
Death, Taxes, and Imperfect Software:

Surviving the Inevitable 1

Cr i sp in C o w a n and C a l t o n Pu

D e p a r t m e n t o f C o m p u t e r S c i e n c e and E n g i n e e r i n g

O r e g o n G r a d u a t e Ins t i tu te o f S c i e n c e & T e c h n o l o g y

and H e a t h e r H i n t o n

E lec t r i ca l and C o m p u t e r E n g i n e e r i n g , R y e r s o n P o l y t e c h n i c U n i v e r s i t y

(cri spin~c se. ogi. edu)
http : //www. cse. ogi. edu/DISC/proj ects / inununix

Abstract

A security system is only as strong as its weakest link. This observation
lead to security architectures that use a small trusted computing base
(TCB) to minimize the number of"l inks" in the system. A small TCB both
reduces the chance of a bug occurring by reducing the volume of software
that may contain a bug, and also makes formal verification of the correct-
ness of the TCB feasible. Unfortunately, for a variety of reasons, the com-
mercial marketplace of popular operating systems has chosen to ignore
this line of reasoning. The "trusted computing base" (system components
embodied with significant amounts of trust) is not small, is not formally
verified, and consequently is neither correct nor secure. We conclude that
it is inevitable that commodity systems software will have flawed security.

Techniques have developed to allow systems to cope with potential secu-
rity flaws, which we call security bug tolerance. Security bug tolerance en-
hances the survivability of a flawed system by post hoc dealing with the
system's security flaws. This paper presents a categorization scheme for
security bug tolerance techniques, and populates it with techniques of our
own and from the literature. The categorization allows the reader to ana-
lyze various techniques to discover their similarities and differences, en-
abling the reader to compare relatively diverse tools on their merits.

1 Introduction

A security system is only as strong as its weakest link. The recommended "technique" for achiev-
ing strong security is to place all security-relevant functionality in a small, verifiable trusted com-
puting base (TCB). Formal verification techniques are then used to assure that the TCB is worthy
of trust. Unfortunately, a TCB that is small enough to verify is, in practice, too small to contain all

1 .This work supported in part by DARPA grant F30602-96-0331.

54

the required security functions. Thus TCBs are continuously expanded with "necessary exten-
sions". Conversely, a TCB that is large enough to be useful seems to be far too large to verify in
practice, without enormous expense. This difficulty has had the unfortunate effect of causing com-
mercial OS vendors to choose to not use TCB ideas, or at best pay lip service to them by deploying
"trusted" systems that are too large to formally verify. This has generated enough controversy to
be the subject of a formal debate at the 1997 IEEE Symposium on Security and Privacy [3, 15,21].

If formal verification is not feasible, developers that care somewhat about security strive to mini-
mize security bugs with a variety of debugging and bug minimization techniques, such as strict
coding practices, "red teaming," and fault-injection. Resorting to debugging techniques does not
enhance security, but does reduce the cost of developing a system.

Unfortunately, while these techniques are cheaper than full formal verification, they are still ex-
pensive to deploy in terms of human resources. For reasons we detail in Section 1.1, the economic
motives to produce secure, correct software are remarkably weak compared to other needs, such as
rapid development, rich feature lists, and other marketing needs. Bug minimization and elimination
techniques are only applied when safety is of paramount importance, and cost is a minor consider-
ation, such as nuclear reactor control [20]. Thus debugging techniques will not be used enough to
make systems actually secure, and it is likely that the wide-spread use of systems that have security
bugs will be a persistent state for some time to come.

This paper proposes an alternative to holding our collective breath until vendors produce bug-free
software: security bug tolerance. Security bug tolerance combines the techniques of security and
fault tolerance to produce systems that survive attacks despite having security bugs. We introduce
a classification of bug-tolerant techniques, describe examples of each technique, and discuss how
these techniques are relevant to the securing of an actual system. In the remainder of this section,
Section 1.1 elaborates on why bugs continue to happen. We describe the consequences of choosing
to live with buggy software in Section 1.2, and Section 1.3 defines what we mean by "security bug
tolerance".

1.1 Bugs Happen
Commercial software chronically has bugs, many with security vulnerability implications. Tempt-
ing as it may be to hypothesize that this is because the vendors are lazy or stupid, this is not the
case. Commercial software chronically has bugs for the dual-reason that correctness is hard, and
correctness does not sell software.

That correctness is difficult hardly needs re-stating; proving correctness is nearly intractable for
non-toy programs, complete testing is similarly intractable, and even rigorous testing is expensive,
especially given a constant stream of patches and updates. Developing software on "Internet time"
aggravates this problem, by presenting vendors with a very tight schedule to meet, squeezing out
time allocated for testing and auditing the impact of new code.

That correctness does not sell software may be somewhat less intuitive, especially in the security
community where correctness is highly valued, but on a global scale, software customers appear
to be highly insensitive to the correctness of the software that they're buying. New features seem
to matter more than correctness. Consider the calls to Microsoft's support line [4,17, 25]:

• Most calls request help on how to do some particular task

55

• 5% of calls request some new feature

• Less than 1% of calls are to report bugs

• Discussion at the NSPW 1998 Workshop tend to confirm this v iew 2

Advertisements, where software vendors promote their products, compare features, and occasion-
ally speed, but rarely correctness. Even ads for security products rarely mention correctness 3

Since correctness is very hard to achieve, and seems to offer little competi t ive advantage in the
market place, it seems very unlikely that we will see correct software in large volume any time
soon. As long as feature lists, t ime-to-market, and a little bit of performance matter more to cus-
tomers than correctness, bug-ridden systems will be the normal state of affairs.

1.2 So You Have to Live with Bugs

Given that bugs are normal, users, and to some extent system architects, have developed techniques
to survive the consequences . . Exactly which technique is used depends on the application domain:

Video Games: Just live with it. The game-playing experience is often more important than the ma-
chine state it produces, so the occasional failure is not very important. It is just "ok" for a
game to crash from time to time, if it is rare enough to not cause excess frustration. 4

Text Edi tors : Frequent state saves. Early computer users learned to manual ly save their work fre-
quently, lest the computer or editor crash, taking the work with it, "Using a computer is like
going to summer camp; write soon, write often." More advanced applications provide au-
tomatic periodic checkpointing, saving a temporary version of the document being edited
so that it can be recovered if the application or the system crashes.

Operating Systems: System software such as the kernel and the window system ideally can oper-
ate indefinitely. Unfortunately, systems that have not emphasized correctness, such as
some versions of Windows 95 and X Windows, suffer f rom memory leaks that causes their
performance to degrade over time, and eventually crash. Such systems can be effectively
"checkpointed" by periodically rebooting them, restoring them to a particular state that is
relatively stable.

H a r d w a r e : Hardware fault tolerance is a different kind of a problem. Because of the difficulty in
releasing "patches" to hardware instances, hardware vendors invest extensive resources in
establishing the correctness of their products. But unlike software systems, instances of
hardware systems are subject to occasional failure of the device. To protect against the fail-
ure of an instance, system architects may choose to replicate the instances. When an in-
stance fails, a replacement instance is available to take over its workload.

These techniques apply well to "functionality" bugs. Security bugs present a different kind of prob-
lem, one that is not amenable to either ignoring the problem, checkpoint ing, or replication, because
a potential attacker can exploit a security bug to induce damage far greater in scope than the failure
of the buggy component:

2.Cristina Serban heard claims from SGI that are consistent with the calls to Microsoft's help line.
3.Marv Schafer speculates that there may be undesirable legal implications to acknowledging security faults.
4.Games are often about puzzle solving, so excess frustration might be difficult to detect :-)

56

Ignore it: Naturally, this technique is ineffective in defending against attack.

Checkpointing: Checkpointing can limit the damage an attacker can impose, but it is not com-
pletely effective. First, checkpointing fails to prevent the attacker gaining access to the sys-
tern and stealing secrets. Second, an attacker may be stealthy enough to go unnoticed, caus-
ing data corrupted by the attacker to be propagated into the backup systems, and possibly
eventually pushing all uncontaminated data out of the backup system. Third, an attacker
that obtains a high degree of privilege on the system can also obtain control of the backup
copies of the system, maliciously corrupting their contents.

Replication: Replication is effective against failures when the replicas are independent of the fail-
ure in question. A security bug is a property of the software, so replicating the software rep-
licates the bug. All of the instances of a set of replicated systems will have the same set of
vulnerabilities induced by the same set of security bugs. To be effective against security
attacks, replicas must be independent of the security bugs they seek to protect.

Security bugs have the property that the potential damage is far out of proportion to the scope of
the bug. Functionality bugs at worst affect only the data that they manipulate. A security bug, in
contrast, can allow the attacker to take control of a host, or even an entire domain, allowing the
attacker to corrupt all data on those machines. Thus security bugs can affect all of the data within
the protection domain of the afflicted software.

Thus specialized techniques are needed to deal with security bugs that induce vulnerabilities. We
call this security bug tolerance.

1.3 Security Bug Tolerance

Fault tolerance techniques either limit the damage that a fault can cause (checkpointing) or provide
additional resources to mask component failures using other redundant components. Security bug
tolerance can use the same techniques, but the containment and replication must occur on the same
level as the security bugs, i.e applied to the bugs themselves. If the fault is in the software, then
replicating the software will be ineffective because it will replicate the bug. If data corruption goes
undetected, then checkpointing the data will succeed only in checkpointing corrupted data.

This paper presents a categorization of security bug tolerance techniques. A securit~ bug is a flaw
which permits any user to violate the security policy the system claims to enforce-'. Security bug
tolerance enhancse the survivability [23] of the system despite having the security policy violated
by enhancing the integrity of the system itself. We propose that "survivability" is, in part, the study
of how to effectively retrofit security to a system that was not designed with security as a goal.
While we recognize that retrofitting security is not the first choice to achieve security, it seems to
be the only choice for users of most systems, because most vendors do not view security as a high
priority.

Section 2 presents the security bug tolerance categorization scheme, populating it with security bug
tolerance techniques of our own, and from the literature. Section 3 and Section 4 describe these
security bug tolerance techniques in detail. Section 5 discusses the implications of security bug tol-
erance, including how to effectively compare various security bug tolerance techniques. Section 6
presents our conclusions.

5.Definition due to Marv Shafer.

57

2 Security Bug Tolerance Techniques

Many techniques have emerged to contain damage induced by software bugs. We focus our atten-
tion on techniques that can be applied to existing software, and that assist in tolerating the existence
of bugs in that software. We specifically exclude debugging techniques for detecting bugs; while
debugging techniques have great merit, we argued in Section 1 that debugging techniques will not
be applied enough to eliminate all bugs, and some security bugs will likely remain in released soft-
ware. Furthermore, debugging techniques cannot detect security flaws inherent in a design.

Since security bug tolerance techniques have to deal with the problems of existing software, we
view them as adaptation techniques. We then classify security bug tolerance techniques along two
dimensions: what is adapted, and how it is adapted. "What" is either the program's interface or its
implementation, and "how" is either a permutation or a restriction of the adapted piece of software,
as shown in Table 1, along with examples of each technique.

Table 1: Security Bug Tolerance Techniques

Interface Implementation

Restrictions

Permutation

• Firewalls

• TCP Wrappers

• Java security model

• TCP SYN time out adjustment

• Dynamically remove . r h o s t capability

• Cryptographic session keys

• Deception Tool Kit

• Firewalls

• Small TCB

• Dynamic type checking, ar-
ray bounds checking

• Stackguard defense against
buffer overflow

• Random code or data layout

• QoS change

We distinguish between interface and implementation adaptations because they affect inter-oper-
ability. Interface adaptations change the interface presented, so some or all of the software compo-
nents or users that need to use the adapted software may also need to be adapted to continue inter-
operation. Implementation adaptations, however, do not affect the interface presented, and so nor-
mal interoperation with legitimate clients should continue.

We distinguish between restrictions and permutations to classify the technique used to contain the
potential damage posed by security bugs. A restriction is an "architectural" technique; the software
will no longer do that particular kind of operation, no matter who you are or what you know. A
permutation is a re-arrangement of the interface or the implementation that hides or re-arranges
flaws in the program, making it more difficult for an attacker to find and exploit the flaws. Section
3 describes interface and implementation restrictions, expanding on the concepts and providing ex-
amples. Section 4 does the same for interface and implementation permutations.

58

3 Interface and Implementation Restrictions

A restriction is some mechanism to prevent a buggy program from performing some particular
class of operations. Any software bugs that would manifest themselves by trying one of these op-
erations is thus prevented, containing the damage.

3.1 Interface Restrictions: Access Control

Interfaces exist to give principals access to objects. The security problem is that all principals
should not have access to all objects. An interface restriction is thus a form of access control. Ac-
cess controls provide security bug tolerance in that the software on either side of the interface may
have bugs, and the access control mechanism will restrict the set of operations that can be per-
formed through the interface under various circumstances. Restrictions can be either who can per-
form an operation, e.g. Bob can and Alice can't, or what they can do, e.g. read but not write.

Interface restrictions are further classified as static and dynamic interface restrictions. A static in-
terface restriction is precisely a classic access control mechanism: a restriction on the precise cir-
cumstances under which some set of principals may access some set of objects. A dynamic inter-
face restriction change who may access what, depending on the degree of threat perceived by the
security system. Section 3.1.1 describes several access control methods that illustrate static inter-
face restrictions, and Section 3.1.2 describes some examples of dynamic interface restrictions.

3.1.1 Static Interface Restrictions

Here we describe several forms of static interface restriction:file system access controls, firewalls,
wrappers, and the Java security model. Table 2 summarizes these interface restrictions, describing
the interface affected, and how it is restricted, which we detail here.

There are many forms of file system access controls, e.g. classic UNIX ~ m o d e bits, access con-
trol lists, etc. The file system is the repository for persistent data, so it is both important to control
access, and complex to specify who has access to what give the number of principals and objects.

Firewalls provide a powerful form of access control based on interface restriction and network to-
pology. The firewall effectively restricts the interface between machines on the "outside" Internet
and machines on the "inside" protected network to a particular set of ports and protocols, as shown
in Figure 1. All other attempts at access are blocked by the firewall. Firewalls are effective in pro-
tecting weak configurations on many hosts in an entire subnet, but they do so at the cost of coarse
granularity in the access control specification. Firewalls can also be used to provide protection in-

59

Table 2: Static Interface Restrictions

System Interface Restriction

i Fi leSystem Access to files Only specified users can access specific
] Access Controls files

i Firewalls Access to machines from Outside machines can only access particular
outside the physical ports, via particular network protocols
domain

Wrappers: TCP Access to ports on a Remote hosts can only access particular
machine ports, via particular network protocols

Wrappers: SUID
programs

Java: Type Safety

Java: Bytecode
Verifier

Java: Sandbox

Invoking a privileged pro-
gram

Access to a variable

Access to a variable

Access to files and network
hosts

Users can only invoke a privileged program
with a limited argument syntax

Programs must treat their data values as
consistent types

Programs must treat their data values as
consistent types

Programs loaded from the network may not
access local files, and may only access the
network host they were loaded from

ternal to a domain, but this depends on appropriate layout of the domain's LAN, because firewalls
depend on physically restricting access to network connectivity.

Wrappers are another form of interface restriction. A wrapper is a program wrapped around a pro-
gram suspected of having bugs. The wrapper takes input intended for the subject program and does
various integrity checks on it. If the input passes muster, it is passed on to the subject program, oth-
erwise it is rejected. TCP Wrappers [26] is an example, which acts like a small firewall on the host,
restricting access to particular ports and services.

Wrappers have also been applied to vulnerabilities in application programs. Many privileged pro-
grams are sloppily written, and thus vulnerable to "creative" input, such as large strings that induce
buffer overflows or other errors. Wrappers have been developed that restrict the syntax of input to
privileged programs to finite-length strings and "safe" character sets [2, 27].

@-0-
Firewall

Q Protected"
Network.../

Figure 1 Firewall: Restricts interface from Internet to protected network to
selected ports and protocols

60

Java's security depends on a "three-pronged" security model: the Java compiler's type safety, the
Java bytecode verifier, and the JVM "sandbox." Each of these elements can be viewed as an inter-
face restriction, as follows:

Type Safety: Type safety distinguishes between programs that have a consistent view of the types
of their data values, and those that do not, e.g. it is inconsistent to view a single value as
both an integer and as a memory reference. The type checking component of the Java com-
piler enforces an interface restriction by only compiling programs that are type safe. Proof-
carrying code [18] is a special case of type-checking, where the code provided carries a
proof that the code will not perform some class of "bad" operations.

Bytecode Verifier: The bytecode verifier enforces similar type safety restrictions to the Java com-
piler, and thus provides a similar interface restriction. The difference is that it does so at a
later stage in the program's life, just prior to execution instead of during compilation,

JVM Sandbox: The JVM imposes different restrictions on a Java program, depending on whether
it was loaded from the local file system (an application that just happens to be written in
Java) or loaded from the network via a web server (an "applet"). Applets are given access
to a restricted subset of the resources that Java applications can access.

Whether these are interface or implementation restrictions is essentially a relativistic view of what
constitutes the "normal" interface. If the "normal" interface does not have these restrictions (say,
compared with the interface provided to C programs), then these are interface restrictions. Howev-
er, if these restrictions are considered a "normal" part of the interface, then these are actually im-
plementation restrictions that ensure that Java programs conform to the specified interface.

3.1.2 Dynamic Interface Restrictions

Dynamic interface restrictions can balance the convenience of a loose access control policy with
the security of a tighter access control policy. Some interfaces provide facilities that are conve-
nient, but not essential. When an attack is suspected (perhaps as indicated by an Intrusion Detection
System) then "merely convenient" interfaces can be disabled. If vulnerabilities due to bugs are ran-
domly distributed throughout the system, dynamically restricting the interface will reduce the
probability that the attacker can actually reach the buggy component that they seek to exploit. An-
other example of a dynamic restriction is the BLP "*-property," which induces dynamic policy
changes.

A simplistic example of a dynamic interface restriction is the use o f . r h o s t files for access con-
trol. This form of access control is convenient for users, but highly insecure. A system supporting
dynamic interface restriction could disable the honoring o f . r h o s t specifications when the local
intrusion detection system suspects intruders are present in the domain.

Schuba et al [22] present a more reasonable example of dynamic interface restriction. This work
defends against the TCP SYN flood denial-of-service attack by dynamically adjusting the time-out
window for TCP connection requests. When the system feels that it is under attack via SYN flood-
ing, the time-out window is shortened, making it more difficult for the attacker to consume all of
the TCP buffers. This also has the effect of making it more difficult for distant users to make con-
nections, but it does protect some of the service by allowing nearby users to make connections.

An Intrusion detection system (IDS) virtually restricts interfaces by characterizing interface usage
patterns as "legitimate" and "suspicious", raising alarms for suspicious behaviors, but not neces-

61

sarily taking any other pro-active actions. An IDS forms an important part of a dynamic interface
restriction by providing a sophisticated notion of when the interface should be restricted. Intrusion
detection systems come in a variety of forms [9, 24, 13, 14] but all share the basic property that
they examine interface usage, and indicate suspicious usage, providing dynamically restrictable in-
terfaces with an indication of when to be more restrictive.

3.2 Implementation Restrictions

Like interface restrictions, implementation restrictions contain the potential damage that can be in-
flicted by attackers exploiting security bugs. Unlike interface restrictions, implementation restric-
tions do not affect the explicit interface offered by the adapted component. Implementation restric-
tions take two forms. Section 3.2.1 describes added code restrictions, which do additional run-time
checks to ensure correct behavior. Section 3.2.2 describes removed code restrictions, where func-
tionality that is convenient but not essential is removed to reduce the probability of bugs occurring.

3.2.1 Added Code: Double -check ing Correctness

Code added to restrict an implementation effectively double-checks the correctness of the imple-
mentation. Some notion of "correctness" is used to specify the correct behavior of the program, and
code is injected to verify that the program conforms to this specification. The goal of this double-
checking is to make the potentially buggy software fail-stop with respect to security faults: when
an attacker attempts to exploit a vulnerability in a broken program, the program should fail and
raise a security alert, rather than granting access to the attacker. If fail-stop security software can
be achieved, it reduces the problem of security to the somewhat simpler problem of fault-tolerance.

The particular form of "correctness", and how it is specified, varies depending on the implementa-
tion restriction. Table 3 summarizes some added-code implementation restrictions, describing
what additional correctness checks are provided by the added code in each case.

Table 3: Restricting Implementations with Added Code

System Additional Check

Purify Run-time verification of the correctness of memory references, e.g. ensure
that a buffer has been m a l l o c ' d , and has not been f r e e ' d .

Non-executable Enhance the OS kernel's virtual memory model to make the stack segment
Stack non-executable, except under well-defined conditions.

StackGuard Instrument stack activation records so that an integrity check can be done
prior to each function call return, to prevent stack smashing exploits.

Array bounds Instrument access to arrays to ensure that accesses do not occur outside of
checking the legitmate span of the array.

Assertion Check that assertion remains valid as program executes.
checking

Purify: Purify is a debugging tool for C programs, focusing on memory problems [10]. It provides
its own linker, which inserts integrity checking code around every memory reference to en-
sure that memory is being used in a consistent fashion. For instance, Purify ensures that dy-
namic memory is allocated before it is used, is freed before the program exits, is freed only

62

once, and is not used after it is freed. Violations of these rules produce run-time error re-
ports to facilitate debugging, but these reports could become security alerts.

Non-executable Stack: Casper Dik and "Solar Designer" produced patches for Solaris [8] and
Linux [7], respectively, that make the stack segment of the user's virtual address space non-
executable. This protects programs from "stack smashing" attacks, which inject code onto
the program's stack, and alter the return address to jump to that code. If the stack is not ex-
ecutable, this attack fails. These patches require added code to handle rare instances where
the stack does need to be executable, and the kernel switches it back and forth as necessary.

StackGuard: Stackguard [6] is our compiler extension to protect programs against stack smashing
attacks, similar to those considered for non-executable stacks above. StackGuard adds code
to programs to do integrity checking on their activation records. When a function returns,
it checks the integrity of its activation record, and if it has been altered, the program panics
and issues a security alert, rather than give control to the attacker.

Array bounds checking: Numerous systems support bounds checking of array accesses. Most do
so as part of the programming language semantics, which we view as an interface restric-
tion as described in Section 3.1.1. However, array bounds checking has also been added to
languages that do not support array bounds, such as C [12].

Assertion checking: Many languages support some form of "assertion checking", where in an as-
sertion is embedded within the source code [1]. When the statements adjoining the assertion
are executed, the asserted expression is checked for validity. If the assertion is not true, the
program is presumed to have entered an invalid state, and it halts with an error message.

3.2.2 Removed Code: Minimiz ing Risk

The likelihood of a bug is proportionate to the size and complexity of the software in question, so
the smaller a program is, the more likely it is to be correct. Here we describe techniques to pare
down an existing software system to make it less vulnerable to unknown bugs. Paring down the
complexity of a system does not automatically make the system completely trusted, but it does re-
duce its vulnerability to bugs to the marginal degree that it has been simplified.

Table 4: Restricting Implementations by Removing Code

System Code Removed Security Gained

Bastion hosts Everything except Vulnerable programs are not present, and thus cannot be
proxy servers attacked.

"Crack a Mac" Everything except MacOS has no native TCP servers, so the HTTP server
Challenge HTTP server is the only vulnerability on the host.

Table 4 shows some example implementation restrictions based on removing code. The canonical
example is the bastion host in a firewall. It is essential that this host not be compromised, and so
they are configured with the absolute minimum of services, minimizing potentially exploitable vul-
nerabilities. The "Crack a Mac" challenge [11] provides another example of this technique, where
a Macintosh web server is set up as a public challenge to crackers. The platform is highly secure,
because the MacOS has no native TCP server programs, so the installed web server is the onl.n ~ net-
work vulnerability. The challenge eventually fell to an attacker [16], but the failure was a 3~Uparty

63

plug-in extension to the web server; had the plug-in code also been removed, the server would have
been even more secure.

Like the interface restrictions described in Section 3.1, implementation restrictions can be applied
dynamically. For instance, CGI scripts are well known to be a source of vulnerability to web serv-
ers. If an appropriate intrusion detection system is in place, a web server could choose to dynami-
cally disable CGI extensions during times of attack, and then restore CGI extensions at a later time.

4 Interface and Implementation Permutations

Section 3 describes restrictions that can be imposed on a system to enhance its security. If the sys-
tem can be modified by restricting it, what other changes can be made that might enhance security?
One answer is to permute the system, so that it presents an unfamiliar environment to the attacker.
Static permutations achieve approximately the same effect obtained by "security through obscuri-
ty," which tends to fail because the attackers eventually learn of the obscured system's architecture,
and all the security benefits of the obscurity wear off as the attackers discover the details, while the
costs remain.

Dynamic permutations provide the security benefits of security through obscurity persistently, be-
cause the permutations can be applied continuously, so that the attacker needs to learn each new
configuration. Permutations can also be less costly than security through obscurity, if a degree of
familiar structure can be preserved for the system administrator, so that it costs less than a deliber-
ately obscured implementation. This section reviews some of the few systems that have used this
technique. Similar to restrictions, permutations can be divided into interface permutations (Section
4.1) and implementation permutations (Section 4.2).

4.1 Interface Permutat ions

Consider an interface in object-oriented terms: a vector of methods. Now consider dynamically
permuting the binding between the index number of each method and its meaning. One can only
use this interface effectively if one knows the current configuration of the interface. The current
interface configuration is a secret, to be distributed to the legitimate clients of the permuted inter-
face, and kept from everyone else. Interface permutation is thus similar to encrypted communica-
tion, with the following differences:

Guessing: Key guessing must be done on the victim host; a permuted interface cannot be taken off
line and analyzed by an arbitrarily fast computer. This makes guessing attempts highly ob-
vious, and gives the defender an opportunity to arbitrarily slow down guessing attempts.

Mystery: If the attacker is only vaguely aware of the potential for interface permutation, they may
become cautious when operations do not have the expected result, lest they risk detection.
This is the dual of the above guess-detecting property.

Complexity: The complexity of the search space is very much smaller than for formal encryption
algorithms. The complexity is the size of the permutation space of the number of possible
configurations. This space can be artificially enlarged, but a determined attacker would
likely notice that some parts of the space are not being used, and ignore them.

64

If the guess-detecting property is exploited, the defender has an opportunity to compensate for the
relatively small size of the search space. Otherwise, the defender must depend on the mystery prop-
erty to slow down the attacker's search of the permutation space.

There are few extant examples of interface permutations. One example is the Deception Tool Kit
[5], which provides tools to spoof the existence of servers. Like the killdeer bird faking an injury
to draw predators away from the nest, these faux servers are intended to draw the attacker's atten-
tion away from the machine that is running an actual server. To hold the attacker's attention, the
faux servers even pretend to be vulnerable, yielding interesting results when presented with com-
mon attacks against known vulnerabilities for that server.

The DTK is an interface permutation with a small permutation space, and a relatively large amount
of mystery. The permuted component of the interface is the name of the machine running the actual
server. This search space is problematic, because it is only as large as the number of machines in
the defender's domain, compounded by the fact that it is often easy to discover the true location of
many servers, such as mail and web servers. The DTK compensates for this small search space by
substantially enhancing the mystery effect: the attacker sees what appears to be a forest of servers.

With additional effort, the DTK could be enhanced to allow dynamic permutation of the interface
by migrating servers. When the server moves, it leaves behind a faux server for the attacker to toy
with. The migrating server must, however, indicate its new location to all of its legitimate clients.

Wrappers are a successful form of interface restriction. A Class of wrappers could be developed
that provides interface permutations. The DTK could be considered an example of this technique.

4.2 Implementation Permutations

Implementation permutations do not remove vulnerability to bugs, but rather seeks to make attacks
that exploit implementation bugs non-portable, so that the attacker has to adapt the attack program
to each configuration of a permutable implementation.The challenge of implementation permuta-
tions is to find a systematic way of permuting the implementation such that:

• The program continues to function as specified, and

• Hypothesized attacks against the program do not function as intended.

It is difficult to find such a permutation, because programs written in imperative languages are
over-specified, and the attacker is exploiting a flaw in that specification. For instance, there are
many vulnerabilities caused by sloppy creation of temporary files in t h e / t r a p directory. Correct-
ing these problems, even permuting their behavior, requires changing the program with respect to
the specified meaning in the program's source code; the developer explicitly stated how the tem-
porary file was to be created. An implementation permutation cannot be transparent to legitimate
users unless it is faithful to the specification of the program.

The classic approach to this challenge is N-version programming, where a program specification
is given to multiple teams to create independent implementations. This solves the problem of over-
specification, but is not necessarily effective in permuting bugs. For instance, while the Windows
NT and *BSD implementations of TCP/IP are completely independent, they were both vulnerable
to the same set of network denial-of-service attacks that appeared in 1997, such as "teardrop" and
"land". N-version programming also substantially increases development cost.

65

To generalize and automate the benefits of N-version programming, one could write programs in
a higher level language that was less specific, giving the compiler the freedom to permute the im-
plementation while remaining faithful to the specification. However, this will only be effective
against attacks that exploit bugs that are independent of the specified program, i.e. the attacker is
exploiting bugs in the virtual machine that executes the high level specification of the program, not
the program itself.

To see this effect, consider Java (a slightly higher level language than C). One can permute the byte
codes 6 used to implement the specified Java program, but these permutations will only defeat at-
tacks against bugs in the Java compiler or JVM. Bugs that are present in the Java specification of
the program will be faithfully reproduced by the compiler and JVM, and continue to be exploitable.

In this case, the implementation permutation is effective, but with respect to the implementation of
a virtual machine environment for executing higher level specifications. The implementation per-
mutation has not been applied post hoc to some implementation, but rather has been designed in to
the virtual machine implementation.

Forrest provides an example of permutations in a virtual machine implementation [9] in the form
of a modified C compiler that randomly permutes the size of stack frame activation records. Like
StackGuard [6], this is designed to stop stack smashing attacks against the virtual machine imple-
mentation for C programs, which has the unfortunate property that some of the virtual machine's
data structures such as the return address are accessible to the programs being executed. Forrest's
compiler moves the return address around in memory, making it harder for attackers to hit.

5 Di scuss ion

In the introduction we stated that one requirement of a secure system is that it has been designed
as such, instead of retrofitted with security tools and techniques, and then pointed out that this is
rarely the case for commercial software. The body of the paper describes and classifies techniques
for retrofitting security onto insecure systems, which is always a second choice from the security
perspective, but likely the only choice from a pragmatic perspective for many legacy systems. This
section discusses how to use the security bug tolerance classification scheme to compare and select
security bug tolerance techniques.

The classification scheme identifies what is protected, and how it is protected. This information
can be used both to compare existing security bug tolerance techniques to decide which to use, and
in suggesting how to devise new security bug tolerance techniques. In both cases, examining what
needs to be protected, who it needs to be protected from, and how much it needs to be protected
can indicate which form of security bug tolerance is appropriate.

5.1 Interface versus Implementation

As described in Section 3.1 and Section 4. l, interface adaptations largely amount to access control
and authentication, respectively. In contrast, implementation adaptations are effective against fail-
ures in authentication and access control: when authentication and access control fail, implemen-
tation adaptations limit what any user can do, thus providing damage control. For example, a Stack-

6.Or native codes for JIT compilers.

66

guard protected program wilt prevent all types of buffer overflow attack, regardless of the motiva-
tion of the attacker (unintentional, intentional, malicious, accidental) or of the trustworthiness of
the attacker (user). This is in direct contrast to a interface restriction approach, where once past a
firewall (for example) a trusted user can still successfully implement a buffer overflow attack.

5.2 Restr ict ions versus Permuta t ions

The dominant difference between restrictions and permutations is that restrictions reduce the
amount of damage the attacker can impose, while permutations increase the cost of the attacker
successfully exploiting a bug. Restrictions reduce potential damage either fractionally by disabling
some operations, or probabilistically by disabling some principals from accessing the object in the
hopes of containing the attacker. Permutations restrict nothing, and only make it more work for the
attacker to find the bug they're looking for so they can exploit it.

Thus restrictions are suitable for applications where there are assets that require protection from
potential attackers (as a subset of all potential users), while permutations are appropriate for service
providers seeking high availability (for all potential users). Service providers can use machine rep-
lication and permutation to slow attacks to the point where human intervention occurs before the
service is completely unavailable. Those wishing to protect assets can use restrictions to protect the
assets, at the expense of the availability of service.

However, permutations are more difficult to make effective. An effective permutation must pre-
serve many invariants in order to preserve interoperability with legitimate clients, while simulta-
neously breaking sufficient invariants to make attacks ineffective. Choosing effective invariants is
made difficult by the fact that the invariants needed for legitimate interoperability are often subtle
and implicit, and the invariants needed by attackers are completely unknown. We postulate that,
given sufficient information to effectively deploy a permutation, that a more effective restriction
could be deployed in its place:

Interface Permutations: Since interface permutations necessitate distribution of the current con-
figuration to authorized clients, knowledge of the current configuration acts as an authen-
tication token. An interface restriction using sufficiently strong authentication may be eas-
ier to deploy.

Implementation Permutations: Implementation permutations must be faithful to the program's
specification, or else they become implementation restrictions. Relatively few implemen-
tation vulnerabilities are independent of the program's specification, so finding effective
implementation permutations is difficult. We postulate that restricting virtual machine im-
plementations is more effective and easier than implementation permutations.

Thus one must be cautious when presented with a permutation security bug tolerance technique.
What is the permutation protecting, and how effective is it? For instance, the deception toolkit [5]
is most effective at disguising a genuine service provider by surrounding it with faux service pro-
viders; how difficult is it for the attacker to identify the genuine service provider by other means?
Permuting the size of stack frame activation records [9]successfully defeats existing stack smash-
ing attacks because they depend on a static stack layout, but how difficult is it to construct stack
smashing attacks that can adapt to a dynamic stack layout [6, 19]?

Implementation permutations that are both transparent to the application programmer and effective
in defeating or slowing attacks require a lot of information. We conjecture that if one has sufficient

67

information for any given implementation permutation, that this information could be used to more
easily deploy either an interface permutation, or an implementation restriction, which we suspect
would be easier to implement, more effective, or both. For instance, while Forrest's compiler
makes certain stack smashing attacks more difficult to deploy, a similar implementation restriction
in StackGuard makes an identical attack impossible.

As an added benefit, restrictions have permutation-like side effects. For instance, the StackGuard
implementation [6] failed to detect some attacks, but these attacks were none the less stopped be-
cause of the permuted data layout induced by StackGuard.

5.3 What it All Means

All of the techniques presented are adaptations to enhance the security of a component of a system.
The security maxim that you are only as strong as your weakest link still applies, so total security
still depends on securing every interface that is exposed to potentially hostile principals. However,
these techniques can also be applied to internal components, providing a degree of fault tolerance
in the case where an attacker breaks through what should have been secured. The more components
that have been made bug tolerant, the more likely the system will be able to stop an attacker at some
point.

Each security bug tolerance adaptation has a cost to deploy, both in development time and in per-
formance. The choice of which components to harden, and using which techniques, thus becomes
a trade-off of how much one is willing to pay for a degree of security bug tolerance. The categori-
zation that we have provided should help in measuring costs versus effectiveness.

6 Conclusions

Creating bug-free software is difficult and expensive, so vendors tend to release buggy software.
Thus we view it as normal for software to have bugs, and hence security vulnerabilities induced by
bugs. Therefore commercially relevant commodity systems will have to become security bug tol-
erant if they are to provide a reasonable degree of security. Security bug tolerance requires more
than just a simple application of classic fault tolerance techniques, because security faults are Byz-
antine, and fault tolerance techniques largely assume that failures are fail-stop. We have presented
a classification scheme for security bug tolerance techniques, populated it with examples from our
own work and from the literature, and discussed the relative costs and benefits of these techniques
to aid analysts in comparing security bug tolerance techniques.

References

[1] Anonymous. a s s e r t (3) C Library Function. section 3 of most UNIX Systems manuals.

[2] AUSCERT. o v e r f l o w w r a p p e r . c - Wrap Programs to Prevent Command Line
Argument Buffer Overrun Vulnerabilities. f t p : / / f t p . a u s c e r t . o r g . a u / p u b /
auscert/tools/overflow wrapper, May 1997.

[3] B. Blakley and D.M. Kienzle. Some Weaknesses of the TCB Model. In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, May 1997.

[4] Klaus Brunnstein. Mr. Bill Gates: MS Software Essentially Bug-free. comp. r i s k s 17.43,

68

October 1995. http : //catless. ncl. ac. uk/Risks/17.43 . html#subj 5.

[5] Fred Cohen. The Deception Toolkit. comp.risks 19.62, March 1998. http://
all. net/dtk, html.

[6] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron
Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In 7th USENIX Security Conference, San Antonio,
TX, January 1998.

[7] "Solar Designer". Non-Executable UserStack. h t t p : / /www. f a l s e , c o r n / s e c u r i t y /
linux-stack/.

[8] Casper Dik. Non-Executable Stack for Solaris. Posting to comp. s e c u r i t y . u n i x ,
http://xl0 .dejanews. com/
getdoc, xp?AN=2073 44316&CONTEXT=89 0082 637. 1567359211&%
hitnum=69&AH=l, January 2 1997.

[9] Stephanie Forrest, Anil Somayaji, and David. H. Ackley. Building Diverse Computer
Systems. In HotOS-VI, May 1997.

[10] Reed Hastings and Bob Joyce. Purify: Fast Detection of Memory Leaks and Access Errors.
In Proceedings of the Winter USENIX Conference, 1992. h t t p : / /
www. rational, com/support/techpapers / fas t_detection/.

[11] Joakim Jardenberg. Crack a Mac Contest. http://hacke, infinit.se/, February
1997.

[12] Richard Jones and Paul Kelly. Bounds Checking for C. h t t p : / / w w w -
ala. doc. ic. ac. uk/ phj k/BoundsChecking, html, July 1995.

[13] Gene H. Kim and E.H. Spafford. Writing, Supporting, and Evaluating Tripwire: A Publicly
Available Security Tool. In Proceedings of the USENIX UNIX Applications Development
Symposium, pages 88-107, Toronto, Canada, 1994.

[14] Calvin Ko, George Fink, and Karl Levitt. Automated Detection of Vulnerabilities in
Privileged Programs by Execution Monitoring. In Proceedings of the lOth Annual Computer
Security Applications Conference, pages 134-144, Orlando, FL, December 1994.

[15] John McLean. Is the Trusted Computing Base Concept Fundamentally Flawed? In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May 1997.

[16] Martin Minow. "Crack a Mac" Server Cracked. corap, r i s k s 19.31, August 1997.

[17] Nathan Myers. FOCUS Magazine Interview with Bill Gates: Microsoft Code Has No Bugs.
http: //www. cantrip, org/nobugs .html.

[18] George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-Time Checking. In
Proceedings of the USENIX 2nd Symposium on OS Design and Implementation (0SDI'96),
1996. http : //www. usenix, org/publicat ions / library/proceedings/
osdi96/necula, html.

[19] "Aleph One". Smashing The Stack For Fun And Profit. Phrack, 7(49), November 1996.

[20] D.L. Pamas, S.P. Kwan, and J. van Schouwen. Evaluation Standards for Safety Critical

69

Software. In Proceedings of the International Working Group on Nuclear Power Plant
Control and Instrumentation, IAEA NPPCS Specialists' Meeting on Microprocessors in
Systems Important to the Safety of Nuclear Power Plants, London, UK, May 1988.

[21] William R. Schockley. Is the Reference Monitor Concept Fatally Flawed? The Case for the
Negative. In Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA,
May 1997.

[22] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spafford, Aurobindo
Sundaram, and Diego Zamboni. Analysis of a Denial of Service Attack on TCP. In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May 1997.

[23] Howie Shrobe. ARPATech '96 Information Survivability Briefing. h t t p : / /
www. darpa, mi i / i to/ARPATech9 6_Bri e f s / survivabi i i ty/

survive_brief, html, May 1996.

[24] Intemet Security Systems. Real-time Attack Recognition and Response: A Solution for
Tightening Network Security. Report, Internet Security Systems, 1997.

[25] Unknown. "Interview with Bill Gates". FOCUS, (43):206-212, October 23 1995.

[26] Wietse Venema. TCP WRAPPER: Network Monitoring, Access Control, and Booby Traps.
In Proceedings of the Third Usenix UNIX Security Symposium, pages 85-92, Baltimore, MD,
September 1992. f tp : / / f tp. win. tue. nl/pub I security/
tcp_wrapper, ps. Z.

[27] Joe Zbiciak. w r a p p e r . c Generic Wrapper to Prevent Exploitation of s u i d / s g i d
Programs. Bugtraq mailing list, h t t p : / / g e e k - g i r l . c o m / b u g t r a q / , May 19 1997.
http:I/cegt201.bradley.edu/ iml4u2c/wrapper/.

Permission I o make digital or hard copies of all or part of this w o r k for
personal or c lassroom use is granted w i thou t :lee provided that
cop ies are not made or distr ibuted for prof i t or commerc ia l advan-
tage and that copies bear th is not ice and the full citat=on on the f irst page.
] o copy otherwise, 1o repubJish, to posl on servers or to
redistr ibute to hsts, requires prior specif tc permiss ion and/o.r a fee.
1 9 9 8 NSPW 9 /98 Charlot.tsville, VA , USA
© 1 9 9 9 A C M 1 - 5 8 1 1 3 - 1 6 8 - 2 / 9 9 / 0 0 0 7 . . . $ 5 . 0 0

70

