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ABSTRACT 

In this paper we present our new paradigm for dealing with 
the inference problem which arises from downgrading. Our 
new paradigm has two main parts: the application of deci- 
sion tree analysis to the inference problem, and the concept 
of parsimonious downgrading. We also include a new ther- 
modynamically motivated way of dealing with the deduction 
of inference rules from partial data. 
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1. A N E W  P A R A D I G M  

Our new paradigm is a combination of decision tree anal- 
ysis and parsimonious downgrading. Decision tree analysis 
has existed in the field of AI since the 1980's [3]. In brief, 
decision trees are graphs associated to data, with the goal 
of deducing rules from the data. Our new paradigm ap- 
plies decision trees to the inference problem. In this paper 
we introduce the new concept of parsimonious downgrad- 
ing. When High wishes to downgrade a set of data to Low, 
it may be necessary, because of inference channels, to trim 
the set. Parsimonious downgrading is a framework for for- 
malizing this phenomenon. In parsimonious downgrading, 
we assign a cost measure to the potential downgraded infor- 
mation that is not sent to Low. We wish to see if the loss 
of functionality associated with not downgrading this data  
is worth the extra confidentiality. Decision trees assist us in 
analyzing the potential inference channels in the data that  
we wish to downgrade. We consider the confidence in rules 
produced by decision tree analysis. We analyze changes in 
confidence caused by missing data  with a new theory we call 
the thermodynamic approach (which measures the changes 
in entropy). Our analysis is still at a preliminary stage and 
we wish to flesh it out with the participants of this workshop. 
In [6] rules are gleaned from rough set analysis of data, and 
the concept of not downgrading information, based upon in- 
ferences brought forth by these rules, is briefly introduced. 
We view [6] as motivation for some of our work on parsi- 
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monious downgrading. Since we prefer single-valued belief 
representations we do not use rough sets. 

Our objectives in developing our new paradigm are: 
1 - -  Use decision trees (instead of rough set analysis) for the 
inference problem. 
2 - -  Make a study of not downgrading certain information. 
3 - -  Assign penalty functions to this parsimonious down- 
grading in order to minimize the amount  of information that  
is not downgraded, and compare the penalty costs to the ex- 
tra confidentiality that  is obtained. 
4 - -Take  a thermodynamic approach to decreasing the con- 
fidence in rules that  Low may infer from High data. 

We believe that  the current state of the art in the MLS 
community does not take advant0~ge of statistical AI tech- 
niques. However, database researchers certainly do (there 
has also been some related work in intrusion detection). We 
want to change this by siphoning off valuable techniques 
from our sister sub-fields in computer science. Further, we 
feel that downgrading should be viewed as a flexible, rather 
than a static, process. We believe that  our new paradigm 
is an a t tempt  to change the status quo both in the use of 
statistical AI techniques (decision trees) and parsimonious 
downgrading. 

1.1 C o n t r o v e r s i a l ?  

We realize that  the idea of changing the set of data  that 
High wishes to downgrade might trouble some readers. If 
High has sanitized high-data into low-data, what is the prob- 
lem? The problem is that the relations within this set of 
data  might still be high. Of course, this has been noted 
in many papers. The paradigm that  we wish to call into 
question is being "stuck" with the data  that  has been san- 
itized (and thus, is ready for downgrading). We hold that 
this data 's  value to Low must be weighed against the possi- 
ble high-inferences that  Low can deduce. If the information 
is of grave importance to Low, then it is downgraded. If 
some of it is of a lesser import  and is outweighed by its 
loss of confidentiality, then perhaps some of the data can be 
t r immed from the set intended for downgrading. Downgrad- 
ing should not be a static process - -  the trade-offs should 
always be measured. If functionality overrides confidential- 
ity, then at least High is making an informed decision and 
is aware of the risk. Also, our techniques may be useful 
for machine-aided downgrading. Our concerns are not with 
whether Low and High are cooperating; rather, our concerns 
are with obtaining bounds for information leakage. 
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2. A T O Y  E X A M P L E  

For reasons of per formance  and functionali ty,  it is somet imes  
necessary for High to downgrade  in format ion  to Low. In 
this paper  we will not  get involved in the deba te  on whether  
this assumption is appropr ia te .  (We accept  i t  as a neces- 
sary evil, especially when deai ing with  da tabases  [5].) Our  
example  will be a da tabase  as given in Table  1. I t  is nec- 
essary for High to downgrade  to Low the first eight rows 
in their  entirety,  and the n inth  row with the  result  missing. 
If downgrading such a large amoun t  of informat ion  bothers  
the reader,  then jus t  view the  da tabase  as a small  par t  of a 
larger set t ha t  High does not  downgrade  to Low. Note  tha t  
we have modified an example  from [15]. 

Table  1: High Database  
Name Hair Height Weight Lotion .Result 
Hillary blonde average light no burned 
Janet blonde tall average yes no 
Bill brown short average yes no 
Tipper blonde short average no burned 
Newt red average heavy no burned 
Ken brown tall heavy no no 
AI brown average heavy no no 
Paula blonde short light yes no 
Tony blonde average heavy no burned 

High has decided tha t  the  result  for Tony should not  be 
downgraded.  Therefore ,  it sends Low the entire da tabase  
with Tony 's  result  left blank (we represent  this wi th  a ques- 
tion mark) ,  see Table  2. 

Low uses only the first eight rows of its da tabase  to form 
its rules. This  is because these are the  only comple te  rows 
(tuples).  We refer to rows tha t  are downgraded  in their  
ent i re ty  as the base set, see Table  3. 

Can High assume tha t  the informat ion it tried to keep 
hidden from Low is still h idden? If Low is stupid,  this is true. 
However,  say tha t  Low analyzes the  base set. Low will see 
tha t  every blonde who did not  use lotion got burned.  Since 
Tony is a blonde who did not  use lotion, Low now knows 
tha t  Tony got burned.  We formalize this rule as (hair  = 
b l o n d e ) A ( l o t i o n = n o )  ~ (resul t  = burned) ,  (read: IF  *** 
T H E N  ***). 

Why should we be concerned about  some fancy AI  way of 
deducing the rules? T h e  reason is tha t  this is a toy example.  
We could have cooked up a much more  compl ica ted  exam-  
ple where the rule tha t  we would need in order  to de te rmine  
the result  would require an extensive search and correlat ion 
of the various da tabase  a t t r ibutes .  This  fails into the  area 
of da tamin ing  [6]. Unhke o ther  knowledge-based work on 
the inference problem (e.g. [6,16]) we do not use a rough 
sets approach [9]. We propose using decision trees. Decision 
trees can handle large and noisy amount s  of d a t a  and pro- 
duce inference rules. I t  is not  clear to us how effective rough 

Table  2: Low Database  = Downgrade  
Name Hair Height Weight Lotion Result 
Hitlary blonde average light no burned 
Janet blonde tall average yes no 
Bill brown short average yes no 
Tipper blonde short average no burned 
Newt red average heavy no burned 
Ken brown tall heavy no no 
A1 brown average heavy no no 
Paula blonde short light yes no 

q Tony , blonde average heavy no 

Table  3: Base Set  
Name Hair Height Weight Lotion Result 
Hillary blonde average light no burned 
Janet blonde tall average yes no 
Bill brown short average yes no 
Tipper ~ blonde short average no burned 
Newt red average heavy no burned 
Ken brown tall heavy no no 
AI I brown i average heavy no no 
Paula blonde short light yes no 

sets are with respect  to large and noisy data .  Fur thermore ,  
when dealing with inconsis tent  data ,  rough sets give upper  
and lower approximat ions  whereas  decision trees give a prob- 
ability. We feel more  comfor tab le  with probabil i t ies  because 
they  are an effective representa t ion  of complex  pa t t e rns  of 
reasoning. (The  purpose  of this paper  is not  to contras t  
the two approaches;  ra ther ,  it is to in t roduce  decision tree 
analysis, in conjunct ion with  pars imonious  downgrading,  as 
a new paradigm.  We will re turn  to decision trees in a later  
section.)  

The  second par t  of  our  new parad igm is parsimonious 
downgrading.  (Again,  for the sake of integrity, we note tha t  
[6] conta ins  a brief m e n t i o n  of this idea.)  We see that  in 
our example,  Low will be able to deduce  the rule (hair  = 
bZonde)A( lo t ion=no)  ~ (resul t  = burned)  and thus deter-  
mine tha t  Tony gets burned.  How can High prevent  this? 
High can prevent  this by not  downgrading  any informat ion,  
but  this is a bit  of overkill. Ins tead,  we feel t ha t  an approach 
tha t  we call pars imonious  downgrad ing  should be used. In 
pars imonious  downgrading,  High decides what  not  to down- 
grade based upon the rules tha t  i t  th inks  Low can infer, and 
upon the  i m p o r t a n c e  of the i n fo rma t ion  tha t  Low should re- 
ceive. If the informat ion  is of tr ivial  value, it might  also send 
incorrect  d a t a  to Low (only for some a t t r ibu te  w h e s )  to 
impinge upon Low's  ability to infer rules and therefore infer 
High informat ion.  High could decide not to downgrade  both  
Hi l la ry -Lo t i on  = no and T i p p e r - L o t i o n  = no. T h e n  Low 
could not  de te rmine  the  rule (hair  = b l o n d e ) A ( l o t i o n = n o )  
:=~ (1~sult = burned)  and the result  concerning Tony would 
not  be apparen t  to Low. W h a t  is the impact  of not  down- 
grading the  informat ion  about  Hil lary 's  and T ippe r ' s  lotion? 
If, for funct ional i ty  and pe r fo rmance  reasons, Low must  have 
this informat ion ,  then  there  is a problem. If the impor-  
tance  of the informat ion  about  Hil lary 's  and T ippe r ' s  lotion 
is so great  perhaps  it  is worth compromis ing  the informa- 
tion about  Tony ' s  lotion use. This  is worth thinking about .  
Security, as has been noted [4] need not be a ye s /no  world. 
Fuzziness might  be appropr ia te  in some cases. Perhaps  it is 
ex t remely  i m p o r t a n t  for Low to know tha t  Hillary did not  
use lotion but  it  is not  really i m p o r t a n t  for Low to know 
about  T ippe r ' s  lot ion use. Then  High could downgrade  ev- 
e ry th ing  as in Table  2 wi th  the  except ion of Tipper -Lot ion .  
This  would result  in wha t  we call a reduced downgrade,  as 
given in ] ' ab le  4, for the  Low database .  How does this im- 
pact  Low's  rule making process? 

Now we form the  reduced base set, see Table  5. Unlike the 
original base set given in Table  3 we still include a row even 
though there  is a unknown a t t r i bu te  value. This  is because 
the result  is still visible to Low. It is possible, though,  tha t  
High, by pars imonious  downgrading,  decided to keep the re- 
sult unknown to Low (not downgrade  it to Low). T h e n  we 
would not  include tha t  row in the reduced base set because 
it would not assist Low in forming a rule. Again,  under par- 
s imonious downgrading,  deciding what  to downgrade  and 
wha t  not  to downgrade  involves the  funct ional i ty  value of 
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Table 4: Low Database  = Reduced  Downgrade  
Name Hair Height Weight Lotion Result 
Hillary b londe  a v e r a g e  light no b u r n e d  
J a n e t  b londe  tall a v e r a g e  yes no 
Bill b rown  shor t  a v e r a g e  yes no 

T i p p e r  blonde shor t  a v e r a g e  9 b u r n e d  
N e w t  red a ve ra ge  he a vy  no b u r n e d  
K en  b rown  tal l  [ h e a v y  no no 
AI brown a v e r a g e  h e a v y  no no 
P a u l a  b londe  shor t  ! l i g h t  yes no 

Tony  b londe  a v e r a g e  h e a v y  no ? 

Table 5: Reduced  Base Set  
Name Hair Height Weight Lotion Result 
Hil lary  b londe  a v e r a g e  light no b u r n e d  
J a n e t  b londe  t a r  a v e r a g e  yes no 
Bill b row n  shor t  a v e r a g e  yes no 

T i p p e r  b londe  shor t  a v e r a g e  ? b u r n e d  
News red a v e r a g e  h e a v y  no b u r n e d  
Ken  b row n  tal l  h e a vy  no no 
AI b rown  a v e r a g e  h e a v y  no no 
P a u l a  b londe  shor t  light yes no 

the  informat ion.  Note  tha t  using the  reduced base set in 
Table  5 and delet ing the  T i p p e r  row, will still p roduce  the  
same rules as before. However,  our confidence in the  rules 
concerning blondes has decreased,  because  the  d a t a  back- 
ing our  rule has decreased.  T h e  data ,  both  in qual i ty  and 
quanti ty,  should influence which rules are genera ted  and the  
confidence we have in these rules. We note  tha t  we do not  
make  the  not ion of confidence precise in this paper ;  however,  
it is par t  of our  current  research agenda.  We will readdress  
this in the subsect ion on our  t h e r m o d y n a m i c  approach.  

3. D E C I S I O N  T R E E  A N A L Y S I S  

We cont inue with our  toy example  and a t t e m p t  to formal ly  
de te rmine  the rules for wha t  causes a sunburn.  Consider  the  
base set as given in table  3. W h a t  are the  rules? (We have 
modified the  example  from [15] which is based on the work 
on ID3 [10,11].) This  brings us to the more  general  discus- 
sion of wha t  we mean  by " the  rules." From a given amount  
of d a t a  we need a way to genera te  inference rules. How can 
we be sure tha t  no except ion to the rule exists? We can ' t !  
The  m e t h o d  we use for genera t ing  rules is s ta t is t ical  in na- 
ture. In fact, we will show two possible decision trees (which 
we use to  read off the  rules) for the  same da ta .  We use an in- 
format ion theoret ical  approach [10] to genera te  our decision 
trees. We believe this is be a realistic approach.  Note  tha t  
we are present ly  working on allowing this in format ion  the- 
oret ical  approach to incorpora te  Bayesian techniques.  We 
feel tha t  this will allow us to adjust  our given d a t a  against  
our preconceived not ions of the  appropr ia te  prior  probabil-  
ities. Here,  we will not  use Bayesian techniques  for reasons 
of (1) - -s impl ic i ty ,  and ( 2 ) - - w e  have yet  to formalize the  
applicat ion.  

Shannon first pu t  in format ion  theory  on a firm foun- 
dat ion [12]. We use his concepts  of ent ropy and mutua l  
informat ion.  T h e  co lumns  Hair,  Height ,  Weight ,  and Lo- 
tion make up the  a t t r ibutes .  We wish to see which has the  
greates t  influence upon the result .  To de te rmine  this we 
use the condi t ional  entropy. Let  A be  the random variable 
represent ing an a t t r i bu te  (we have four choices for this  ran- 
dom variable) which takes on the values ai and let R be the  
random variable represent ing  the  result  which takes on the 

values r l  = burned,  and r~ = no burned.  We need to de- 
te rmine  the  mutua l  in format ion  I(R, A) between the result  
and the a t t r i bu te  (use base two for the logs): 

where  

and, 

I (R,A)  = H(R) - H(R[A) 

H(R) = - ~ p(r~) log p(r s) 
3 

H (RIA) = - Z p(a, ) Z p(r~ lai)log p(ra lai ) 
i j 

T h e  probabi l i t ies  are de te rmined  by a f requency count  based 
on the  data .  The  a t t r i bu t e  tha t  has the  most  effect upon 
the  result  is the  a t t r i bu t e  tha t  has the  grea tes t  mutua l  infor- 
mat ion.  Since H(R) is cons tan t  and H(R) > H(R[A), the  
op t imiza t ion  condi t ion is equivalent  to finding the  a t t r i bu te  
tha t  minimizes  the condi t ional  en t ropy  H(RIA ). Thus  we 
have the  following: 
G a i n  C o n d i t i o n [ Q u i n l a n ] :  Find A such tha t  H(RIA ) is 
minimized.  

Let  us take  the  first a t t r i bu t e  A = Hair, aa = blonde, a2 
= brown, and a3 = red. This  gives us 

, 2  log ] H(RIA) = - ~ [ ~ l o g z +  - a [a° - log°  3 1 o g ~ ] -  

1 [ } l o g '  o + log = .5 
Similarly, we see tha t  H ( R I H e i g h t  ) = .69, H ( R I W e i g h t  ) = 
.94, and H ( R I L o t i o n  ) = .61. Thus  we see tha t  the  a t t r i bu te  
tha t  has the  mos t  influence upon Resul t  is Hair. 

F igure  1. T h e  First  Branching 

Now we must  repea t  the  process for each node, until 
there  are no more decisions to be made.  Since every Red 
is Burn,  and every  Brown is no, those decisions are done. 
However,  blonde is still not  decided upon so we must  find 
ano ther  a t t r i bu t e  tha t  ~maximal ly"  influences result .  

H~.IR R e d ~  

Newt (Burn) Bill (No) 
Ken (No) 
AI (No) 

Figure  2. T h e  Firs t  Branching  wi th  Par t ia l  Decisions 

Now we must  repea t  the gain condi t ion  but  we restr ict  
ourselves to the blondes. So we must  minimize  H(RIA), 
where A = Height ,  Weight ,  or  Lotion. Let  us t ry  Lotion, 
aa = no, and a2 = yes. So, H ( R I L o t i o n ,  Hair  = Blonde) = 

[ } l o g s  o [ logO  log°]- +  log ] = 0 .  We need 
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not calculate any other conditional entropies. All they can 
do is tie (but they do not). So the next at t r ibute we put 
down as a node is Lotion. 

Blonde R 

Newt (Burn) Bill (No) 

Ken (Nu) 
AI (No) 

Hillary (Born) Janet (No) 
Tipper (Burn} Paula {N0) 

Figure 3. Decision Tree 

Now we can read off the following four rules: 
(hair = blonde)^  ( lot ion=no) ~ (result = burned) 
(hair = blonde)A(lotior~=yes)=~ (result = no) 
(hair = brown) ~ (result = no) 
(hair = red} ~ (result = burn). 
We see that  the first rule is the obvious one that  we discussed 
before. At this stage we can ~.ctually reduce the rules down 
to smaller set. There are several ways of accomplishing this. 
One uses Fisher's exact test [15] to determine more finely 
the sensitivity of the various attributes. Another approach 
is to prune and rebuild the tree [11], where the pruning is 
accomplished by analyzing the predictive power of the origi- 
nal tree. It  is not the purpose of this paper to go into this in 
detail. Rather, it is our intention to show the new paradigm 
of decision trees applied to parsimonious downgrading. 

Note if we did not use the gain condition, but simply 
built a decision tree ba.sed on logical inferences we could 
end up with a tree [15] that  gives "strange" rules. 1 

The rules that  we produce must be tempered with a con- 
fidence level. We do not go into details here but consider 
the rule (hair = red) ~ (result = burn). This is based on a 
single tuple. How much confidence can we place in this rule? 
The more data that  supports a rule, the more confidence we 
have in its predictive powers. 

What  if we did not use the gain condition to propagate 
our rules? Consider Figure 3.5, a perfectly valid tree of in- 
ferences. However, how useful are the rules that  Low could 
derive from it? Consider the rule 
(height=tal l )A(weight=heavy)A (hair=red) ~ (result = no). 
This is a valid but pretty useless rule, because it has too 
many antecedents. The gain condition minimizes the num- 
ber of antecedents because of the minimal entropy condition. 
We also see that  our knowledge about sunburns is not ex- 
pressed in Figure 3.5. We know that  hair color and the use 
of lotion (SPF > 15) affects hair color. This is why we are 
advocates of Bayesian estimation. We are allowed to express 
this knowledge by the use of priors, along with the data  on 
hand. 

aAgain, we feel that Bayesian techniques should be used in con- 
junction with the gain condition so our prior belief in certain condi- 
tions can influence the rule-making process• 

I A ~ , ~ ,  Ken (N0) 
verage ~. Janet(N0) 

Light 
Bin Bill (No) 

~ ~  Hillary (Burn~ . ~  

/'7 Bea~y BJ 

Newt (Bum) 
Tipper (Bum) 

Figure 3.5. 

AI(No) 

Now that  we have what we believe to be a statistically 
valid way of determining rules, we wish to use these rules to 
see how downgrading is affected. 

As time goes on, further data  may be downgraded from 
High to Low. Our rules can be refined to take this new data 
into account. Decision trees can be regenerated from the 
new data. However, this might be computationally unfeasi- 
ble. (Should we keep a record of all of this old data?) In 
that  case, we could use our new data, and statistical updat- 
ing procedures [1], to refine the confidence that  we have in 
our rules. 

3.1 R e c a p  

We use decision rules because they have proven to be fruitful 
and accurate predictors in the A1 world [11, 15]. They are 
computationMly feasible and they have a firm information 
theoretical foundation. If Low uses other methods, Low can 
certainly produce rules but we feel that  these rules will not 
be stronger predictors than the rules produced via decision 
trees. Therefore, security arguments based on decision trees 
will be conservative. To further strengthen our anMysis, we 
are at present comparing how our rules generalize to other 
methods. 

4. P A R S I M O N I O U S  D O W N G R A D I N G  

Our concern is the following: High and Low exist in separate 
worlds. 
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High D 

Olw 

Figure 4. 

High wishes to downgrade the set D to Low for reason 
of system functionality. 

Lov,' 

High D 

Figure 5. 

Downgnd~ 

Low, by using decision tree analysis (or, if preferred, 
some other method, e.g. Pawlak's rough set approach [6,16]), 
is able to determine rules that  will enable Low to infer high- 
data  outside of the set D. 

~w 

High D 

[X~wngrade 

Inferred high-data D 

/ 
Figure 6. 

High also knows what rules Low can determine and de- 
cides not to downgrade D but rather D '  C D, D '  = D -  d 
• Pictorially, we view D '  as the set D with the black spot 
(which is d) in it. 

la~w 

High 

"0 
D 

~ Downgrade 

, t  
D 

Figure 7. 

We must determine the trade-offs between Low not re- 
ceiving d and the insecurity caused by Low obtaining the 
inferred high-data. 

What  is the importance to functionality of Low obtaining 
d? Is it enough to cause system failure, or is it something 
that  just  slows down systems performance? Is the set d 
of a milk/wine-nature (it is important  now but not in the 
future/ i t  is important  in the future but not now). Does the 
importance of d oscillate throughout time? Which set d do 
we choose? How should one measure the impact of d upon 
the inferred high-data? What  are the security concerns if 
Low receives inferred high-data? Are they extremely grave 
or are they just  a minor security leak? Is the threat constant 
throughout time? - -  Or is the threat dynamic in nature? 
These ideas are a starting point for this part of our new 
paradigm. 

The elements of D should not be viewed in isolation for 
either their functionality purposes or their security purposes. 
We see that  in databases an at t r ibute  value alone is not as 
important  as a tuple of at t r ibute values. Also, we have dis- 
cussed the dynamic nature of both system functionality and 
insecurity/security. At this meeting last year, the notion 
of insecurity flow and the effects of time upon insecurity 
were noted [7]. Let t denote the insecurity that  may occur. 
Let F denote the system functionality of Low. We realize 
that  these concepts are not well-defined. However, we feel 
that  they are sufficiently well-defined to continue with our 
trade-off discussion. Since the elements of D should not be 
considered in isolation and time is affecting both function- 
ality and insecurity, we define the following two functions 
(possibly relations?): 

L:2D x T × M - - ~ t  

where 2 D is the power set of D, T is time, and 

u:2D x T x M - .  F 

U is acting as a utility function and L is representing security 
leaks. The set M takes into account factors we are not aware 
of- - th is  could be system load, changes in computers com- 
posing a distributed system, extra security measures that  
vary in time, etc. It is possible that  the factors constituting 
M are actually taken into account via T but we wished to 
include M to give us some wiggle room for unknown fac- 
tors. We assume that  both t and F are have some sort of 
measure (such as the volume of a set) or metric (such as the 
magnitude of an element) (distinct for each set) on them so 
we can judge what has more insecurity or functionality. 2 As 
an example, L could be the node insecurity as in [7]. 

L and U should both have the properties of being non- 
decreasing with respect to inclusion on their domain sets, 
e.g., if A C B E 2 D then L(A) < L(B) and U(A) < U(B). 3 

We wish to make trade-offs between L and U. Specif- 
ically, we wish to compare to the images L(D) C t and 
U(D) C F with those of L(D') and U(O'). Our goal is 
to determine if the insecurity difference between L(D) and 
L(D') is worth the loss of functionality between U(D) and 
U(D'). How do we measure the differences between U(D) 
and U(D')? In our toy example, perhaps the Lotion use is 
extremely important  to Low's functionality, but the Weight 

2 W e  r e a l i z e  t h a t  t h i s  is c o n t r o v e r s i a l .  W e  w o u l d  l ike  t o  d i s c u s s  
t h i s  a t  t h e  w o r k s h o p  a n d  r e f i n e  t h e s e  s e t s  in f u t u r e  v e r s i o n s  of  t h i s  
p a p e r / w o r k .  

3 W h e n  we  w r i t e  .L o r  U as  a f u a c t i o n  o f  j u s t  t h e  f i r s t  v a r i a b l e ,  
i t  is u n d e r s t o o d  t h a t  t h e  v a l u e s  f o r  T a n d  M a r e  f i x e d  a n d  a r e  n o t  
g e r m a n e  t o  t h e  d i s c u s s i o n  a t  t h i s  p o i n t .  
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is much less i m p o r t a n t  to Low's  funct ional i ty .  Also, as we 
have discussed and shown in our nota t ion ,  these differences 
may  vary in t ime. How do we measure  the added insecu- 
rity obta ined  by downgrading  D I instead of  D? In our toy 
example,  we know tha t  Tony is a blond but  do not  know 
the  result.  Therefore ,  when we form the set d it should be 
made  up of blondes. However,  this type  of problem assumes 
tha t  we are concerned about  Low inferr ing informat ion  at 
the  present  t ime from the  set of  d a t a  t ha t  High has down- 
graded.  W h a t  if our concern is the very fact tha t  Low can 
propagate  rules f rom downgraded  informat ion  and possibly 
use those rules in the fu ture  to infer da ta?  We draw this dis- 
t inct ion because in our toy example  we are concerned with 
a blonde, but  in this new way of thinking,  perhaps  High in 
the future  will downgrade  some par t ia l  in format ion  about  a 
red head, and we do not  want  Low to infer the  result  about  
that fu ture  red head. There fore  we wish to make  the  rules 
opaque tha t  Low may  infer, and thus mislead Low. This  
should be reflected in the  mapp ing  given by L. One  possi- 
ble way to do this is to again invoke ent ropy and maximize  
the  amount  of confusion. This  leads us to the next  section. 

5. A T H E R M O D Y N A M I C  A P P R O A C H  

Our  concern (as noted  above) is to mi t iga te  the  confidence 
in the  various rules tha t  Low can infer. Our  concern is wi th  
the  predict ive powers of the  rules in general  wi thou t  regard 
to any specific quest ion tha t  Low may  a t t e m p t  to answer.  
In this subsection,  we present  our own (not comple te ly  for- 
malized) theory  and invi te  feedback from the workshop par- 
t icipants.  Given a set D ~, as before, wha t  is the  best  t ha t  
Low can do with this set? We present  our new approach,  the 
t h e r m o d y n a m i c  approach,  as a way for Low to deduce rules 
from the diminished d a t a  with high levels of confidence.  In 
o ther  words, we feel t ha t  our approach maximizes  the leak- 
age function L. 

In our method ,  one forms the  decision t ree  as inn section 3, 
by using the gain condit ion,  and minimizing the condi t ional  
entropy at each stage. W h e n  finished, one will have a deci- 
sion t ree with on]y certain a t t r ibu tes  as nodes. Call these 
a t t r ibu tes  An, • • •, A,~. Consider  the ent ropy (R  is still the  
result you are in teres ted in) H(RIA1,. . . ,An).  T h e  value 
of the  t e rm H(RIA1,. "' ,An) is called the  initial tempera- 
ture, r0, of the da t a  (At  this point  we are still invest igat ing 
which a t t r ibu tes  to condi t ion on. For the  sake of s implici ty 
we condit ion on all n in this section. However ,  this analysis 
requires fur ther  work and this section should be viewed as 
work in progress.).  We wish to pe r tu rb  the  d a t a  in order  
to raise the t empera tu re .  This  wilt lower the confidence of 
the  various rules tha t  are genera ted  from the decision tree. 
Our  per tu rba t ion  is not  done by in t roducing  erroneous d a t a  
(this could be done and we will explore  this in fu ture  work). 
Instead,  the pe r tu rba t ion  is done by delet ing d a t a  so tha t  
Low (as before) is missing data .  Of  course, this delet ion of 
d a t a  must  be done in a value added way keeping the uti l i ty 
funct ion U in mind.  T h e  m e t h o d  propagates  a probabilis- 
tic decision t ree by Low using pa ramete r s  for the  missing 
data.  We calculate  the  new value of H(R]A1,...,  A,~) and 
call it the  present temperature, rp. We are in teres ted in 
£xr = r p - -  r0. 

Our  approach is mot iva ted  by the thinking behind be- 
hind Quinlan ' s  gain condi t ion and the third law of ther- 
modynamics  [14] (,~ as the rmal  mot ion  decreases,  so does 
entropy decrease).  

Before, when we discussed the reduced base set in Table  
5, we said tha t  by delet ing the T ipper  tuple,  we could still 

form a decision t ree and produce  rules. The  rules would be 
the same as wha t  we originally had but  the confidence in the  
"blonde" rules would be lessened. We do not pu t  a metr ic  on 
the rules (work like this has been done in [11]). However,  we 
do point  out  t ha t  this (undescr ibed)  decrease in confidence 
must  be compared  to A t .  Th is  will give Low a probabil is t ic  
way of dealing with the  missing d a t a  and producing the  
"best"  rule set possible under  those condit ions.  This  will 
also give High guidance in how to delete  d a t a  from the set 
to be downgraded .  

Ideally, High does not  want  to downgrade  large amount s  
of data .  Wi th  this in mind,  if High then performs parsi- 
monious  downgrading  and sends both small and noisy da t a  
down to Low, Low would want  to take advantage  of as much 
d a t a  as possible. Therefore ,  Low would not  want  to delete 
tuples wi th  missing d a t a  but  would instead use an approach,  
such as our  t h e r m o d y n a m i c  approach,  to use the already 
sparse da t a  tha t  it has. 

Low has data with a missing vlaue 

Reduced Base S e ~  

Delete the tuple with the missing value 

Pr0duce Rules 

\ 
'•xxxxTx•modynalnic Approach 

Use the partial tuple with an estimator 

Pr0duce Rules 

/ 
Compare confidence levels-.-make choice 

Rules 
Low deciding which approach to use 

Note  tha t  both  branches use decision trees! Confidence 
levels for the  left branch can be taken f rom s tandard  stat is-  
tical non-paramet r i c  me thods  [2]. However,  we do not have 
a theory  for the right hand branch and are looking at the  
problem. Also, we assume tha t  High is as good a s ta t is t i -  
cian, in format ion  theoris t ,  AI engineer,  etc. ,  as Low. But  
High has the  dual  j ob  of a t t e m p t i n g  to mi t iga te  Low's  rule 
producing  and t ry ing to give Low as much funct ional i ty  as 
possible. 

E X A M P L E :  For the  sake of brevi ty  and clarity, we define 
our m e t h o d  by example .  Consider  tha t  Table  5 has the re- 
duced base set. Now, ins tead of delet ing the T ipper  row we 
will use it by pu t t ing  a pa rame te r  into the Lotion column. 
We call the pa rame te r  O, 0 < 0 < 1. T h e  pa rame te r  repre- 
sents a probabi l i ty  for one of the  possible a t t r ibu te  values. 
We are assuming tha t  it represents  No Lotion.  However,  it 
is really a second order  probabil i ty.  By this we mean tha t  
0 i tself  is given by a dis t r ibut ion.  This  is done so Low can 
a t t e m p t  to use as much given informat ion  as possible. Now 
we have a parametric base set. 

As s ta ted  above, the t~ in the Lotion column is to be 
read as e(No = 0) and P(Yes = 1 - O ) .  As before, we must  
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Table 6: Parametric Base Set 
Name Hair Height Weight Lotion Result 
Hil lary  b londe  a v e r a g e  light no b u r n e d  
J a n e t  b londe  tall  a v e r a g e  yes no 
Bill b r o w n  shor t  a v e r a g e  yes no 
T i p p e r  b londe  shor t  a v e r a g e  O b u r n e d  
N e w t  red  a v e r a g e  h e a v y  no b u r n e d  
Ken  b row n  tal l  h e a vy  no no 
A1 b row n  a v e r a g e  he a vy  no no 
P a u l a  b londe  shor t  l ight yes no 

apply the gain condition and minimize H(R[A),  where A is 
Lotion, Weight, or Height. Let us calculate H(RlLotion).  
There are 4 + 0 no's in the Lotion column and 3 + (1 - 0) 
yes's. The probability of a No Lotion not being burned is 
2+0. the other probabilities follow similarly. Thus we have 4+0' 
that 

4 + 0  / 2 + 0  2 + 0  2 2 \ 
H(RtLotion ) 8 ~ 4 ~  l°g 4-~-0 + 4-~-0 l°g 4-~-0 ) 

4 - 0 ~ , /4 -~  
4 - ~  - 8 

The minimum of this function occurs when 0 = 1, and 
it is .61. Since .61 is still greater than .5 = H(RIHair) ,  
the first node is still Hair. What  about the second node? 
For this we have that  H(RlLotion,  Hair = Blonde) reduces 

to - 'L~" (2~0 l°g ~ g  + 4  2~0 l°g 2~o)" This function ranges 
from 0 to about .7. Unfortunately, it is not always less than 
H(R]Height, Hair = Blonde) = .5. It depends on the value 
of 0. For 0 values such that  it is less than .5, Lotion would 
be our secondary node. For the other values it would be 
Height, and we see that  we get a different rule set. With 
either decision tree, we calculate the new temperature  for 
the rules and weight the rules by A t .  We do not have the 
weighting figured out yet. However, we feel that this is the 
correct approach based upon the known statistical results. 

We have not discussed how to pick values for 0. One way 
is by using Bayesian estimators (e.g., [1]). This is a valid sta- 
tistical method that  incorporates the given data along with 
some prior belief in the probabilities to avoid over-fitting 
of the data. The Bayesian approach lets one assign prob- 
abilities in a manner  that  minimizes the risk of error. For 
example, for our missing Lotion use of Tipper, assuming a 
non-informative (uniform) prior we would have a probability 
of 2/5 for no Lotion use. Bayesian techniques can also be 
used to give a realistic range of probabilities, and thus give 
further guidance towards the confidance levels associated to 
Low's rules. 

One might argue that  the very fact that  High is hiding 
information from Low can, in fact, be sending information 
to Low. This seems to be more of a psychological than 
statistical attack. We invite comments from the workshop 
participants upon this. Note that  preconceived notions can 
be accounted for in the assignment of the prior distribution. 

6. T R A D E - O F F S  

After parsimonious downgrading has been performed, Low 
can produce rules and those rules have a confidence level 
associated with them. Tha t  confidence level goes into the 
calculation of L, the leakage formula. On the other hand 
parsimonious downgrading affects U the utility function of 
the data that  is downgraded. We must see if the increased 
security is worth, in High's mind, the functionality hit that 
Low will take. 

In essence, we have a dynamic programming constraint- 
based problem. The loss of security (increases in t) must be 
balanced against the decreases in functionality. In Figure 8 
we see the image of the function U x L, where 

U x L : 2  D x T x M  x 2  D x T x M  ~ F x t .  

We are interested in the pro-image from the lower right hand 
region (the feasible region) of F x t space. For D'  to meet 
both the minimum functionahty and minimum security re- 
quirements it is necessary that  
D '  e H1 ((U x L) -1 (feasible region)) 

n llI4 ((U x L) -1 (feasible region)) , 
where Hi is projection into the ith factor. 4 Keep in mind 
that  D'  produced in this manner  is a refinement over our 
original concept of D' .  At the start  of this paper we were 
just  concerned with diminishing the set D in order to lessen 
Low's inferencing capabilities. Now we also want to include 
functionality requirements in our production of D'. It is 
possible for the image of the function U x L to not intersect 
the feasible region. In this case we would not have any can- 
didate for D '  that  met both our security and functionality 
requirements. The D ~ produced in this manner  are the ones 
that we a t tempt  to balance security against functionality. 
D '  not produced in the above manner  have either (or both) 
intolerable insecurity or intolerable lack of functionality. 

~ceptable functionality unacceptable 
functionality 

Figure 8. Heuristic Representation of Feasibility Region 

Considering the temporal nature  of the downgrading, a 
stochastic game theoretic [13] approach might be called for. 
Consider a two-person game where the gains are the increase 
in security ( - L )  and the losses ( - U )  are the decrease in 
functionality. From this, one should be able to produce a 
pay-off function. We feel that  it will be a very complicated 
game and we will most likely not have a zero-sum game 
because the gains might not equal the losses. 

4As  in F o o t n o t e  3 we are  impl ic i t ly  a s s u m i n g  (for s impl ic i ty)  t h a t  
T an d  M are  fixed a t  ( t ,m) .  T h e  inverse  i m a g e  and  p r o j e c t i o n  of  
feasible  regions  should  real ly  be done  for  each  choice of  (t ,  m) .  
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As noted, there are other methods  for generating rules 
aside from decision trees. It is possible tha t  Low can use 
a smorgasbord of techniques. Then how High performs its 
parsimonious downgrading must be reviewed in this light. 
We are confident that  decision trees give a conservative view 
(which is what  we want).  However, we want to compare 
non-decision tree based techniques also. We plan to s tudy 
this issue to see if our decision tree approach is really as 
strong as we feel it is, or if other methods must be considered 
in conjunction with decision trees when considering leakage 
versus utility of downgraded data .  

Other  ideas are welcomed from the workshop partici- 
pants. 

7. S U M M A R Y  

We have presented our new paradigm, which consists of sev- 
eral parts.  Some of these par ts  are well-grounded in other 
areas (decision tree analysis), but  have never been applied by 
our community. Some are totally new ideas (parsimonious 
downgrading) but  it is not clear how to formalize the as- 
sociated utility and leakage functions. The  thermodynamic  
approach to dealing with base sets after High has deleted 
da ta  is the most controversial part  of this paper.  We be- 
lieve in it, but have not yet  proved it. Discussion with the 
part ic ipants  will help us to refine the details,  or cause us to 
go another way. Either way we feel that  this paper  is a new 
approach to dealing with the inference problems caused by 
downgrading. We also feel tha t  our new paradigm will be 
useful in the more general (and recently very active) field of 
datamining in general. 

In future work we want to investigate OR techniques and 
the use of utility functions in analyzing trade-offs. Also, 
when analyzing trade-offs we wish to s tudy how measure- 
ments of bits of correct vs. incorrect data ,  and s tandard  
correlation analysis may come into play. Instead of jus t  
deleting da ta  we might want to corrupt  some of the data ,  
but  this comes at the cost of integri ty and must  also be stud- 
ied. Also changes in strategies can be taken into account by 
varying the Bayesian parameters .  

Note tha t  this paper  is par t  of a project ,  which we have 
recently started,  on Knowledge Discovery and Datamining 
(KDD) applied to secure systems. Our other papers of inter- 
est are, as of this date, [1] which we have already mentioned, 
and [8] which takes an approach similar to perfect secrecy 
in order to analyze the da tabase  inference problem. 
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