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Abstract 

Conventional models of system integrity tend to be 
implementation-oriented in tha t  they define integrity in 
terms of specific controls such as separation of duties, well- 
formed transactions, and so forth. In this paper we propose 
a formal definition of integrity tha t  is based on the notion 
of dependability and is implementation independent. Using 
a series of examples, we argue that  separation of duties, 
assured pipelines, fault-tolerance, and cryptography may 
be viewed as implementation techniques for achieving in- 
tegrity. 

1 I n t r o d u c t i o n  

Conventional integrity models such as [2, 4, 22] limit them- 
selves to the boundary of the computer system and tend to 
define integrity in an operational and/or  implementation- 
oriented sense. For example, the Clark-Wilson model [4] 
recommends that  well-formed transactions, separation of 
duties and auditing be used to ensure integrity. How- 
ever, the model does not a t tempt  to address what is meant 
by integrity--evaluating a system according to the Clark- 
Wilson model gives a confidence to the extent that  good 
design principles have been applied. For instance, when we 
define a complex separation of duty policy, we cannot use 
the model to guarantee that  a user of the system cannot 
somehow bypass the intent of the separation via some un- 
expected circuitous route. 

Traditional Requirements Analysis [20] typically identi- 
fies the essential functional requirements tha t  define what 
the system must do. An implementation defines how the 
system operates and must  take into consideration the fact 
tha t  the infrastructure that  is put in place to support  the re- 
quirements may be unreliable. For example, experience tells 
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us that  a system's infrastructure should include a suitable 
backup and restore subsystem. While not par t  of the essen- 
tial requirements, it is a necessary part  of the implementa- 
tion since the infrastructure can corrupt data. Infrastruc- 
ture is everything that  serves the requirements--software, 
hardware, users, user-procedures, and so forth. 

In [13], integrity is characterised as just one attr ibute of 
dependability, that  is, "dependability with respect to absence 
of improper alterations", and dependability is "a property 
o] a computer system such that reliance can be justifiably 
placed on the service it delivers". If  a system is built on a 
perfect infrastructure tha t  never fails then it is dependable. 
Such a system would include functionally correct and reli- 
able computer  systems~ completely t rustworthy users who 
follow procedures exactly, and so forth. However, in prac- 
tice, it is not possible to build such an enterprise. Even if 
the system is functionally correct, the infrastructure is al- 
most always sure to fail: users may be dishonest, not  follow 
procedures properly, and so forth. 

In this paper we characterise dependability as a form of 
ref inement--a  system is sufficiently robust such that  even 
in the presence of infrastructure failures it can be shown to 
implement (refine) the top-level requirements. In addition 
to integrity, authentication and confidentiality are other at- 
tributes of dependability [13], and in this paper we argue 
that  our notion of dependability encompasses them. 

Section 2 introduces the notion of local refinement and 
argues how it can be used to characterise dependability. 
Clark and Wilson identify external consis tency-- the correct 
correspondence between data  objects and the real world ob- 
jects they represent--as  the abstract requirement tha t  in- 
tegrity mechanisms such as separation of duty  seek to en- 
force, and we characterise this in terms of local refinement. 
A series of simple examples are given in Section 3 to illus- 
trate how separation of duties, cryptography, fault-tolerance 
and assured pipelines may be regarded as implementation 
techniques used to achieve dependability. Section 4 investi- 
gates some general properties of dependability. 

Local refinement is formalised in terms of event systems. 
Rather than building and reasoning about an event-system 
from first principles, CSP [10] is used in the paper to present 
the theory and examples in a convenient and unambiguous 
manner. The Appendix gives a brief summary of CSP and 
its trace semantics. 
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Figure 1: A simple payment  enterprise 

2 I n t e g r i t y  a n d  D e p e n d a b i l i t y  

E x a m p l e  1 A simple enterprise receives (equal-value) ship- 
ments, and generates associated payments  for a supplier.  
Requirements  Analysis identifies events snote and pay cor- 
responding to the arrival of a shipment (note) and i t ' s  asso- 
ciated payment ,  respectively. Enterprise behaviour is speci- 
fied by CSP process ConsReqo, where 

ConsReqo = (snote ~ ConsReql) 
ConsReq, -= (pay -+ ConsReq~_t 

[ snote ---+ ConsReq,+l ) 
(i > o) 

Figure I outlines a possible implementa t ion of this require- 
ment. A clerk verifies shipment notes and enters invoice 
details (event inv) to a computer  system, which in turn,  
generates payment  (pay) for the supplier. This is specified 
as 

Clerk = (snote -4 inv -4 Clerk) 
System =( inv  -4 pay -4 System) 

and the enterprise design is specified as Conslmp = 
Syst emil Clerk. 

Intuitively, integri ty is mainta ined if, even in the  pres- 
ence of failures within the  infrastructure,  the implementa-  
tion ConsImp suppor ts  requirement ConsReqo at i t ' s  exter-  
nal interface E with the  supplier. A 

The example above i l lustrates tha t  integri ty may be 
characterised as a form of refinement--Conslmp refines 
ConsReqo. In the traces model  of CSP~ process S is a 
(safety) refinement of process R if o~R -- a S  and traces(S) C 
traces(R), tha t  is, every possible trace of S is pe rmi t t ed  by 
R [10]. For example,  the process P ---- (snore -4 pay -4 P )  
which al ternates  between snore and pay, is a refinement of 
process ConsReqo. 

The Supplier (Example 1) is oblivious to ' in ternal '  event 
(inv) and interacts  with Conslmp abs t rac ted  through inter- 
face {snote, pay}, tha t  is, Cons[mp@{snote, pay}, where for 
process S and set of events E,  

s ~ E  ~ { t :  traces(S)  • t t E } 

and t r E is the trace t with events not in E re- 
moved. Every trace the supplier can observe from 
ConsImp~{saote, pay} is pe rmi t t ed  by ConsReqo and we 
say tha t  ConsImp locally refines ConsReqo at  tha t  interface, 
tha t  is, ConsReqo E {$"°te'pay} ConsImp. 

D e f i n i t i o n  1 (Local Refinement) R is locally refined by S 
at  event interface E iff R CE S, where, R E E S ev- E C 
a R C  aS A S@E q R@E. 

E x a m p l e  2 Continuing Example  1, we assume tha t  the 
computer  system will behave rel iably (according to System). 
However, it  is not  reasonable to assume tha t  the  clerk will 
always act rel iably according to Clerk. In practice,  an un- 
reliable clerk (Clerk) can take on any behaviour  involving 
events snote and inv. 

Clerk =- RUN{~,ote,i,v} 
Conslmp2 ~ ConsSysll Clerk 

We argue tha t  Conslmp2 is a more realistic representat ion 
for the actual  enterprise tha t  will be fielded. I t  more ac- 
curate ly  reflects the rel iabil i ty of its infras t ructure  than  the 
previous design Conslmp. However, for external  interface 
E -- {snore, pay}, since t ---- (inv, pay) C traces(Conslmp2), 
and t F E = (pay) ~ traces(ConsReq) then ConsReq ~E 
Conslmp2, tha t  is, the design is not robust  enough to be 
able to suppor t ,  in a safe way, the  original requirements  
ConsReq. A 

In [13], integri ty is given as one a t t r ibu te  of dependabil- 
ity; other  a t t r ibutes  include confidentiali ty and authent ica-  
tion. Dependabi l i ty  is characterised as a property of a com- 
puter system such that reliance can be justifiably placed on 
the service it delivers [13]. We argue tha t  this  notion of de- 
pendabi l i ty  may be viewed as a class of refinement whereby 
the na ture  of the reliabil i ty of the enterprise is explicit ly 
specified. 

D e f i n i t i o n  2 (Dependabi l i ty)  ]f R gives behavioural  re- 
quirements  for an enterprise and S is i ts proposed imple- 
mentat ion,  including details about  the na ture  of the relia- 
bil i ty of its infrastructure,  then S is as dependably safe as R 
at interface E if and only if R E E S. Zx 

According to Clark-Wilson [4], external  consistency is 
the "correct correspondence between data objects and the real 
world". Another  way to view this is tha t  an external  ent i ty  
can achieve consistent interactions with the  enterprise, even 
in the presence of failures within the infras t ructure  of the en- 
terprise.  We characterise this notion of external  consistency 
in terms of dependabil i ty.  

D e f i n i t i o n  3 (External  Consistency) Let Sill and SI]I de- 
scribe the behaviour of system S opera t ing  within reliable, 
and unreliable, infrastructure I and I ,  respectively. ~Ve say 
that  S is externally consistent at interface E if SHI is as 
dependably  safe as Sill , tha t  is, SIII C E SI]7. 

E x a m p l e  3 Given the na ture  of an unrel iable clerk (Exam- 
ple 2), ConsImp2 is not  as dependably  safe as ConsReq at 
the interface E.  Similarly, System is not  external ly consis-  
tent  at  interface E,  since System [[ Clerk ~ (System[[ Clerk). 
A 
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Figure 2: Supporting separation of duties 

3 D e p e n d a b l e  S y s t e m s  

3.1 S e p a r a t i o n  o f  D u t i e s  

Separation of duties is a common implementation technique 
for achieving integrity• While fault-tolerant techniques repli- 
cate an operation, separation of duties can be thought  of as 
a partitioning of the operation. 

E x a m p l e  4 Suppose that  when a shipment arrives a clerk 
verifies the consignment at goods-inwards (entering details 
cons into the system). When an invoice arrives, a differ- 
ent clerk enters details into the system, and if the invoice 
matches a consignments, a payment  is generated. So long 
as the operations are separated then a single clerk entering 
a bogus consignment cons or invoice inv can be detected by 
the system. For simplicity, we assume that  both cons and inv 
arrive at the same time in snore; this is depicted in Figure 2. 

To distinguish shipments, events are prefixed with iden- 
tifiers drawn from .N', the set of shipment-identifiers. For 
example, n.pay corresponds to the payment  resulting from 
shipment-note n.snote. While shipment-identifiers are in- 
tended to be unique, it is possible tha t  a supplier may re- 
use identifiers. Thus, n:ConsReqo (process ConsReqo with 
events prefixed by n) describes the behaviour required when 
processing shipments identified by n E Af. The top-level re- 
quirement is 

ConsReq : II,:H(n:ConsReqo) 

The proposed application system allows arbitrary clerks 
u and v verify the consignment (n.cons.u) and invoice 
(n.inv.v) for consignment n, after which, payment  is gen- 
erated. 

AppSys =Dn: N (n.cons.u ----~Q.:u (n.inv.v --+ n.pay ~ AppSys))  
u : U  

This system allows the same clerk to perform both oper- 
ations, and a separation of duty mechanism is required to 
limit certain behaviours. Specification 

Sep~ = STOP( . . . . . . .  , . . . .  } I I R U N {  . . . . . . .  i . . . .  } 

separates clerks u and v who may process invoices and con- 
signment, respectively, but  not vice-versa. If we assume that  
the infrastructure has only two clerks U = {x, y} then a dy- 
namic separation of duty mechanism, allowing a clerk vary 

operation between shipments is specified as DynaSep. 

• m DynaSep = II.:~(n:&p~ [] ~.Sepy) 
StatSep = ( ] l . : ~ : S e p X )  [] ( i l . : f ~ : S e p ; )  

StatSep describes a static separation of duty  mechanism 
requiring a clerk to perform the same operation for all 
shipments• The overall (reliable) system is described as 
SepSys = AppSysl lDynaSe p. 

A reliable clerk u processing shipment n is expected to 
behave according to n: Clerk", where 

C l e r k  ~ = (snote ~ (cons.u ~ Clerk ~ I inv .u  ~ Clerk~)) 

However, we make the assumption that,  of our two clerks 
x and y, one may take on an unreliable or arbitrary be- 
haviour. Thus, the unreliable infrastructure behaviour is 
Clerks, where 

Clerks = Un:H n:( Clerk*llRUN~cle,.ky 
[] ClerkYllRU1Gc,~,k. ) 

Since the system and separation mechanism ensures that  one 
failing clerk cannot influence the generation of a payment,  
without the assistance of the other clerk, then, we can prove 
that  for any n : .Af and n:E = {n.snote, n.pay}, 

ConsReq E ":E ( SepSys H Clerks) 

As currently defined, our specification favours the payment-  
enterprise, not the supplier: payments  may be very late, or 
effectively not be made at all, but  are never bogus• If a clerk 
fails then payment  is not made. In reality, the infrastructure 
contains many additional components; audit logs to record 
failures and supervisors, who make judgements and rectify 
these inconsistencies. 

E x a m p l e  5 Example 4 illustrates how separation of duties 
may be regarded as an implementation technique for achiev- 
ing dependability. The implementation also maintains ex- 
ternal consistency on shipments, since, 

s~ps~sll Clerks E ~:~ sep&~ll Clerks 

where Clerks -- 61,:~ n: ( Clerk~ II Clerk~) characterises a com- 
pletely reliable infrastructure. 
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3.2 C r y p t o g r a p h i c  T e c h n i q u e s  

Our enterprise model is comparable to the network model 
used in the analysis of cryptographic-based authentication 
protocols [5, 15, 16]. The authentication protocol corre- 
sponds to the reliable system component being studied, 
while the network corresponds to the infrastructure, with 
the protocol attacker (Spy) choosing to have normal or ab- 
normal behaviour. 

E x a m p l e  6 Suppose that  the system and supplier (Exam- 
ple 1) share a secret cryptographic key (unknown to the 
clerk). The supplier includes a Message Authentication 
Code (MAC) with snote to ensure the authenticity of the 
note and this, in turn, provides authenticity for each invoice 
entered by the clerk. 

Let A.4 be a datatype representing shipment-identifiers 
plus associated MAC fields. Let .Af be the set of all values 
from .A4 that  represent cryptographically secured shipment- 
identifiers, that  is, the MAC component corresponds cor- 
rectly to the identifier. Let ~" represent all other values 
in .M \ A f. The top-level requirement is as before, except 
that  we expect only cryptographically secured shipment- 
identifiers to be used. 

Cons Req = IIn:H(n: Cons Reqo ) 

The system will generate payment only for valid invoices 
that  it has not seen before. A system that  has processed 
P C_ .hf shipment-identifiers has behaviour 

MacSysp = (Dn:H\p (n.inv ~ n.pay ---+ MacSyspu{n} ) ) 
[] 
( •n :~vP  (n.inv --~ MacSysp)) 

Invoices processed in the past (P), or with invalid identifiers 
~" are processed, but payment is not generated. 

A reliable clerk has behaviour MClerk = [[,,:~¢(n:Clerk) 
(Example 1). An unreliable clerk engages in arbitrary 
events, generating identifiers in ~i~, and using identifiers it 
has already processed. However, we assume that  the clerk 
cannot forge messages from Af. 

MClerkp = (On:At (n.snote -.+ Clerkpu{~})) 
[] 

([],,:)TuP (n.inv ~ Clerkp)) 

Given this characterisation of an unreliable clerk we can 
prove that  the resulting enterprise is as dependably safe as 
the original requirement, that  is, 

ConsReq E ~:E MaeSys{}lIMClerk{} 

Since our notion of dependability is independent of any 
particular implementation technique, it should be straight- 
forward to combine different techniques. For example, we 
did not consider how the enterprise might establish the se- 
cret key between the supplier and the system. Suppose that  
a supervisor is given this responsibility. So long as the su- 
pervisor (infrastructure) and the snote-processing clerk are 
different people, then a failure by one cannot result in an 
unexpected behaviour at the external interface. This should 
be included as part of the implementation specification. A 

The analysis performed in the example above is not un- 
like the approaches used in the analysis of authentication 

protocols [5, 15, 16]. A key difference is that  we take a re- 
finement approach while the other techniques may be viewed 
as verifying, what is in effect, a form of external consistency 
on an interface of an implementation. For example, verify- 
ing that  external consistency is maintained at the interface 
of the supplier gives us 

MacSys{} tlMClerk ~n:~ MacSys{} IIMClerk{} 

In the case of an authentication protocol, external consis- 
tency is provided on the interfaces that  make up the princi- 
ples involved ('Alice' and 'Bob').  

3.3 C o n f i d e n t i a l i t y  

Sections 3.1 and 3.2 illustrate that  the attributes of integrity 
and authentication may be formalised in terms of depen- 
dency refinement. Confidentiality is a further attr ibute of 
dependability [13] and, for the sake of completeness, this 
section illustrates how multilevel security might be formally 
characterised in terms of refinement. 

E x a m p l e  7 By our fault model, the reliable part of a mul- 
tilevel secure system is the TCB while the operating system 
and applications make up the unreliable infrastructure. The 
TCB has to be sufficiently robust to be able to provide an 
externally consistent interface to a low user regardless of the 
behaviour of a high application, that  is, the TCB running a 
high application Ah is as dependably safe as TCB running 
any other high application A~. Or, in other words, that  the 
TCB is externally consistent at the low interface. 

V At, Ah, A~ I nAt = Lo A o~Ah = aA~ = Hi 

• (A~IITCBIIA,) E L° (AhlITOBIIAt) 

This can be shown to simplify to (TCBIISTOPHi) C L° TCB, 
and simplifies further to (TCBHSTOPHi)@Lo ---- TCB@Lo. 
This corresponds to non-information flow [7, 12] as related 
to uon-deducability [21]. If Lo and Hi partition the entire 
alphabet of TCB then it simplifies further to non-inference 
[14]: TCB@Lo C TCB. 

3.4  F a u l t - T o l e r a n c e  

Another approach to dealing with unreliable systems (infras- 
tructure) is to replicate the faulty components and make the 
system fault tolerant. We can make the payment enterprise 
fault tolerant if we replicate the clerk. We assume that  every 
shipment is processed by 2k + 1 replicated clerks. The sys- 
tem votes(on the 2k + 1 invoices) to decide whether or not a 
consignment is valid. In this case, the abnormal behaviour 
of the infrastructure is represented by at least k + 1 clerks 
having normal behaviour, and we argue that  the resulting 
enterprise is as dependably safe as ConsReq at interface n:E. 

Non-interference techniques have been previously used to 
verify fault-tolerance [19, 23]. Faulty behaviour is modelled 
using special fault events and the system is fault-tolerant if 
the fault events are non-interfering with the critical events 
of the system. In essence, engaging a fault event changes the 
system from normal to abnormal behaviour, and what may 
be thought  of as external consistency must be preserved on 
the the critical events tha t  make up the external interface. 
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Figure  3: Appl icat ion running on a TCB 

3.5 S e c u r i t y  K e r n e l s  

In Example  4 we considered the integri ty of the enterprise 
with respect  to the external  supplier and assumed tha t  
SepSys was reliable, tha t  is, secure. A conventional  secure 
applicat ion system is usually buil t  in terms of un t rus ted  (un- 
reliable) appl icat ions running on an underlying t rus ted  com- 
put ing base (TCB).  

E x a m p l e  8 Consider the  appl icat ion system used by the 
payment  enterprise (Example  4}. Figure 3 depicts  a design 
of this system based on a simplist ic model  of an assured 
pipeline [3] composed of domains  D1, D2 and D3. The  ap- 
plications form the infrastructure which is composed of pro- 
grams 91, P2 and P3 which may  run in domains  D1, D2 and 
D3, respectively. The  integri ty of an appl icat ion buil t  on an 
assured pipeline relies on the separat ion enforced between 
domains,  and the 'correctness '  of the  appl icat ions along the  
pipeline. 

We specify a model  of the  assured p ipe l i ne - -p roba b ly  
over-simplified, bu t  serving as a useful il lustration• Event  
n .d l  represents en t ry  into domain D1 by program P1 (pro- 
cessing shipment  n). Events n.d2 and n.d3 have similar 
interpretat ions.  The pipeline enforces a str ict  ordering on 
domain entry. 

Pipeline =D,~:~ (n .d l  --+ n.d2 ~ n.d3 ~ Pipeline) 

When  a cons event is engaged the program enters domain 
D1, and similarly for inv (these events will eventual ly be 
prefixed by shipment  identifier). 

P1 = O . : u  (cons.u ~ dl -+ P1) 
P2 = O . : u  (inv.u ---+ d2 ---+ P2)  

The payment  program P3 behaves slightly differently. Once 
the pipeline enters domain d3 a payment  may  be generated.  

P3 = d3 --~ pay ~ P3 

Our failure model  assumes tha t  programs P1 or P2  may  
fail and engage arbi t rar i ly  events. Failure of program P3 
can result  in mult iple  payments  and therefore it is necessary 
to t rea t  the payment  program P3 as a reliable component .  
This  is not an unreasonable assumption:  for example,  a typ-  
ical guard pipeline regards tha t  par t  tha t  generates the out-  
put  as t rus ted  [9]. Thus, the infrastructure is model led  as 
Apps --- [I,~:.N'(n: Trans), where Trans specifies the  unreliable 
processing of a single shipment.  

Trans = ( ( PI[[RUN,~p2) [] ( P2HRUN~p1) )[]P3 

And we can prove tha t  AppSys E_,~AvpSy, PipeLinellApps" 
A 

4 E v a l u a t i n g  D e p e n d a b i l i t y  

4.1 D e p e n d a b i l i t y  a n d  S a f e t y  

I t  follows from its definit ion tha t  t race refinement preserves 
dependabi l i ty ,  tha t  is, 

R ~ S  
[EC_~R]  

R E E s  

However, the  converse does not necessarily hold. For Exam- 
ple 7, we might  prove tha t  TCBIISTOPm _E TCB which, by 
the  law above, implies tha t  TCBIISTOPm •Lo TCB holds. 
However such a TCB is not of much use - - fo r  every trace t 
of TCB then t ~ Hi = (}- - i t  is not willing to engage in any 
Hi event! 

If we take the view tha t  refinement is a proper ty  [11], 
then since trace refinement is expressed as a predicate  on 
traces it can be regarded as a safety p roper ty  in the  usual 
sense of [1]: the  predica te  (t E traces(R)) holds for every 
trace t of S. On the other hand,  local refinement is ex- 
pressed as a predica te  on sets of t races and we therefore 
regard  i t  as an information-flow [12] or securi ty proper ty  
[18]: the  predica te  (3 t '  : traces(R) • t' [ E = t [ E) holds 
for every t race t of S. This also applies to external  consis- 
tency  and is not surprising in light of the  examples  s tudied 
in Section 3. Thus, we see no reason why our definition 
could not be re-cast  in te rms of other  non-interference style 
frameworks such as [6, 17]. Doing this would provide ac- 
cess to a wide range of results on unwinding, composit ion,  
model-checking, verification, and so forth. 

4 .2  I n c r e m e n t a l  E v a l u a t i o n  

We in terpre t  R . ~ n  SHis ' to mean tha t  the  system S is 
sufficiently resilient to the faults in Is to be able to (safely) 
suppor t  the requirements  R. This  dependable  component  
may  then be used in place of R, which in turn,  may be 
used in place of some other  more abs t rac t  requirement .  In  
general,  the following law holds 

n _EE S[lIs, S E '~s P[lIp 

R .~s (PlllPIlls) 
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E x a m p l e  9 We have from Example 4 and Example 8 that ,  
for n E .hf and E = {snote, pay}, 

ConsReq E n:E AppSyslIDynaSepllClerks 

AppSys D_ QAeps~" PipeLinellApps 

and it follows tha t  

ConsReq E ~:E PipeLinellAppsllDynaSeplt Clerks 

Thus, a TCB composed of the pipeline and dynamic separa- 
tion of duty mechanism is sufficiently resilient to infrastruc- 
ture failures (clerks and programs) and supports the original 
requirement ConsReq. 

4.3 C o m p o s i t i o n  

Under certain circumstances, if systems S and S t are de- 
pendable (according to requirements R and R') then so is 
their composition. 

R E E S , R' D ~ S' 
[ a R D a R '  g E]  

.RIIR' E E SIIS' 

We note, however, that  if the side-condition a R  D a R '  C E 
does not hold then, R]IR' E ~ S}]S' does not necessarily hold 
since synchronisation on events in (aRM aR ' )  \ E may result 
in behaviour restrictions in RI}R' that  are not restricted in 
S l I S ' .  

4.4 U n w i n d i n g  

Given t E traces(P) then P / t  is the process P after engaging 
in trace t and P i t  may be viewed as a possible state of P. 
Thus, the set of all reachable states of P is states(P) = {t : 
traces(P) • P / t }  and provides a way for us to view P as 
a state transit ion system. Engaging event e E o~P in state 
p E states(P) results in a new state p/(e). 

Dependability refinement may be unwound into a condi- 
tion on states and state transitions. An abstract state r : 
states(R) is related to its concrete equivalent s : states(S) 
by a refinement abstraction relation r .~ s. To prove that  
R E aR S it is necessary to prove that  the result of transi- 
tions on concrete states are consistent with transit ions on 
abstract states, as related by ~.  Formally, we have the rule 

V r :  states(R); s :  states(S); e :  a S  • 
r = s ^ e ~ ~ R  ~ r / ( e )  = s / ( e )  
r = s ^  e ~ a n ~ r ~ s / ( e )  

R D~a S 

It is interesting to compare this with the unwound form for 
non-interference: (r ~ s A e C o~R ~ r/(e)  .~ s/(e)) is 
comparable to a no read-up rule, and (r ~ s A e ~ a R  
r ~ s / (e))  is comparable to a no write-down rule. 

5 D i s c u s s i o n  

We think it more appropriate to refer to the kind of property 
reflected by local refinement as a safe-dependability property, 
rather than an information-flow or security property [18]. 
Being based on a traces model it is a safety-style property, 
but  as argued in Section 4.1, more expressive. Alternative 
local refinement relations could be developed. For example, 

local refinement based on CSP's  failures-divergences model 
would provide the basis of a liveness-dependability property. 

A number  of observations may be drawn from the exam- 
ples in this paper. Throughout  the paper it has been nec- 
essary to treat a n.pay output  as being on a trusted path, 
that  is, any component generating n.pay has to be reliable. 
In practice, if we know that  only one message can be out- 
put at the end of an assured pipeline (as in [9]), then we 
could regard the P3-make-payment program (Example 8) as 
a potentially unreliable filter or integrity verification proce- 
dure (IVP), whose failure cannot result in the generation of 
multiple n.pay outputs.  

By choosing to support only one unit  of payment  (no 
payment amount)  we avoided the problem of a failing pro- 
gram modifying the payment  amount.  In a practical system 
such a failure should be detected at some point by appro- 
priate double-entry book-keeping on payments and invoices, 
and dealt with by generating an additional payment or an 
invoice. If payment  is viewed as something that  can occur 
in stages then we believe that  such a system, if specified 
properly, could be shown to be dependable. 

6 C o n c l u s i o n  

By considering the nature  of the entire enterprise we provide 
a meaningful and implementat ion- independent  definition for 
integrity and dependabili ty in general. This systems view 
has not been adopted by conventional integrity models, such 
as Clark-Wilson [4], which limit themselves to the boundary 
of the computer system and tend to define integrity in an 
operat ional/ implementat ion-oriented sense. 

In some respects, our definition of dependability blurs 
the distinction between the at t r ibutes  discussed in this pa- 
per (integrity, authenticat ion and confidentiality); indeed, 
the Clark-Wilson model incorporates authenticat ion as one 
component (rule El )  of its model of integrity. Example 3.2 
illustrates that,  what are in effect authenticat ion techniques, 
may be used to achieve external consistency, that  is, in- 
tegrity (in the Clark-Wilson sense). Therefore, as in [8], 
we speculate that  the verification of 'security' should be re- 
garded as the verification of correctness. In  this paper we 
use local refinement and a fault model articulates the na- 
ture of the possible attacks on the system. This suggests a 
paradigm for the development of a secure system: 

1. Develop top-level Requirements. 

2. Design an implementation,  incorporating a fault model. 

3. Verify that  the implementat ion refines the requirement. 

If a top-level requirement is not available then external con- 
sistency may be verified. 
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A A p p e n d i x  

L e m m a  1 Given processes P and Q and interface E then 

(PI[Q)@E c_ (P@E)I[(Q@E) 

a P M a E  C_ E ~ (PI]Q)@E = P@EJ[Q@E 

PROOF: Found in [7]. [] 

T h e o r e m  1 Givensystems S and P, and their correspond- 
ing infrastructures Is and Ip, then 

R E ~ SliTs ^ S E~s PIITP 
R E E (P I l IP I l I s )  

PROOF: If S C as PIITv, then t e traces(PIITP) ~ t [ aS e 
traces(S), implies that t E traees(Pl]Ipl[Is) ~ t [ ( a S  u 
aIs) E traces(SilTs). Thus, S E_ as P[[Ip implies that 
(PllTpllTs)@(aSUTs) c_ traces(S[lIs), and since E C a R  C 
a S  U aTs, then it follows that  (P[[IpI[Is)@E C (S[[Is)@E 
and from the hypothesis (SliTs) C_ traces(R), and by tran- 
sitivity of C the theorem follows. [] 

T h e o r e m  2 Given requirements R and R' and systems S 
and S' and an interface E such that  a R  n aR' c E, then 

R E ~ S A R' E ~ S' 
RIIR' E E SllS' 

PROOF: If S@E C_ R@E and S'@E C_ R'@E, then it fol- 
lows that S@E[IS'@E C_ R@E[[R'@E. Since, by defini- 
tion aR C_ aS and hypothesis aR n caR' c_ E, we have 
E C aS and, similarly, E C_ aS'. Lemma 1 implies that 
(S]]S')@E c_ S@E[[S'@E and since aR n aR' c E then 
(RHR')@E = R@EI[R'@E. Thus, (S[]S')@E C (RllR')@E 
and the theorem follows. 

We should note that  if a R  M a R '  C E does not hold 
then, from Lemma 1, (P[[Q)@E = P~EI[Q@E does not 
necessarily hold and thus R E E S A R' E E S' ~ R[]R' EE 
SIIS' does not hold in general. [] 
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T h e o r e m  3 Given requirement R and system S then there 
exists a suitable abstraction relation ~ such that  then 

( V r : s t a t e s ( R ) ;  s : s ta tes (S) ;  e : a S  . 
r ~ s A e ~ a R  ~ r / ( e )  ~ s l ( e )  
r ~ s A e C a R  ~ r ~ s l ( e ) )  
R _E ~a S 

PROOF SKETCH: Semantically, the trace model may only 
be used to reason about  deterministic systems, and its cor- 
responding state- transi t ion mach ine - - a  labelled t ransi t ion 
sys tem-- is  deterministic. The usual relationship between 
trace refinement and (safety) refinement for a labelled t ran-  
sition system implies that: 

(Vr : s ta tes(R);  s : s t a t e s ( S @ a R ) ;  e :  c u R .  
r ~ s ~ r / ( e )  ~ s / ( e ) )  ~ R E S ~ R  

where ~ is a suitable abstraction relation. The set 
s t a t e s ( S @ a R )  effectively induce a set of equivalence classes 
on the set s ta tes (S)  and we can re-construct the abstraction 
relation ~ to preserve this relationship~ such that~ 

(Vr : s ta tes(R);  s : s ta tes (S) ;  e : oLR • 
r = s ~ r l ( e )  ~ s l ( e ) )  ^ 

( V r :  s ta tes(R);  s : s ta tes (S) ;  e : a S  \ c~R . 
r ~ s ~ r ~ s / ( e ) )  

R _E S @ a R  

where, transit ions on events e E a S  \ a R  are viewed as 
' internal '  events (to an interface aR)  that  keep a state (of 
S) in the same equivalence class. 

The unwinding is also a sufficient condition for local re- 
finement. If S a P  C R then define an abstraction relation 
such that  (R / t~  ~ S / t , )  ~ t~ [ a R  = t,, for t~ E t races(R)  
and t, E t races(S) ,  and the unwinding conditions follow. [] 

B C o m m u n i c a t i n g  S e q u e n t i a l  P r o c e s s e s  

In the traces model of CSP [10] the behaviour of a process 
is represented by a prefix-closed set of event traces. If P is 
a process then t races (P)  C_ (aP)*  gives its traces and a P  
its alphabet.  We use a subset of the CSP algebra to specify 
system behaviour; the trace semantics of the operators used 
is given below. 

traces ( S T O P  A ) 

traces ( R UNA ) 

traces( a --4 P )  
t races((a  ~ P 

I b ~ Q ) )  
t races (P  [] Q) 

traces(P11 Q) 

= {0} 
~ A *  

= { t :  t races (P)  i (a) ~ t } U {0} 

= traces(a --~ P )  U traces(b ~ Q) 
= t r a c e s ( P )  U t r a c e s ( Q )  

= { t : ( a P U a Q ) "  I 
t [cup E t races(P)  A 
t r ~ Q  e t races (Q)}  

While not used for specifying processes, the after operator is 
useful for reasoning about  processes in an abstract manner .  

t r a c e s ( P / t )  -= { s :  (aP)*  I t ~ s E t races (P)  } 

In the paper we also used a indexed form of concurrency 
and external choice. For example, ([]i:sP(i)) corresponds 
to the concurrent  composition of each P ( i )  indexed over 
i : I .  Processes may also be specified recursively~ in the 
form P = F ( P ) .  For example, P = a ~ P,  which has 
a unique f ixed-poin t - -a  process tha t  repeatedly engages in 
event a. 
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