share to
centralized (within a local system) security servers.
Firewalls take on the specialized responsibility of
filtering unwanted access to local domains. Infor-
mation security does benefit from established pat-
terns in limited ways, but are current security de-
signs expandable to scales exceeding single enter-
prises and institutions?

1.2.1 Trusted C o m p u t i n g Base

Most system security architectures to date have in-
deed divided the labor of secure operations. In a
classical, centralized system, the "trusted comput-
ing base" contains the specialized components who
carry the responsibility of enforcing security. This

93

model has been the approach of choice for situa-
tions in which fortress-like protection is suitable.

In a more loosely coupled and decentralized en-
vironment, there may be "trusted third parties"
(who may or may not be "members" - i.e. un-
der the autonomous control - of the given system).
Kerberos authentication servers are a common ex-
ample. Certification authorities are another; they
may or may not be part of the local system. Yet
another example is a key escrow agent, who holds
copies of private keys or shares of them, but is not
under the control of or related to the parties on
whose behalf it holds the keys.

TTP's are the natural extension of the trusted
computing base approach to the networked world
of distributed systems3 For reasons we discuss
presently, TTP's require a perhaps unnecessarily
strong trust model for decentralized systems.

1.2.2 From Enterpr i se t o I n t e r n e t

As interactions and transactions move from the do-
main of large but finite enterprises to decentralized
and far-reaching internets, the restrictions and dis-
advantages of TTP and multiparty-based architec-
tures are exacerbated. It is more reasonable for
an enterprise to rely on a TTP when that TTP is
under the autonomous control and management of
the enterprise. When IBM and Microsoft engage
in a transaction, however, whose TTP should they
trust? When a Finnish student buys an encryption
package from an American site, should she rely on
the discretion of a US-government approved third-
party transaction server?

The increase in decentralized distributed com-
putations over autonomously managed distributed
computations has a deep impact on deciding how
security architectures should be designed. Trusted
third parties can and will play an important role
in the evolution of these architectures, but the in-
creasing lack of common management and control
makes TTP solutions more complicated.

Several aspects of societal interaction apply
to enriching security and trust management in
loosely-coupled environments. First, there is an in-
creased need to be able to choose TTP's flexibly,
from a pool of neutral (and properly motivated)
third parties. (This will both complicate and sim-

1We contrast "dis t r ibuted," which connotes having com-
mon design and /o r supervision, with "decentralized," which
applies to diverse and loosely-coupled systems.

plify trust management, since a greater number of
reputations or judgements may need to be accom-
modated, while a random selection of assistants
from a yellow-page directory may lessen the esti-
mated risk and the need for precise risk assess-
ment.) Second, it may be useful to avoid plac-
ing all the eggs in the basket of a single TTP; but
this safety motivation should avoid increasing de-
mands on TTP cooperation and interoperability,
which may be hard to impose. And third, it is im-
portant to restrict the amount of information flow-
ing to the TTP's, because they do not necessarily
share the same interests as any of the clients.

1 .3 T r u s t M o d e l s i n C r y p t o g r a p h y

To see how cryptographic tools might help support
new information security designs, we must first con-
sider what cryptography already provides. As men-
tioned earlier, cryptographic tools tend to follow
one of three, all-or-nothing trust models: trust one-
self; trust a server; or trust the group.

• S e l f -p ro tec t i o n . Encryption and key exchange
are canonical examples of do-it-yourself protection.
Moderate to heavyweight computations must be
performed by the individual. A private, high-
quality source of randomness is necessary. Rather
than trust anyone to supply such random bits and
keep them discreetly hidden, an individual gener-
ally trusts only himself to produce some moderate
amount of randomness. Where this randomness is
limited, expensive pseudorandom expansion is re-
quired.

In abstract cryptographic protocols where the
behavior of another party is in question, zero-
knowledge proofs allow each individual to check the
veracity of certain facts, usually those that attest
that the other party has followed prescribed proto-
col steps. The verifier trusts only himself.

• T r u s t e d t h i r d par ty . Digital signatures and
certificates require trust in the mapping from sign-
ing key to identity. Unless the individual who relies
on signed data is able to verify that mapping di-
rectly (self-trust), he relies on Certificate Authori-
ties, namely TTP's, to provide it. The mapping is
either completely trusted, or ignored.

Many protocols assume synchronization or se-
quential ordering of messages. Accessing the cor-
rect time is usually assumed possible by fiat, or
explained away with the availability of beneficent
and secure system clock, i.e. a TTP.

94

• Diss ipa t ing Risk. Cryptographers (not exclu-
sively!) have long recognized that placing trust in
single components is a dangerous habit. Their pri-
mary response has been to develop a set of tools for
dissipating risk among multiple individuals, with
the guiding principle that while any given indi-
vidual may be corrupt, the majority are probably
reliable. 2

The principal tool for implementing such
democratic methods is secret sharing [Bla79,
Sha79], which allows sensitive information to be
split among several components in such a way that
a majority of shares is needed to obtain any infor-
mation whatsoever about the secret.

These methods have been extended to enable
the computation of some function of already-shared
secrets (such as their sum) without revealing those
inputs [GMW87, BGW88, CCD88]. Theoretically
speaking, groups of components can carry out
general-purpose computation (such as ticket cre-
ation) without localizing the sensitive, intermedi-
ate data at any point.

Apart from the relative complexity of these
multiparty protocols, this approach exacerbates
certain disadvantages of TTP-based architectures.
Bottlenecks are increased: each original TTP op-
eration now involves communication among several
servers. Physical security becomes more compli-
cated: rather than a single strongbox, several are
needed and in different locations - even though the
dissipation of risk reduces the impact of compro-
mising individual strongboxes. Requests for secu-
rity services are more complicated, requiring either
a gateway (which then becomes a TTP!) or direct
communication with all the servers.

1 .4 M o d i f y i n g T r u s t R e l a t i o n s h i p s

While a boolean, Trusted Computing Base ap-
proach is reasonable for a strongly confined and
simple system, a richer trust model is needed to
support increasing numbers of critical components
and services and the unique sorts of trust relation-
ships that occur among them.

Cryptography has left a gap in providing sup-
port, since it either assumes that certain compo-
nents will be absolutely trusted, or that all in-

2This is i tself a s t rong as sumpt ion for in format ion se-
curity, par t icu lar ly when different iat ion is l imited. But we
shall avoid discussing the p rob lems of maliciously m o n o p o -
listic or marke t -d r iven uniformity.

dividuals will wrap each interaction with overly-
cumbersome efforts for self-protection. Often, the
lack of a trusted party means that large numbers
of nodes must interact according to complex and
expensive protocols, the simplest example of which
is secret sharing [Sha79, Bla79].

While techniques such as Zero-Knowledge
Proofs (ZKP's) [GMR89, GMW86] can ensure that
a critical component has followed the steps it is re-
quired to perform, they cannot verify that the ac-
tions of critical components were restricted to the
required steps. That is, it is not possible to ver-
ify that a trusted component has kept information
secret. ZKP's allow one to verify what has been
done, but not what hasn't.

Thus, although cryptographic tools can allow
a sort of discreet integrity check on TTP's, they
cannot ensure that TTP's are discreet. One still
needs to trust the third party in a strong manner.

1.4 .1 L e a s t R e l i a n c e

The principle of Least Privilege [SS75] states that
users and processes in a system should have the
minimal set of access rights needed to accomplish
their tasks. This confinement protects the system
and other users from abuses, errors, and Trojan
Horses.

In a modern internetworking scenario, we have
the converse concern, namely to protect users and
processes from the actions of third parties. Revers-
ing the roles of operating system and user for a
moment, it is now the user who wishes to protect
her resources from the actions undertaken by some
foreign service.

Least Privilege thus becomes:

(Least Rel iance) When the architecture
of a distributed system or service requires
that a client trust a service provider, the
client should rely on the service provider
in the least possible fashion.

For illustration, consider a tax-return prepa-
ration service. If the client must submit her data,
then the architecture has demanded that the server
be relied upon not to release her data. If, however,
the server provides a (non-communicating) applet
to the client, the architecture of this solution de-
mands that the server be relied upon only to pro-
vide a correct program. Clearly, in the latter case,
the client is not relying on the server's discretion

95

to keep sensitive information private, since the in-
formation flow is uni-directional.

Trusted third parties are typically relied upon
for discretion (privacy) and integrity (correctness).
In the preceding example, reliance was minimized
to simple correctness; leakage of information from
the service provider would not compromise the pri-
vate information of the client.

The two impor tan t points to address are:

1. In what settings is it possible to reduce t rust
placed in third parties?

2. Wha t is the cost of minimizing reliance on
third parties?

1 . 5 F r o m S e r v e r I n v o l v e m e n t t o

S e r v e r A s s i s t a n c e

The main distinction between server-assisted so-
lutions and T T P ' s is the direction of informa-
tion flow. T T P ' s typically manage highly sensi-
tive information for their clients, such as decryp-
tion and authent icat ion keys. The server-assisted
archi tecture demands tha t information flow solely
from t rus ted par ty to clients. Thus, the sensitive
t ransact ional information (and transact ional pow-
ers, such as signing contracts or delivering them
unfairly in a one-sided fashion) is never placed in
the hands of the service providers.

An equally impor tant demand is tha t clients
be able to compose th i rd-par ty services in order
to dissipate risk. In fact, the third-part ies/service-
providers need not be aware of one another, let
alone be required to interact in some sort of coor-
dinated mul t ipar ty computat ion. Indeed, for most
if not all tasks, the service-providers do not need to
know whether or how many other service-providers
are providing services.

1.5.1 S e c u r i t y R e s o u r c e s

Server-Assisted Cryptography focuses on a new
class of cryptographic tools, designed to produce
and use security resources tha t are:

1. transferable: service providers can t ransmit re-
sources to clients, who then use them in a sim-
ple way;

2. composable: resources from distinct sources
can be composed (without involvement of the
sources) to reduce weaknesses;

3. independently-produced: distinct sources need
not have any knowledge of other sources tha t
the clients rely upon.

The main question in considering server-
assisted security architectures is whether these
propert ies are achievable, and whether they can be
achieved in a feasible and simple manner . This
paper discusses general approaches to achieving se-
cure composit ion of resources in the server-assisted
model, as well as part icular solutions for fundamen-
tal cryptographic and t ransact ional tasks.

1 . 6 E x a m p l e s

O n e - T i m e P a d As a simple example, consider a
lightweight client who does not have the ability to
generate high-quali ty random numbers yet wishes
to set up a one-t ime pad (OTP) with a par tner
for later use. Instead of sending a weak O T P by
t rus ted courier, the client contracts out to a service
provider to have identical CD's full of random bits
delivered to him and his partner .

Clearly, the resource is transferable: it can be
conveyed by private courier on a CD. More interest-
ingly, it is also composable: if two service providers
send CD's, the client and par tner need only com-
bine them locally with bitwise exclusive-ors to ob-
tain a new O T P tha t is as strong as the stronger
supplier. Thus, if one supplier uses a linear-
congruential number generator to produce "ran-
dom" bits, while the second uses a Blum-Blum-
Shub generator [BBS86], 3 the breakable LCNG will
not compromise the privacy of the combined CD's.

In this simple example, the client and his part-
ner do rely on obtaining correct (i.e. identical)
CD's from the suppliers, but the suppliers are never
given the highly-sensitive cleartexts. Because the
resources are t ransferred to the clients, however,
the suppliers have no idea of the messages being
sent (assuming they have no access to the wires
used). Moreover, one supplier gains nothing by
having access to the ciphertexts, as long as the
other supplier has used high-quality random bits.

The client need only have the simple knowledge
of how to use a O T P to encrypt messages. He
does not need a stochastic source a n d / o r a strong
random number generation package.

3Linear congruential number generators are known to be
predictable [Plu821, whereas predicting BBS sequences is as
hard as factoring [BBS86].

95

There are a few essential points to note about
this example. First, the specialized cryptographic
work (generating good random numbers, in this
case) have been outsourced to experts, reflecting
a division of labor for security tasks themselves.
Second, composition increases the strength of the
resulting resources. Third, and most importantly,
the service providers never see the sensitive data;
thus, any reliance on their discreet handling of sen-
sitive cleartexts is obviated.
R e m a r k : C o m m o d i t i e s vs. Services. The
OTP-CD example illustrates a slightly restricted
version of server-assisted cryptography, which we
have described as commodity-based [B97]. The dif-
ference is that the resources can be delivered as a
single response to a request, and the servers need
not be available on-line. That is, the resources can
be packaged, delivered, and used much later on.

Jo in t C o m p u t a t i o n s The OTP example is
fairly trivial and suffers from a bootstrap motiva-
tion: how would the TTP's communicate securely
with the clients in the first place (trusted courier
aside)? The problem does bare some teeth when
one starts to worry about possible errors in the
CD's. And it should be noted that generating good
randomness is essential for sending secure messages
but not for receiving them. But there turn out to
be other areas in which server-assistance provides
improved yet nontrivial solutions.

As described in more detail in §4, there are
a host of cryptographic tools to allow mutually-
distrusting parties to compute some function on
their respective inputs without revealing them. A
typical example is to compare a password with a
password attempt without revealing either, while
still obtaining the single-bit answer of whether they
match. These tools provide some very elegant
primitives for protecting information and interac-
tion, but they remain unused because of their high
complexity.

It turns out that simple, server-assisted tech-
niques can be used to provide the functionality of
these purely abstract primitives. Many of them
can be reduced to a basic cryptographic primitive
called Oblivious Transfer (OT), which is essentially
a noisy channel with (oddly enough) guaranteed
noise that is undetectable by the sender. While ex-
isting cryptographic research on OT has churned
out "polynomial time" but otherwise highly expen-
sive solutions, we show that a server can assist in

achieving OT by providing sender and receiver with
a small, easily generated set of quadruples of num-
bers.

The solution is nowhere near as simple as
exclusive-oring sequences of random bits, but de-
spite the somewhat complicated technical justifica-
tions, they are drastically simplified in relation to
their cryptographic predecessors. Although a solu-
tion for a general-purpose function-evaluator still
remains moderately complex (from a systems view-
point), we have implementation evidence that the
OT solution is within the reach of fairly lightweight
clients.

1 .7 R o a d m a p

In the remainder of this presentation, we spec-
ify in more detail what "server-assisted cryptogra-
phy" requires (§2), discuss some motivations from
cryptography (§3), and then give some technically-
justified but (ultimately) easily implemented solu-
tions for a couple of central cryptographic problems
(§4-5).

2 Def in i t ions

For completeness, we include some more formal
definitions and background, some of which can be
found in [B97]. A simple, special case of server as-
sistance comes in the form of commodity-based tools
[B97], in which services can essentially be stored,
transferred, and used for later computations with-
out online presence of the service provider.

A two- t i e red (n ,m)-pro toco l H = (C,,S) is
a collection of n-+ m probabilistic interactive Tur-
ing Machines (PTM's), divided into two groups, g
(clients) and S (servers). The clients are poly-time
PTM's (PPTM's), and the servers may or may not
be restricted to poly-time, depending on circum-
stances.

Each client has a unique id i E {1, .., n}, and
each server has a unique id h C {1, ..,m}. An ex-
ecu t ion of II on input ~ = (Xl , . . . , xn) is the net-
work computation induced by running each client
i on input xi. An execution induces a distribution
H(x) = (Yl,..-,Yn) on the clients' outputs. Let-
ting X~ C {0, 1} ~, Y~ C {0, 1} ~, and dis t (Y~)
indicates the set of distributions on Y~, we may
write this as II : X~ ~ dist(Y~n). 4 If a and

4It is straightforward to generalize this notation to ac-

97

are distributions with support S C ({0, 1}~) n, de-
fine the d i s t ance between them as [[a - j 3 [[=
½ ~ u e s [Pr [a -- y] - Pr [~ = y] [. We say that II

c o m p u t e s II e(a)-reliably if for all a, for all x E
X~, II II(x) - H(x) I[< e(a). H is a s t a t i s t i ca l ly
re l iable implementation of [I if it computes F,
~-~(D-reliably. II is a c o m p u t a t l o n a l l y re l iable
implementation of II if for any PPTM Dist , for
all a and x e ({0, 1}~) ~, [Pr [Dist(~, II(x)) -- 1]-
Pr [Dist(~,~)---- If I-~-~-w(1).

Let F = {F~} where F~ : X~ ~ Y~. If II is a
protocol in which a single uncorruptible server col-
lects all inputs x+ and returns the respective com-
ponents o f F (x 1 , . . . , xn), then YI is said to compute
F if H is a reliable implementation of II. Further
details can be realized through natural generaliza-
tions of [B91b, MR91].

The interaction between client and server may
be characterized through the following:

Def in i t ion 1 A two-pass protocol between client
Ci and server Sh (in which a client C+ generates
a request string qh,i and receives a response string
Yh,+ from server S+) is called a s t a t e l e s s ob l iv ious
R P C (remote procedure call) if qh,i is independent
of Ci 's input xi (apart from xi 's length) and of any
previous communications with Sh or other service
providers (apart from including tags for identifying
and authenticating Ci and Sh).

The "oblivious" nature of the RPC captures
the important information flow property, which can
be described informally as:

(I n fo rma t ion Flow) Private informa-
tion does not flow from any client to any
collection of servers; nor does information
flow from one server to another.

In the simplest form, servers provide resources
in the form of commodities that can be purchased
and transferred.

Definition 2 A two-tiered protocol II is
commodity-based if:

1. no communication among servers is necessary;

2. servers do not need to know the identities,
number, or existence of other servers;

commodate a length of each y that is polynomial in ~.

3. for each client Ci E C and server Sh E $, Ci
interacts with Sh only through stateless oblivi-
ous RPC's.

4. apart from negotiation of (max ix+i, S, n, t¢)
(namely, maximal client private input size,
server ID's, number of servers, and security
parameter), interactions among clients that
may depend on client inputs {x+} occur strictly
after all client-server interactions.

The commodity-based case of server-assistance
is simple, yet robust enough to support several im-
portant cryptographic tools.

Ideally, each client-server interaction consists
of a single "purchase" of an appropriate commod-
ity. Multiple RPC's are allowed in order to accom-
modate larger, composite protocols. The protocols
presented in this paper require at most a single
RPC from a given client to a given server.

It is important to maintain the stateless prop-
erty to avoid excessive and unscalable demands on
servers. We are specifically interested in ensuring
that the interaction provides object-like commodi-
ties rather than ongoing functional services, and
that it does not degenerate into an indirect way for
servers to communicate with one another.

2 .1 S e r v e r A s s i s t a n c e

In more arbitrary settings, however, it may be
useful to permit a short-term, stateful interaction
rather than a simple RPC. One motivation is to
provide greater flexibility in the generation and
transfer of the commodities. More importantly,
transactioaal services generally require the online
presence (however brief and simple) of the service
providers.

We require that this stateful interaction be of
bounded duration and avoid violating the informa-
tion flow rule.

Definition 3 A two-tiered protocol II is server-
ass i s ted if:

1. no communication among servers is necessary;

2. servers do not need to know the identities,
number, or existence of other servers;

3. for each client Ci E C and server Sh E 8,
Ci interacts with Sh only through oblivious
RPC's.

98

3 Cryptographic Tools

Following the lead of data mining and applica-
tion mining, we turn t o "crypto mining" to see
whether there are elegant cryptographic ideas that
can be made viable using a server-assisted ap-
proach. (This is not a purely self-serving crypto-
graphic exercise, in that many crypto methods sup-
port appealing trust-management properties that
are otherwise unreachable because of complexity.
One example is the process of dissipating risk by
relying on an honest majority in large groups.)

Although there is a whole body of cryp-
tographic research for solving tasks beyond the
"core" cryptographic operations of key exchange,
strong randomness, encryption, signing, and hash-
ing, very little of it has seen the light of day. In-
deed, the body of code needed to support just
the core operations already strains the limits
of "lightweight" implementation. Protocols with
higher complexity are generally too complicated to
implement efficiently and without subtle error. The
server-assisted approach has the potential to sim-
plify them to bring them within the reach of appli-
cation.

• P r o o f Sys t ems . Proof systems enable one party
to demonstrate that the results of its computa-
tion (such as an encrypted message) were con-
structed according to a specified protocol. Zero-
knowledge proof systems (ZKPS) in particular al-
low the prover to protect the actual evidence, such
as cleartext, encryption keys, or internal computa-
tions. The ability to demonstrate a fact without
revealing it is an elegant idea with obvious applica-
tion, for example, to verifying passwords, or show-
ing that an applicant is in possession of the private
key corresponding to the public key he wishes cer-
tified.

s C o m m i t m e n t . A mechanism for committing in-
formation without revealing it immediately is use-
ful for a variety of purposes, such as sealed auc-
tions. It can be used for cryptographic goals such
as generating shared random sequences, preventing
chosen ciphertext attacks, and implementing zero
knowledge proof systems.

• Sec re t Shar ing and Escrow. Although key es-
crow refers to the holding of decryption keys by an
external party, one of the arguments in defense of it
is that those keys need not be stored at a single site.
By splitting them up into shares and distributing

them to different sites or organizations, a key es-
crow mechanism can obtain some small degree of
resistance to abuse, by requiring that those shares
be obtained (presumably properly) from a majority
of sites if the key needs to be determined. Through
secret sharing, the information is at the behest of
the majority, not any particular individual.

The related (and more appropriate) meaning
of "escrow" enjoys less attention in cryptography.
There are few mechanisms to hold something of
value in escrow as enforcement of a contract; in
part, because of impossibility-type results [Cle86].
The primary topic is the fair exchange of keys
[Blu83] (not the same thing as "key exchange"), re-
flecting the idea that each key protects some item
of value to be exchanged for the other. Note that
in classical "escrow" situations, the escrowing party
has complete control of the escrowed item, imply-
ing a very strong degree of trust.

• Jo in t C o m p u t a t i o n . Electronic voting and
threshold digital signatures are examples of scenar-
ios in which a value based on private inputs needs
to be computed without revealing the inputs. Vot-
ers' decisions should remain private, but the tally
must be determined. A signed document must be
generated if a quorum of company directors ratifies
it, but the secret signing key should not be revealed
or localized.

In its general form, joint computation is de-
scribed as applying some function f (x l , . . . , xn) to
private inputs xi, with participant i holding xi. It
is convenient to imagine that there is a (virtual)
trusted party who receives the inputs on private
lines, then reports precisely f (x l , • . . , xn) in return.
Two-party (n = 2) computations can generalize
many of the primitives described above (proof sys-
tems, commitment).

• Ob l iv ious Transfer . As introduced by Rabin
[RSl], OT is a two-party protocol by which Alice
sends a bit b to Bob, which arrives with probabil-
ity 1/2. Alice does not learn whether b arrived,
however.

This odd but simple mechanism has ubiqui-
tous application within cryptographic methods for
joint computation. Protocols for zero-knowledge
proofs, commitment, and multiparty computation
[K88] can be built on OT as a primitive.

99

3.1 T e c h n i c a l R e s u l t s

In the sequel, we focus on achieving oblivious trans-
fer and fair exchange using server-assisted meth-
ods. In particular, the data to be transferred or
exchanged will never fall in the hands of a third
party; rather, the third party will provide simple
resources to enact the transaction.

Our motivation is to show that server-assisted
architectures have an immediate payoff in cryptog-
raphy, by simplifying the large number of currently
unimplementable protocols. The natural goal is
to determine whether these or other changes to
the trust models can ultimately enable loosely-
coupled systems to capitalize on elegant crypto-
graphic ideas.

4 V ir tua l M e d i a t i o n

Many transactions are best described in terms
of a TTP who accepts suitable private informa-
tion from the clients and performs a desired ser-
vice, such as generating encrypted tickets or ex-
changing signed contracts. One branch of crypto-
graphic research has investigated how such TTP's
can be replaced by interactive protocols which
achieve the same results with a high degree of se-
curity, yet without placing trust in particular par-
ties [GMW86, GMW87, BGW88, CCD88]. These
multiparty protocols provide a virtual mediator, an
entity that exists only through the action of the
protocols.

Regardless of the feasibility or suitability of
multiparty protocols, the concept of a non-existent
but effectively present mediator is a powerful no-
tion for organizing and designing cryptographic so-
lutions based on risk-dissipation.

The server-assisted model supports this kind of
risk dissipation but is not constrained to it. That
is, it is certainly possible that:

1. There is one server, who provides services that
are independent of the clients' inputs;

2. There are several servers, who provide services
that are independent of the clients' inputs;
these services are combined by the clients to
assure that errors in one or more services do
not compromise the overall transaction.

In other words, the strategy of replacing one en-
tity by several - in order to dissipate risk, increase

integrity, and reduce vulnerability - is compatible
with server-assisted cryptography but is not abso-
lutely necessary.

There are several distinctions between the well-
studied multiparty protocol approach and the pro-
posed server-assistance model. In particular, in
multiparty protocols, the clients are themselves
the servers; they are responsible for managing the
heavyweight interaction required for simulating a
virtual mediator. In the server-assisted approach,
the number of clients and the number of servers
have no connection at all.

4.1 Reusing Cryptographic Tools

The multiparty approach is suggestive, however,
and it can provide the cryptographic basis for many
server-assisted techniques. As described below for
the example of oblivious transfer, one can first
imagine that the servers engage in a multiparty
protocol, thereby simulating a non-existent, virtual
mediator. But the server-assisted model requires
that servers do not interact in such a fashion; so
instead, we might arrange for the clients to manip-
ulate the resources they obtained from the servers
in such a way that it appears as though the servers
had indeed engaged in a multiparty protocol.

That is, through a doubly recursive applica-
tion of virtual-mediator simulation techniques, it
may be possible for clients to simulate interact-
ing servers, who are themselves simulating a vir-
tual mediator who satisfies the tasks that a TTP
should perform.

The surprising result is that, for certain tasks,
this excessively abstract and convoluted approach
turns out to collapse to extremely simple client-
client protocols satisfying the demands of the
server-assistance model. In other words, the com-
position and use of resources from multiple servers
is ultimately direct and simple, despite the round-
about high-level design.

4 .2 T w o - P a r t y T r a n s a c t i o n s o n P r i -

v a t e I n p u t s

As an illustration, we recount the commodity-
based solution for oblivious transfer of [B97]. Many
cryptographic tasks can be accomplished with OT
as a primitive, including zero-knowledge proofs, bit
commitment (effectively placing a bit in an enve-
lope where it cannot be changed), and secure two-

100

party computation of any discrete function ff(x, y)
on private inputs.

Two equivalent variants of OT are helpful.
Even, Goldreich and Lempel introduced the no-
tion of one-out-of-two oblivious transfer (½OT), in
which Alice holds two bits, b0 and bl, and Bob
receives one, uniformly and at random [EGL82].
Alice does not learn whether Bob received b0 or
bl; Bob's result may be expressed as (c, bc) for a
random c E {0, 1}. In chosen one-out-of-two OT
((12) OW), Bob chooses c and receives bc. The natu-
ral specification protocol, against which implemen-
tations are measured, includes a trusted third party
T who accepts Alice's bits (b0, bl), Bob's choice c,
and returns (c, be) to Bob. Cr~peau showed equiv-
alences among these variants [C87].

There are a variety of implementations of OT
and its variants. The security of each rests on
certain assumptions. Some rely on assuming that
certain number-theoretic problems are intractable,
such as factoring or computing discrete logarithms
[R81, BM89]. Others assume that the laws of quan-
tum mechanics hold, thereby providing a physical
uncertainty that forms the basis for hiding results
from Alice or bits from Bob [BBCS91]. Still others
rely on the existence of a majority of honest play-
ers in a known, completely-connected network with
private communication channels [B87].

We present a two-tiered protocol for oblivious
transfer and show that it is commodity-based ac-
cording to Def. 2. The security of our protocol rests
on the existence of a majority of honest servers
among the m servers.

4.2.1 N o t a t i o n

Let Zp be the field of integers modulo p for some
prime p. If S is a set, we denote taking a uniformly
random sample from S by s ~ $(S).

In describing the protocols, a local computa-
tion by party X is written in the form X : x
f (y) . Sending a message m from X to Y is de-
noted by X ~ Y '. m.

4.3 Virtual Media t ion by the
Servers

As a first approximation, we permit the servers to
interact (see the discussion in §4). It is then possi-
ble to have the servers apply the secret-sharing-
based multiparty protocol solutions of [BGW88,

CCD88].
In particular, imagine that Alice and Bob se-

cretly share their inputs (the data bits and the
choice bits for OT) among the collection of m
servers [Bla79, Sha79]. Let t < m / 2 be a bound
on the number of faulty servers. Using polynomials
fo(U), gl(u), and g(u), with fo(0) = bo, fl(0) = bl,
and g(0) = c, Alice and Bob provide f0(h), f l(h),
and g(h) to server h.

At this point, the servers jointly hold b0, bl,
and c, although any minority cannot determine the
values. Together, they calculate a new polynomial
of degree 2t,

h(u)=fo()O

by individually calculating h(i) = f0(i)(1 - g (i)) +
ffl(i)g(i) + r(i). Here, r(u) is a random polyno-
mial of degree 2t with r(0) = 0. (This could
easily be provided by having Alice and Bob each
share a degree-2t- 1 polynomial rA (u) and rB (U),
then setting r(u) = (rA(u) + rB(U))U.) Thus,
h(0) = bo(1 - c) + blc = be. Therefore, the servers
need only provide their point on h to Bob, who can
then derive be as desired.

Of course, we will not allow the servers to in-
teract. Instead, Alice and Bob will perform an es-
sentially isomorphic protocol, which turns out to
be much simpler.

4.4 Virtual Virtual Media t ion

Using quadruples provided by the servers, Alice
and Bob will mutually determine the state of vir-
tual servers (which "exist" only as the combina-
tion of their private information) who perform the
(~)OT transfer .

For a virtual state variable x, we write ~b0(x)
as the local, private information held by Alice, and
¢1 (x) as the local, private information held by Bob,
where together, g'0 (x) and ¢1(x) determine x, even
though neither Alice nor Bob may know x itself.

By appropriate manipulation of these values,
Alice and Bob can pretend as though one virtual
server i calculated (for example) h(i) = f0(i)(1 -
g(i)) + f l(i)g(i) + r(i). Neither Alice nor Bob will
know h(i), but together they determine it.

A major obstacle is that the resources provided
by the real servers are independent of Alice's and
Bob's inputs (as decreed by our model!), thus it is
not clear how to tie them to the appropriate values
later'on.

I01

Server-0T-Program(server: h; input: B = # transfers, a = security, p = a-bit prime)
1.1. Sh: for j = 1..B

xh,~ ~ $(0,1), yh,j ~ $(0,1), zh,~ ~ $(0,1)
"Wh,j ~ Xh , j -- Z h , j X h , j -- Z h , j Y h , j

¢o(xh,j) +- $(zp), ¢0(yhj) ~- $(zp),
¢o(zh,j) ~ $(z~), 00(wh,~) ~ $(z~)
¢ l (X h , j) ~ Xh , j -- ¢O(:Th , j) , ,~l (Y h , j) ~ Xh , j -- ¢ o (Y h , j)
¢l(Zh,j) ~ Xh, j -- ¢ O (Z h , j) , ~ l (W h , j) ~ Xh , j -- ,-~o(Wh,j)

2.1. Sh -~ A: {(¢0(Xh,j), ¢0(Yhd), ¢O(Zh,j), ~bO(Whj))}j=l..B
2.2. Sh ~ B: {(¢1(xh5), ¢1(Yh5), ta(Zh,j), ~'i(Whj))}j=i..B

Figure 1: Security resources provided by server h. ($() denotes random samples.)

This can be achieved using linear adjustments
to the values, a tool first designed and applied in
[B91c]. The servers provide resources that can be
made to look like secret shares of random num-
bers (along with their products); thus indepen-
dence from b0, bl, and c is achieved. Later, Alice
and Bob communicate with each other - not the
servers - to make the appropriate adjustments to
these purely random values.

4.4.1 Generat ion of C o m m o d i t i e s

The servers provide extremely simple commodities,
namely random quadruples (w, x, y, z) satisfying a
simple constraint (within the field of arithmetic
used for computation):

w = x(1 - z) - zy.

Thus, a server just needs a strong random num-
ber generator; the actual generation of resources is
simple.

4.4.2 Use of C o m m o d i t i e s

Figs. 2 and 3 describe how Alice and Bob obtain
the commodities and apply them to the desired in-
put bits. The previously-mentioned adjustments
appear as corrections (Ax, Ay, Az) to the (x, y, z)
values. These adjustments become publicly known
to Alice and Bob, but they are differences between
sensitive values and purely random, secret values;
thus, they reveal no information.

Despite the algebraic mess of Fig. 3, the com-
putations performed by Alice and Bob are ex-
tremely simple: mere linear combinations of re-
source values.

4.5 Mal ic ious Servers and Mal ic ious
Clients

As described, the protocols do not resist malicious
attacks, either by service providers who generate
faulty commodities or by Alice or Bob. They do
survive passive compromise of a minority of servers,
as well as "honest-but-stupid" errors, in which pre-
dictable random number generators are used by a
minority of servers.

Adding robustness against malicious faults
turns out to be direct and simple: in addition to
providing a sum-shared quadruple (w, x, y, z) to Al-
ice and Bob, a server will also provide Bob with in-
formation that commits Alice to her share, and vice
versa. A suitable arithmetic commitment scheme
that admits exponentially-small chance of error can
be found in [RB89].

Second, the generation of the polynomials
f0~(u), .~(u) , f2i(u), and f3~(u) must be verified.
Even though we face a two-party case, this can
be achieved by adapting techniques developed for
multiparty secret computation in [RB89] or [B91a],
with commodities from a particular source serving
as the substrate for evaluating a particular player's
computation in a virtual multiparty protocol.

Third, it is necessary to verify that f0j(0) E
{0,1}, f l j (0) • {0,1), and]2j(0) • {0,1}, be-
fore the enabling information of step 4.2 is given to
Bob. This is done through a computation similar
to that described in Fig. 3, by calculating roj (u) +
f0j(u)(1 -]oj(u)), rlj(u) + faj(u)(1 - flj(U)), and
r2j(u) + f2j(u)(1 - f2j(u)). Here, roj(u), ru (u) ,
and r2j (u) are of degree 2t with free term 0 and
play a role similar to that of f3j (u).

102

Clien t -0T-Pro tocol (input : XA = Alice's bits {(b0j, blj)}, XB = Bob's choices {bcj},
B = Ixnl/2 = ~ transfers, m = # servers, ~ = security, p = ~-bit prime)

0.1. t ~ [~] - 1
1.1. for h = 1..m

A ~ Sh:
1.2. for h = 1..m

B ~ Sh:
2.1. A: for h = 1..m

2.2. B:

(B, a, p)

receive { (¢0 (Xhj), ¢o (Yhj), ¢0 (Zhj), g'O (Whj)) }j=I..B
for h = 1..m

receive { (01 (Xhj), ¢1 (Yhj), ¢1 (Zhj), ~l'1 (Whj)) }j= 1..B (cont.)

Figure 2: Client programs to obtain and use OT resources provided by servers 1..n. (cont.)

5 Fair Exchange

A central task in electronic commerce in decentral-
ized networks is to ensure that payment is given
if and only if the purchased goods are provided.
That is, a transaction must be atomic. Signing a
contract is a similar case: if either party obtains the
other's signature, then both parties should obtain
each other's signature.

For relatively obvious reasons, when there are
only two parties, it is difficult (in fact, impossible)
to ensure atomicity. For any given protocol, one
player can simply withdraw when she has a slight
advantage. This scenario has been investigated un-
der the rubrik of "secret key exchange" [Blu83],
and Cleve has shown that the advantage obtainable
through a simple fail-stop attack inversely propor-
tional to the number of rounds in the transaction
protocol [Cle86].

Clearly, a TTP can simply accept the two valu-
able digital items (payment and goods; or signature
and signature), verify them against one another if
needed, and then deliver them as desired. In this
simple solution, however, the TTP sees all sensitive
information, which may be undesirable to Alice and
Bob.

We propose a server-assisted solution. Let
Alice and Bob's task be specified by a function
f (x , y) = (ZA,ZS) on inputs x held by Alice and
y held by Bob. Alice is to receive ZA if and only if
Bob receives ZB.

Instead of applying standard cryptographic
techniques to calculate f (x , y) without revealing x
to Bob or y to Alice, we have Alice and Bob com-
pute a new function](x, y) that provides verified
sum-shares of ZA and ZB.

In particular, consider a verified commit-
ment scheme along the lines of Tompa/Woll and
Rabin/Ben-Or [TW87, RB89]. To arrange that Al-
ice holds some private value a, choose a random line
with free term a and evaluate it at a secret nonzero
point. In other words, choose random b,c 7 ~ 0, and
d with

a + bc = d,

and give rev(a) = (a, b) to Alice. Give chk(a) =
(c, d) to Bob. Clearly, (c, d) gives no information
about a.

When Alice wishes to reveal a, she produces
rev(a). To verify this against chk(c, d), simply
check whether a + bc = d:

(yes,a) if A + B C = D
Verify((A, B), (C, D)) = (no,0) otherwise

The new task](x, y) generates secret random
numbers a and fl and then outputs:

](x ,y) = ((ZA + a,~3,rev(fl),chk(a)),

(OZ, ZB + ~, rev(a), chk(/~))).

After computing](x, y) using standard techniques
(indeed, a generalized version of the server-assisted
OT solution given above is possible), Alice ob-
tains (ZA + a, ~, rev(~), chk(a)), and Bob obtains
(a, zB +/~, rev(a), chk(~)).

Alice sends (rev(/~),chk(a)), to the service
provider. Bob sends (rev(a), chk(B)).

Having received some ((A1, A2), (A3, A4)) from
Alice and ((B1, B2), (B3, B4)) from Bob, the ser-
vice provider calculates Verify((A1, A2), (B3, B4))
and Verify((B1,B2), (Aa,A4)). If the results are
(yes, A1) and (yes,B1), then the service provider

103

C15. e a t - 0T-Prot o col(continued)
3.1. A: select random polynomials over Zp:

foj(u) of degree t with foj(0) = boj
fflj (u) of degree t with f l j (0) = baj
f3j (u) of degree 2t with fU (0) = 0

3.2. B: select random polynomials over Zp:
f2j (u) of degree t with .f2j (0) = cj

3.3. A: for h = 1..m, j = 1..B
AXhj ~-- foj(h) -¢0(=hj)
~Yhj ~ f l j (h) - ~bO(Yhj)

B: for h = 1..m, j = 1..B
AZh~ ~ Aj(h) - ¢1 (Zh~)

B-+A: {Z2XZhj}h=i..m,j=i..B
A: for h = 1..m, j = 1..B //Vh~ will be .hi(h)

¢O(Vhj) ~ ~kXhj -- ~kZhj~Xhj + ~Zhji~Yhj
+ ¢ 0 (w . j) - ¢ o (z . j) A z . j - ¢ o (= . j) A z . j

-t-¢O(Zhj)AYhj + ¢o(Yhj)AZhj
+f3j(h)

A--~B: {¢o(Vhj)}h=Lm,j=l..S
B: for h = 1..m, j = 1..B

¢1 (Vhj) ~ ¢1 (Whj) -- ¢1 (Zhj)Z~Xhj -- ¢1 (Xhj)Z~Zhj
+¢1 (Zhj) AYhj + ¢1 (Yhj)AZhj

f4j(h) "(-"- ¢0(Yhj) + ¢l(Vhj)
for j = 1..B

interpolate fai (u)
bcj A j(0)

3.4.

3.5.
4.1.

4.2.
5.1.

Figure 3." Client programs to use OT resources provided by servers 1..m.

forwards A1 -- • (true with high probability) to
Bob and B1 = a to Alice. Finally, Alice cal-
culates ZA = ZA + a -- B1, and Bob calculates
ZB = ZB +fl-- A1.

It is not hard to see that the values received
by the third party are independent of ZA and ZB
(barring willful misbehavior by Alice or Bob, of
course). Thus, this solution meets the information
flow property.

It should be noted that a malicious service
provider can, besides denying one player a valid
output, cause Alice or Bob to accept an incor-
rect output. The protocol can be enhanced to en-
sure that such attempts cause the deceived client
to realize that either the service provider or the
other party has misbehaved - but it is impossible
to detect which. By using more than one service
provider, however, Alice and Bob can be assured
that their received values are correct and were fairly
exchanged. Further details can be found in [B96].

6 C o n c l u d i n g R e m a r k s

Security in large-scale, loosely-coupled systems
must take into account several important proper-
ties, including scalability, efficiency, simplicity, spe-
cialization, replication, compartmentalization and
local autonomy, differentiation, increasing func-
tionality, and translation. The classical security
approach of relying on a trusted computing base
(whether it be an operating system kernel or a
trusted third party) does not suit this environment.
Worse, there are no reasonable cryptographic tools
to fill the gap.

Unconstrained environments tend to evolve
specialized individuals who provide efficient so-
lutions for particular tasks. The only pressing
reason why security might be an exemption to
such evolved architectures is that current mecha-
nisms tend to require all-or-nothing trust. This
work has focused on moving beyond such sim-
ple trust relationships, promoting the principle of

104

"least reliance" (to evolve beyond trusted comput-
ing bases) and suggesting that servers provide as-
sistance without requiring full information.

The technical challenges tie in creating suffi-
ciently simple cryptographic tools to support such
an architecture, and in analyzing the diverse and
possibly unexpected trust relationships that will
arise as a result. For many cryptographic tasks
that are otherwise out of reach for reasons of com-
plexity, the server-assisted approach provides dras-
tically simplified mechanisms that demonstrate the
feasibility of those tasks under new trust relation-
ships.

Acknowledgements
The author would like to thank Cathy Meadows
for many helpful comments during the extensive
revision of this paper (all views and errors remain
the responsibility of the author, of course!), and
Steven Greenwald and Mary Ellen Zurko for their
patient attention during the review process.

R e f e r e n c e s

[B87]

[B91a]

[B91b]

[B91cl

[B95]

[B96]

D. Beaver. "Oblivious Secret Compu-
tation." Harvard University TR-12-87,
December 1987.

D. Beaver. "Secure Multiparty Proto-
cols and Zero-Knowledge Proof Sys-
tems Tolerating a Faulty Minority." J.
Cryptology 4:2, 1991, 75-122.

D. Beaver. "Foundations of Secure
Interactive Computing." Advances in
Cryptolo9y- Crypto '91 Proceedings,
Springer-Verlag LNCS 576, 1992, 377-
391.

D. Beaver. "Efficient Multiparty Proto-
cols Using Circuit Randomization." Ad-
vances in Cryptology - Crypto '91 Pro-
ceedings, Springer-Verlag LNCS 576,
1992, 420-432.

D. Beaver. "Precomputing Oblivi-
ous Transfer." Advances in Cryptology
- C r y p t o '95 Proceedings, Springer-
Verlag LNCS 963, 1995, 97-109.

D. Beaver. "Fair Exchange Agents."
Manuscript, 1996.

[B97]

[BM89]

[BBCS91]

[BGW88]

[Bla79]

[Blu83]

[BBS86]

[BC89]

[BCC88]

[CCD88]

[Cle86]

D. Beaver. "Commodity-Based Cryp-
tography." Proceedings of the 29 th
STOC, ACM, 1997, 446-455.

M. Bellare, S. Micali. "Non-Interactive
Oblivious Transfer and Applications."
Advances in Cryptology - Crypto '89
Proceedings, Springer-Verlag LNCS
435, 1990, 547-557.

C. Bennett, G. Brassard, C. Cr~peau,
M. Skubiszewska. "Practical Quan-
tum Oblivious Transfer." Advances in
Cryptology - Crypto '91 Proceedings,
Springer-Verlag LNCS 576, 1992, 351-
366.

M. Ben-Or, S. Goldwasser, A. Wigder-
son. "Completeness Theorems for
Non-Cryptographic Fault-Tolerant Dis-
tributed Computation." Proceedings of
the 20 th STOC, ACM, 1988, 1988, 1-
10.

G. R. Blakley. "Safeguarding Crypto-
graphic Keys." Proceedings off AFIPS
1979 National Computer Conference,
NY 48, 1979, 313-317.

M. Blum. "How to Exchange (Secret)
Keys." ACM Trans. Comput. Sys. 1:2,
May 1983, 175-193.

L. Blum, M. Blum, M. Shub. "A Simple
Unpredictable Pseudo-Random Num-
ber Generator." SIAM J. on Comput-
ing 15:2, May 1986, 364-383.

G. Brassard, C. Cr~peau. "Sorting Out
Zero-Knowledge." Advances in Cryp-
tology - Eurocrypt '89 Proceedings,
Springer-Verlag LNCS 434, 1990, 150-
154.

G. Brassard, D. Chaum, C. Crdpeau.
"Minimum Disclosure Proofs of Knowl-
edge." J. Comput. Systems Sci. 37,
1988, 156-189.

D. Chaum, C. Cr~peau, I. Damgaard.
"Multiparty Unconditionally Secure
Protocols." Proceedings of the 20 th
STOC, ACM, 1988, 1988, 11-19.

R. Cleve. "Limits on the Security of
Coin Flips when Half the Processors are
Faulty." Proceedings of the 18 th STOC,
ACM, 1986, 364-370.

105

[c87]

[Cr96]

[CKS8]

[DDFY94]

[PSL80]

[EGL82]

[FFS88]

[GMR89]

[GMW86]

[GMW87]

[SNSS8]

[K88]

C. Crdpeau. "Equivalence Between
Two Flavours of Oblivious Trans-
fers." Advances in Cryptology - Crypto
'87 Proceedings, Springer-Verlag LNCS
293, 1988, 350-354.
C. Crdpeau. "Efficient Cryptographic
Protocols Based on Noisy Channels."
Manuscript, April 9, 1996.
C. Crdpeau, J. Kilian. "Achieving
Oblivious Transfer Using Weakened Se-
curity Assumptions." Proceedings of the
29 th FOCS, IEEE, 1988, 42-52.
A. DeSantis, Y. Desmedt, Y. Frankel,
M. Yung. "How to Share a Function Se-
curely." Proceedings of the 26 th STOC,
ACM, 1994, 1994, 522-533.
M. Pease, R. Shostak, L. Lamport.
"Reaching Agreement in the Presence
of Faults." JACM 27:2, 1980, 228-234.

S. Even, O. Goldreich, A. Lempel. "A
Randomized Protocol for Signing Con-
tracts." Comm. of the A CM 28:6, 1985,
637-647.
U. Feige, A. Fiat, A. Shamir. "Zero
Knowledge Proofs of Identity." J. Cryp-
tology 1:2, 1988, 77-94.
S. Goldwasser, S. Micali, C. Rackoff.
"The Knowledge Complexity of Inter-
active Proof Systems." SIAM J. on
Computing 18:1, 1989, 186-208.
O. Goldreich, S. Micali, A. Wigderson.
"Proofs that Yield Nothing but Their
Validity and a Methodology of Crypto-
graphic Protocol Design." Proceedings
of the 27 th FOGS, IEEE, 1986, 1986,
174-187.
O. Goldreich, S. Micali, A. Wigderson.
"How to Play Any Mental Game, or
A Completeness Theorem for Protocols
with Honest Majority." Proceedings of
the 19 th STOC, ACM, 1987, 218-229.
J. Steiner, B.C. Neumann, J. Schiller.
"Kerberos: An Authentication Service
for Open Network Systems." Usenix
1988 Conference Proceedings, 1988,
183-190.
J. Kilian. "Founding Cryptography on
Oblivious Transfer." Proceedings of the
20 th STOC, ACM, 1988, 1988, 20-29.

[Plu821

[MR91]

[R81]

[RB89]

[ss75]

[Sha79]

[TW87]

[ys2]

J. Plumstead. "Inferring a sequence
generated by a linear congruence." Pro-
ceedings of the 23 rd FOCS, IEEE, 1982,
153-159.
S. Micali, P. Rogaway. "Secure Com-
putation." Advances in Cryptology
- Crypto '91 Proceedings, Springer-
Verlag LNCS 576, 1992, 392-404.

M.O. Robin. "How to Exchange Secrets
by Oblivious Transfer." TR-81, Har-
vard, 1981.
T. Robin, M. Ben-Or. "Verifiable Se-
cret Sharing and Multiparty Protocols
with Honest Majority." Proceedings of
the 218t STOC, ACM, 1989, 73-85.
J. Saltzer, M. Schroeder. "The Protec-
tion of Information in Computer Sys-
tems." Proc. IEEE 63:9, September
1975, 1278-130.
A. Shamir. "How to Share a Secret."
Communications of the A CM, 22, 1979,
612-613.
M. Tompa, H.
Woll. "Random Self-Reducibility and
Zero-Knowledge Proofs of Possession of
Information." Proceedings of the 28 th
FOCS, IEEE, 1987, 472-482.
A. Yao. "Protocols for Secure Compu-
tations." Proceedings of the 23 rd FOCS,
IEEE, 1982, 160-164.

106

