
Tolerating Penetrations and Insider Attacks 
by Requiring Independent Corroboration 

ABSTRACT 
We describe an approach to building a system that meets its 
requirements even when some central components are 
successfully penetrated and/or when insiders attack the system. 
This goal is a key but elusive facet of information survivability. 

Our approach relies on independent corroboration, a form of 
redundancy. Corroboration is easy to pin down; independence is 
not. How can software judge whether two principals are indepen- 
dent? This paper begins to address the problem. We analyze the 
word "independence" and find that independence is not absolute, 
but relative to one's interests; that independence judgments are 
closely tied to trust; that independence judgments are based 
largely on known connections between the principals. We then 
take a two-pronged approach. The first prong is a formal, 
Bayesian probabilistic model of a system that uses independent 
corroboration to tolerate compromise. The second is a pragmatic 
investigation of how independence information may be imported 
from existing authentication data, and a preliminary look at how 
knowledge of independence may be dynamically obtained from 
third parties. 
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1. INTRODUCTION 
One facet of information survivability may be called compromise 
tolerance: the ability of a system to work acceptably even when 
components have been compromised. This is akin to fault 
tolerance: roughly, the ability of a system to meet its requirements 
even when components suffer faults. 

But compromise is different from ordinary faults. First, a 
compromised component may be malicious. It may be running 
the adversary's software. Second, fault tolerance generally 
assumes that faults are independent. Compromises are not 
independent. A set of redundant servers may be fault-tolerant, but 
if an adversary gains access to an administrative account on one 
server, he or she can probably bring down the whole set. 
Different engineering techniques and a different way of thinking 
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are required to create a compromise-tolerant system. 

Of course, not only components, but also human operators may be 
compromised. We can consider them to be part of the system too, 
using a larger sense of "system." One wants the system to 
function properly even when members are compromised. (We 
shall use the passive form "is compromised" whether a person is 
compromised by a third party, as through bribe or blackmail, or 
becomes malicious on his or her own, as from disgruntlement or 
temptation.) 

In our model, the system consists of agents that operate in some 
world and that express beliefs to each other about their world. 
We think of an agent as a person or a running program. Beliefs 
may include instructions ("I believe that you should do R"). The 
agents may also denounce each other ("I have observed b acting 
suspiciously and believe that b is compromised"). 

Before acting on one of these received statements, an agent must 
decide whether to believe it. What if the author of the statement 
was compromised? Independent corroboration is the solution. If  
b says Q and c also says Q,  and c is independent of b ,  then 

Q is far more credible, far safer to believe. 

But how do we determine whether two agents are independent? 
This is hard, and a part of this paper addresses the question on a 
very practical level. In sum, we claim that human judgments of 
the independence of two principals a and b are based on five 
factors: (1) the interests relative to which the judgment is made, 
(2) the level of trust placed in a ,  (3) the level of trust placed in 
b ,  (4) any known connection between a and b that might 
compromise their independence, and (5) barriers that make it less 
likely for a and b to collude. 

A stylistic note: This paper uses the first person singular ( 'T ')  to 
refer to a hypothetical, reasonable person. This paper uses the 
first person plural ("we") to refer to the author(s). 

The following sections consider some related work, the words 
"trust" and "independence," and how one goes about gauging 
independence. Then we develop a formal model of independent 
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corroboration, presented with a running example. We reflect on 
the model, on whether it is plausible and on enhancements it 
needs. We consider how to derive independence information 
from existing data sources, and then consider how to obtain 
independence information from third parties. We sketch an 
algorithm for computing our trust model's result with better 
efficiency. 

2. RELATED WORK 
We are not aware of other work on formalizing independent 
corroboration. But there are a number of other approaches to 
tolerating compromise of information sources. All of the 
following approaches, and our own work, assume isolated 
compromise--that other measures make it impossible for an 
adversary to suddenly get control of everything, and that there are 
some limits to the extent of a plausible conspiracy. 

Voting. If one requires an absolute majority vote of some set of 
agents, and counts non-voters as nays, then the vote is 
compromise tolerant. Compromising or squelching a minority of 
the agents will not change the vote. 

General interactive consistency. If a number of agents must 
reach agreement, then Byzantine agreement and related algorithms 
let them do so without appointing a single trusted vote counter. 
These algorithms can be used, with care, to build compromise- 
tolerant systems. Two examples follow. 

Byzantine quorum systems. Quorum systems are a technique for 
implementing fault-tolerant replicated data. Quorum systems 
have been extended to environments in which some data 
repositories can be arbitrarily corrupted.J9] Still, as a practical 
matter, if the repositories have identical implementations and the 
same administrators, then they share many of the same 
vulnerabilities. 

State machine" replication. A service is implemented with 
multiple identical, deterministic servers, each initialized to the 
same state. A Byzantine protocol ensures that all servers receive 
the same inputs from clients. Clients conduct a vote among the 
servers to decide which servers to believe. 

Use of general interactive consistency or Byzantine algorithms 
does not guarantee compromise tolerance. One must also use 
secure communication, for example. [6] 

Web of trust. If principal A authenticates principal B through a 
chain of intermediaries, each vouching for the key of the next, 
then each intermediary is a point of vulnerability. If 
compromised, any intermediary can pass off an impostor as B. A 
solution to this is to have redundancy. One can require two non- 
overlapping chains. More generally, one can require a trust mesh 
rather than a chain, and have criteria for acceptance of a 
mesh.[11] 

Don't  trust, verify. In some applications agent A makes an 
assertion to agent B, who verifies it before acting on it, I fA lies it 
cannot cause much damage. At worst it causes B to waste 
resources checking on a false assertion. 

One application to which this approach applies is a system for 
tracing attacks through the Intemet (Dynamic, Cooperating 
Boundary Controllers, developed by Boeing and sponsored by 
DARPA). If a detector observes an attack, it notifies its 
topologically neighboring detectors. Each of them studies the 
packets going by, looking for signs of the same attack and taking 

action if it sees the signs. If a detector makes a false report, then 
its neighbors will find nothing to confirm it. So they will, in 
effect, squelch the report. Little harm will be done. Thus such a 
tracing system can tolerate compromised detectors. 

Separation of duty. An old and widely practiced idea is 
separation of duty among humans. This limits the damage a 
compromised human can do. For example, an employee cannot 
approve his or her own expense report.[16] 

3. DEFINING "TRUST" 
"Independence" and "trust" are appealing, commonsense words 
that unfortunately cover too much territory. 

If I trust my car, I am confident it will not break down and strand 
me. If I trust my poker partners, I am confident they will not 
cheat. If I trust my auto mechanic, I am confident both that he or 
she will not cheat me and that he or she will do good work. 

Abdul-Rahman and Halles[1] use "trust" to denote many kinds of 
trust. But for analyzing independence, we find it helpful to narrow 
things down and worry only about betrayal. We define betrayal as 
when someone or something a user trusts acts as an adversary to 
the user. (The ordinary sense of betrayal usually involves a 
broken promise; we do not require that.) 

Our concern in this paper is only with betrayal, and not with other 
failures. We want independence because two independent 
principals are less likely to both betray a user. 

I can have other kinds of trust in humans. I can trust a movie 
reviewer to recommend movies I will like. But independence of 
movie reviewers is different. To say that two movie reviewers are 
independent is to say that they form their own opinions and some- 
times disagree. Even if independent, they may both recommend a 
movie that I dislike. One could study how to combine the 
recommendations of experts to produce an aggregate 
recommendation. But this is outside the realm of computer 
security. 

I can have other kinds of trust in software components also. I may 
trust a Web site to present current and accurate stock-market 
quotes. To say that two software components are independent in 
terms of (for example) their timeliness and accuracy would mean 
that the components were unlikely both to make the same error at 
the same time. But evaluating and taking advantage of that kind of 
independence and trustworthiness is the domain of Software 
Reliability.[8] Reliability theory makes different basic 
assumptions from computer security about what combinations of 
failures are likely to occur. Anything that can be handled as a 
reliability problem instead of a computer security problem should 
be. 

So in the balance of this paper "trust" will mean "trust not to 
betray." This narrow reading of "trust" may be better for 
computer-security work in general. 

4. RELATIVITY OF INDEPENDENCE 
Relevant dictionary definitions of "independent" are: 

"'not subject to control by others" 

"not looking to others for  one's opinions or for  guidance in 
conduct"[17] 

By extension, when we say that two people are independent of 
each other, we mean that they are not subject to each other's 
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control, they do not look to each other for their opinions or 
guidance, and there is no third party from whom both take 
opinions or guidance or to whose control both are subject. 

Still, everyone has influences, and any two people have influences 
in common. What matters is whether the influences are relevant 
and whether they are too strong. 

Relevance depends on one's interests. If I work for a large 
company, then two departments of the company may be fairly 
independent with respect to my department's interests. But they 
will not be independent with respect to a competitor's interests. 
Independence is relative to a set o f  interests. 

Another relevant dictionary definition of "independent" is the 
probabilistic definition. Applying this to trust and betrayal, we 
propose: 

Two agents a and  b are independent relative to an agent  c i f  
the circumstances under which a would  betray c have no 
correlation with the circumstances under which b would  betray 
C .  

This definition is consistent with the foregoing definitions, and 
somewhat more precise. It is not mathematically precise, because 
it uses "correlation" informally. To use "correlation" precisely, 
we would have to posit a probability distribution over circum- 
stances. Some Bayesians might be willing to posit that 
distribution. But it is over an infinite domain, and it is not clear 
what sort of finitely representable probability distribution might 
serve, so we do not posit one. Thus we do not have mathematical 
precision, but we find the definition useful. 

This exacting kind of independence is impossible: there is always 
a nonzero chance that two agents will collude. But one can come 
close. 

5. GAUGING INDEPENDENCE 
If software is to gauge the independence of keys or principals, 
administrators will have to supply information about this. The 
notation in which administrators express their knowledge of 
independence must make sense, must be intelligible to those who 
use it. It is not enough to spray-paint on a nice graphical user 
interface (though we have seen that fallacy). Rather, suitability to 
the administrator's task is a fundamental property.[18] 

5.1 Levels of Trust 
The more I trust two agents, the more I believe they are 
independent (other things being equal). I f l  trust a and b highly, 
and c and d less, then as a rule I will think c and d are more 
likely to collude against me than a and b are. This is common 
sense, and I do not need an independence metric to tell me this. 

So we posit a real number representing the trust level of each 
agent, something akin to a security clearance. But that is not 
enough. 

5.2 Connections 
I also judge independence by whether or not there are known 
connections that could compromise the independence of two 
agents. If two people are married or in the same immediate family 
I do not assume they are independent for most purposes, which is 
why companies forbid one to work for his/her spouse. If they 
work for the same company then they are not independent from 

the viewpoint of a standards body. And if two keys are held by 
the same person, then of course the keys are not independent. 

In our model, each agent has a set of influences that may lead it to 
compromise. An influence may be: 

* an organization, such as the person's employer or the 
machine's owner 

* a marriage, friendship, or similar association 

• a vulnerability, whether known or hypothesized, such as a 
particular program 

Of course, different agents may be subject to the same influence. 
But an influence need not influence every agent the same amount. 
For example, if you a citizen of Country X, then I will assume 
Country X influences you, If your parents are from Country X 
and you are not, I may suspect you still have more loyalty to 
Country X than most people do, but not as much as if you were a 
citizen. 

Therefore the effect of each influence on each agent is weighted: 
for each agent and each influence there is a real number in [0,1] 
denoting the weight of the influence over the agent. If a and b 
both have strong affiliations with an organization J ,  then a and 
b will not (as a rule) be considered independent. 

For simplicity, in our model agents do not directly influence other 
agents. Any potential collusion among a set of agents must be 
expressed by creating a pseudo influence that affects all of them. 

Likewise, in our model organizations do not influence other 
organizations. So if in the world organization J influences 
organization K and K in turn influences agent a ,  then in the 
model J ' s  influence on a should be direct. This flattening 
makes the model much simpler to analyze. However, this 
flattening is possible only if the influences are partially ordered. 

We do not model how the analyzer comes to know what 
influences another agent. There is no notion of learning about 
influences from a third party who itself might or might not be 
telling the truth. The analyzer has beliefs about the influences 
affecting all of the other agents, but we do not have a model of 
sharing them. This, of course, is simplistic and begs for 
refinement. 

5.3 Barriers 
I also judge independence by whether I know of barriers that 
would tend to make it harder for two parties to collude. If I know 
that a particular compromising connection does not exist, that is 
one kind of barrier. Other barriers are created by explicit policy. 

Common barriers of the first kind include: 

• Being different people (since one person can hold many keys 
and therefore be many principals) 

• Having different employers 

A well-known barrier of the second kind is the Chinese Wall.J2] 

Depending on the need, I may investigate people for particular 
connections that could compromise their independence. Judges, 
for example, ask jurors whether they know the defendant or any of 
the lawyers. In a corporate setting I might ask people whether 
they are family members, business partners, etc. I might check 
public records. For highly trusted positions, this much digging 
may be necessary to avoid conflicts of interest, fraud, and such. If 
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I have investigated and found no compromising connections, then 
I am more confident no such connections exist. 

A barrier, then, may be merely the confirmed absence of a 
particular kind of connection. But as well, organizations actively 
erect barriers such as Chinese Wails to make compromising 
connections less likely. Special prosecutors engender some trust 
because they are relatively protected from the administration. 
Consumer Reports magazine refuses advertising. 

5.4 Set of Interests 
As Section 4 argued, independence is relative to a set of interests. 
We model the set of interests as the levels of trust the analyzer has 
in the different influences. Suppose c is gauging the 
independence of a and b.  Suppose a and b are both affiliated 

with J .  For example, J may be the country of which a and 
b are citizens. 

If c does not trust J highly, then c ' s  independence gauge goes 
down. 

If c trusts J highly, then c ' s  independence gauge stays the 
s a m e .  

If c trusts J moderately, then c ' s  independence gauge goes 
down, but not as much as in case #1. 

5.5 Summary 
My gauge of two people's independence is a function of how 
trustworthy I think each of them is, whether I know of or suspect 
any compromising connections, what barriers I know of between 
them, and the set of interests relative to which I am judging. 

6. RUNNING EXAMPLE 
We are applying this approach to intrusion detection, to insure 
that an intrusion detection system works correctly even if 
components are compromised. The approach applies especially to 
the problem of detecting and analyzing a widespread intrusion, 
one that spans organizations. 

Intrusion detection components are subject to compromise, like 
anything else. False reports from an intrusion detector can be 
extremely damaging, especially if they trigger automatic 
responses. 

Moreover, when an attack is widespread, some of the detectors 
may belong to organizations that one does not completely trust. 
Nevertheless one needs their reports. One needs corroboration. 
The question is how to combine the inputs from various detectors 
in order to decide what is really going 
on, even in a case where some intrusion- 
detection components are compromised. 

For the example, my organization gets 
information from four other 
organizations. The first two, i and j ,  

are close business associates with my 
organization, so they are relatively 
trusted. The second two, k and l ,  are 
reputable but they lack close ties to my 
own organization and so are less trusted. 

Some of these organizations run several 
intrusion detectors in different locations. 
It is generally reasonable to assume a 

i a 

j b 

j , k  c 

k d 

l e 

~O"~nizafiOgS,~and... 

degree of independence among detectors in different locations. 
One of the detectors belongs to a joint project between j and k ,  

so might be influenced by either organization. 

7. TRUST N O T A T I O N  
The model is of a system consisting of agents. Think of these 
agents as people, machines, and processes. They correspond in 
important ways to principals. But they are more than principals, 
in that we are modeling their beliefs. 

Some or all of the agents have beliefs about the other agents' 
trustworthiness and affiliations. And each agent's beliefs in this 
regard reflect the agent's own interests. Thus, the model reflects 
the principles of Section 5. 

The agents also have beliefs about the world, and they 
communicate these beliefs to each other. The point of the model 
is to allow an agent to decide whether an assertion made by one or 
more other agents is true, or whether those agents are lying. For 
simplicity, the model does not permit mistakes. All falsehoods 
are lies. 

The model assumes that all communication is authenticated, so 
there is no doubt about which agent made a particular assertion. 
When thinking about implementations, you may wish to assume a 
one-to-one mapping from agents to public keys. 

7.1 Trust and Independence Metrics 
A system consists of a nonempty set A of agents and a set 1, 
disjoint from A, of influences. To avoid self-reference and to 
generally simplify the math, we stipulate that the agent doing the 
analysis is not a member of A. We refer to the agent doing the 
analysis as the analyzer. 

The analyzer holds a set of beliefs about the trustworthiness and 
independence of the other agents. This set of beliefs consists of: 

A pair of functions tA:A ~ [0,1] and tt:l ~ [0,1] that map 

each agent or influence into a number between zero and one; 
we call this number the "trust level". 1 is the highest trust. 

If the analyzer were strongly affiliated with an organization 
o ¢ I ,  then I would expect the analyzer's trust in o,  h ( o ) ,  

to be very large. This reflects the principle that independence 
is relative to a set of interests (see Section 4, Relativity of 
Independence). 

A function w:lxA-->[0 ,1]  that maps an agent and an 

influence into a number between zero and one; we call this 
number the "weight". 1 is the strongest influence. 

A function s: A x A -4 [0,1] that maps a pair of agents into a 

number between zero and one that measures how much of a 
barrier is believed to exist between those two agents. ( " s "  
stands for "'separator".) The bigger the number, the stronger 
the barrier. One can express this function as a matrix; we 
envision it as a sparse matrix, with most of the entries 
containing a default, small value. Again, a barrier is either the 
fact that a particular connection does not exist (for example, 
that x and y do not work together), or that some explicit 

barrier has been created. This function is symmetric: 
s(x, y) = s (y ,x )  . 
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l ={ i , j , k , l }  

A = {a,b,c,d,e} 

All s(x, y) 

values .99999 

t a ( a ) =  

t3(b) = 

ta(c ) = 

ta (d )=  

ta(e ) = 

t t( i  ) = 

t , ( j ) =  

t t (k)  = 

t~(l)= 

.999 w(i,a) = .5 

.999 w(j ,b)  = .5 

.99 w( j , c )  = .5 

.99 w(k,c)  = .5 

.99 w(k,d)  = .5 

.999 w(l,e) = .5 

.999 

.99 All other w 

.99 values zero 

See Example 1. 

8. SEMANTIC MODEL 
We endow this notation with formal semantics by mapping this 
set of beliefs into a Bayesian network[ 10]. 

8.1 Bayesian Networks 
A Bayesian network is a directed acyclic graph (DAG) whose 
nodes are random variables. In our model all nodes are Boolean. 

The root nodes represent random variables that are independent of 
each other, and for each of these nodes the network specifies a 
probability. These probabilities are known as the priors. For 
each nonroot node, the network specifies the conditional 
probability given each possible combination of its direct 
predecessors. 

Certain independence assumptions hold, but we will not state all 
of them here. 

Bayesian networks allow one to calculate the conditional 
probabilities of the nodes in the network given that the values of 
some of the nodes have been observed.[3] 

8.2 Inputs 
Consider a nonempty set of agents A,  a set of influences I ,  and 
functions I a , t t ,  w ,  and s as described above. 

Consider an assertion Q whose truth the analyzer wishes to 

evaluate. We assume that adversaries would be motivated to assert 
Q if Q were false. (Otherwise there is no 

need for the model.) Let us assume that in the 
analyzer's judgment, the prior probability of 
Q is P(Q) = • > 0.  The model does not say 

how to come up with this probability nor 
whether or not the probability varies from one 
assertion to another. 

Let us also assume that in the analyzer's 
judgment, the prior probability, given that Q 

is true, that an uncompromised agent will 
know Q is true and will announce this to the 

analyzer is ~ .  Formally, 
P(S (x ,Q) IQ ,~F(x ) )  = ~ ; we will explain this 

notation below. 

8.3 Simplifying the Inputs 
In our model there are three ways an agent can come to be 
compromised. It can collude with any other agent. It can be 
influenced by a compromised organization with which it is known 
to be affiliated. Or it can simply compromise itself, without the 
involvement of any other agent or organization. 

It is convenient to treat all three of these the same way. We fold 
the collusions and self-compromises into the influences, weights, 
and trust levels. So we create a new set I ' ,  a new function 
t':/'--> [0,1], and a new function w':1 'xA ---> [0,1]. 

Initially, we set [k--  l , t k - -  t~,w'<--- w. 

We add each agent x ~  A t o l ' .  We set the trust level 
t ' (x)  = t~(x ) .  We set the weight w ' ( x , x ) =  1. For all other 

agents we set the weight to zero: w'(x , z )  = 0 for all z ~ A - {x}. 

We add each set of two agents to I ' .  So for each set of two 
agents {x,y}c_A, x ~ = y , w e s e t  { x , y } ~ l ' .  We set the trust 

level t ' ({x,y})= s ( x , y ) .  If two agents collude, both are com- 

promised, so we set the weights w ' ( { x , y } , x ) =  w ' ( { x , y } , y ) =  1. 

For all other agents we set the weight to zero: w'({x ,y} , z )  = 0 for 

all Z ~ A -  {x,y} . 

8.4 Constructing the Network 
For each influence i ~ I '  the network has a unique Boolean node 
H ( i ) ,  representing roughly the event that i is harmless, not a 

compromising influence. This is a root node with prior 
probability P(H(i ) )  = t ' ( i ) .  Its intended interpretation follows: 

• If i is a pair of agents { x , y } ~ A , t h e n  H(i)  being false 

means that x and y privately collude. A private collusion is 

when x and y collude on their own, and not because of an 

influence listed in the original set I .  Also, if some influence 
j e I affects both x and y ,  but the analyzer does not know 

this (w( j ,x )  = 0 and/or w ( j , y )  = 0 ), that counts as a private 

collusion. 

• If i e I ,  then i is one of the original influences known to the 
analyzer. Then i may represent an organization or 
vulnerability. H(i)  being false means that the organization is 

Are agents b and c harmless ~ 
taken as a pair, not colluding? ~ ~  

Is agent b harmless taken s i n g l y ? ~ l / / /  ~ ~ : ) ~ / ~  ~ 

Is inf iuence jharmless?  I [ (  ~ \ I / ~ [ 

Is agent b friendly? ~ ( i - - ~ F ~  ~ 7 "  ~ ]  

,he event m quest,on | 

Does agent b say that ~ ~ ~ ~ ~ :"-"----.--.-......~ ~, 
the event happened? ~ S ~ , ~  
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fairly badly compromised, or that an adversary is attacking the 
vulnerability. 

• Otherwise, i is an agent: i ~ A .  H(i) being false means that 

i is compromised spontaneously and singly, rather than for 
either of the above two reasons. H(i) being false includes the 

case that /is compromised because it is subject to an 
influence without the analyzer's knowledge. 

The network has a Boolean node Q; this node represents the 

event that Q is true. This is a root node with prior probability 

P(Q) = £. 

For each agent x ~ A the network has a unique Boolean node 
F(x), representing the event that x is friendly, not compromised. 

Agent nodes are not influence nodes: VxVi:F(x) ~ H(i). (But 

note that each agent x ~ A gives rise to two nodes, F(x) and 

H(x) .) For each influence i 6 I ' ,  the network has an arc /x, 

unless w'(i,x) = 0.  The conditional distribution of F(x) given 

that a certain subset J of its predecessors are compromised is: 

( [J is the set of 

PIF(x)lPredecessorsoy x |=  I~I(1-w'(j ,x)) 
]that are compromised) j,1 

That is, for all of the influences that are compromised and that 
affect x ,  we take the product of x ' s  imperviousness to their 
respective influences. It is as if x ,  in order to remain a good guy, 
had to make it past a number of independent hurdles: each of the 
bad influences on it. See an example in Table 2. 

F * * * * 0 

• F * * * 0 

• * F * * 0 

T T T F F (1 - w(j,c)) 

(1 - w ( k , c ) )  

= .25 

T T T F T 1 - w(j,c) = .5 

T T T T F 1 - w(k, c) =.5 

T T T T T 1 

~ : : . : : ( ' ~ ! a b l e ~ m t i o n a l ~ m n  (c), 

For each x ~ A the network has a Boolean node S(x,Q), 

representing the event of agent x saying that Q is true. There is 

an arc from Q to S(x,Q), because whether Q is tree affects 

whether xsays Q is true. There is an arc from F(x) to 

S(x,Q), because whether x is friendly affects whether x says 

that Q is true. 

The conditional distribution of S(x,Q) is an instance of Error! 

R e f e r e n c e  s o u r c e  n o t  found.. The table says that if x is 
compromised x will certainly say Q. If x is friendly, x will tell 

the truth about Q or keep silent. 

It would not be hard to think of a 
more sophisticated distribution, 
but we want to start simple. 

We hope it is clear that the 
Bayesian network has the 
following properties, where x is 
an agent: 

• The probability of x ' s  
avoiding compromise given 
that none of the influences that 
affect it is compromised and 

F F 1 

F T 0 

T F 1 

T T 6 

that it is not involved in any private collusion is ta (x). 

• Given that H(x) is true, that H{x,y} is true for every agent 

y ,  and that exactly one compromising influence, i e I ,  

affects x ,  the conditional probability of x ' s  being compro- 
rnised, of ~F(x) ,  is w(i,x). The stronger the weight of an 

influence on x ,  the higher the probability that x will be 
compromised given that the influence is compromised, other 
things being equal. 

• Whenever an additional influence that affects x is  
compromised, other things being equal, the conditional 
probability of x being compromised goes up. 

Nevertheless, simplicity is the main virtue of our conditional 
distribution for an agent staying friendly, F(x). A known 

problem with this distribution is that we think t(x) should reflect 

the unconditional probability P(F(x)). We think this would 

better reflect the meaning of a human trust judgment. 

9. EVALUATING OBSERVATIONS 
We present a naive approach to evaluation, explain its limitations, 
and then present a more sophisticated approach. 

9.1 Naive Evaluation 
Given observed values for zero or more of the S nodes, one 
computes the posterior probability of Q using standard Bayesian- 

network techniques. 

If this probability is high enough, then one acts as if Q were true. 

How high a probability is high enough is application dependent. 

our example, P(QIS(a,Q)^S(b,Q))is much higher In than 

P(QIs .,Q)) or P(QtS b,Q ) Thus, as one might expect, I can 

believe Q with more confidence when a and b corroborate each 

other. 

9.2 Limitations of Naive Evaluation 
The naive approach ignores the likelihood that the adversary has a 
strategy. They will attack points they believe to be weak, and they 
will marshal resources. 

For example, suppose that I know of no common influences 
affecting more than one agent. Suppose my trust in the agents is 
such that if any three of them agree on something, I will believe 
the three. It is clear that the more agents exist, the more 
vulnerable I am. If three of seven agent~ agree on something, that 
is one thing. If three of a thousand agree, that is a different 
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and much less significant thing. The naive evaluation technique 
does not capture that difference. I simply ask what is 

P(QIS(a,Q) ̂  S(b,Q) ̂ S(c,Q)), where a ,  b ,  and c are the three 

agents. This question ignores the existence of 997 other agents 
who have not voiced an opinion. The adversary might have 
carefully selected three agents that it could compromise. 

9.3 Statistical Technique 
Standard technique in experimental statistics is to (1) choose a 
statistic to compute over the observations, (2) choose a desired 
significance level, which is the probability of seeing a false 
positive given that that the null hypothesis is true; (3) compute a 
threshold for the statistic, such that the probability that the 
statistic will exceed the threshold given the null hypothesis equals 
the desired significance level. The null hypothesis is the 
hypothesis that the effect for which one is looking is not there. 
One minus the statistical significance is called the confidence. 

For our purposes, the null hypothesis is the hypothesis that Q is 

false: there is no intrusion or whatever. Next we must define the 
statistic. 

For each nonempty set X _~ A of agents, we add a unique node 

S'(X,Q). For each of the agents x ~ X we add an arc from 

S(x,Q) to S'(X,Q). The conditional distribution of S'(X,Q) 
is just an AND gate: if  all of its immediate predecessors are true, 
then S'(X,Q) is true with probability 1. Otherwise S'(X,Q) is 

false with probability 1. 

With each of these new nodes we associate a significance value, 

which is P(S'(X,Q)I~Q ). This is computable using standard 

Bayesian-network techniques, 

Our overall statistic, which we call the spoof score, is the 
minimum significance value of the S'(X,Q) nodes that are 

known by observation to be true. It is not very helpful to think of 
this result as a probability, 

After choosing a threshold, t ,  for the spoof score, we can create 
still another Boolean node, r ,  set up to be true if any S'(X,Q) 
node whose significance is below the threshold t is true. This is 
the result node. The analyzer will believe Q if r is true, and not 

otherwise. So, the overall statistical significance of our 
evaluation is P(rl~Q). Again, this probability can be computed 

using standard Bayesian-network techniques. We adjust the 
threshold so that P(rI~Q) has the desired value. 

9.4 Example 
Continuing our running example, and setting the spoof-score 
threshold to .00001, the following combinations of reports will 
cause our analyzer to believe Q : a,b; a,c ; a,d ; a,e ; b,d ; 
b,e; c,e. All supersets of these combinations will also cause 

our analyzer to believe Q.  

So, the analyzer requires two reports from two independent 
organizations. At least one of the reports must be from the more 
trusted organizations, i and j .  The dual role of agent c ,  as part 

of both organization j and organization k ,  is handled 

conservatively. 

These results are reasonable. 

10. WHERE DO THE NUMBERS COME 
FROM, AND DO THEY MEAN 
ANYTHING? 
Our model has the difficulty of all Bayesian models: the prior 
probabilities are hard to come by. If these probabilities are too 
inaccurate, then the outputs of the model are worthless. 

For example, what is the prior probability that a particular host 
will be compromised? It seems impossible to answer that 
question without more information about what else would be 
going on at the time. 

However, all models are simplifications of reality. A useful 
scientific question is: Does the model yield empirically accurate 
predictions7 

We offer three views on how it may do that in practice. 

10.1 The Model Viewed As an Expert System 
Let us suggest an experiment that would test the model. 

Devise a qualitative scale of trustworthiness and a qualitative 
scale of vulnerabilities. One might name the points on the scale, 
or just use numbers: how trustworthy is organization i on a scale 
from 1 to 107 

Devise a mapping from these qualitative scales into [0,1 ]. 

Take a real set of organizations, principals, and vulnerabilities. 
Have a knowledgeable informant rate each principal, 
organization, and vulnerability on the appropriate scale. 

Then create scenarios along the following line. What if a,c,d all 
say that Q happened: should we believe them? If the model's 

conclusion agrees with the informant's, then the model is 
succeeding. 

Thus, the model's job is to produce the same judgment as a 
human expert, most of the time, but to produce the judgment 
faster and without human intervention. The model is, in short, an 
expert system. 

10.2 Plausibility Measures 
Much work has gone into the difficulty of estimating prior 
probabilities. One tack is to move away from numeric 
probabilities and into other kinds of plausibility measures. 
Whereas probabilities are drawn from the interval [0,1], 
plausibility measures can be drawn from any partially ordered 
set.[4] The set can be discrete, and thus can more directly 
represent qualitative judgments about the likelihood of an event. 

A drawback of discrete plausibility measures is that it may prove 
harder to find an efficient algorithm for evaluating the network. 
And because they are more general than probabilities, they are 
harder to think about. So we thought it best to start with 
probabilities. Trying out plausibility measures is a logical next 
step. 

10.3 Learning 
There is literature on learning algorithms to tune the prior 
probabilities in Bayesian networks.[7] 

Perhaps that approach can be applied here, using cases where 
ground truth has been established by human investigators. 
However, the ground data is sparse and so it is not clear whether 
this approach would succeed or not. 
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10.4 Sensitivity Analysis of Model 
As long as we are working with numeric probabilities, it would be 
helpful to know how sensitive the results are to the exact values of 
the prior probabilities. Intuitively, we might say that when it 
comes to probabilities, .99 is an order of magnitude greater than 
.9, and .999 is an order of magnitude greater still. We conjecture 
that in our model, probability estimates need only be in the right 
order of magnitude. If this can be made precise and proven, then 
it will be much easier to believe that humans can produce accurate 
enough probability estimates. 

11. ENHANCEMENTS 

11.1 Denunciation 
It would be useful to allow agents to denounce each other. One 
agent, especially a human agent, may know that another agent has 
been compromised. But false denunciations happen all the time, 
and are an easy way to attack the system. 

This seems easy to handle. For any two 
agents x and y ,  we create a new node 

D(x,y), which represents the event 

that x denounces y .  The conditional 

distribution will be something like 
Table 4. 

Thus, the event D(x, y) will generally 

cause me to give less weight to the 
assertions of either agent, since it casts 
suspicion on both. But if one agent 
denounces many others, the probable 

~F(x)~iF(y) D(x,y!:i 

F F .5 

F T .5 

T F .5 

T T 0 

diagnosis in a typical network will be that the denouncer is 
compromised. And if many agents denounce one, the probable 
diagnosis in a typical network will be that the denounced agent is 
compromised. All of this is as it should be. 

11.2 Adding Change over Time to Model 
The model does not include time. Trust decisions are made at an 
instant. But trust levels do change. Some of the factors that make 
them change must remain outside the model. But other factors are 
available and could be handled automatically. 

For example, an agent whose report proves false should be trusted 
a little bit less in the future, and one whose report proves true 
should be trusted a little bit more. 

11.3 Dependency of Trust on Purpose 
How much I can trust a principal or organization depends on what 
assertion I am interested in. For example, suppose my company 
has a joint project p~ with company c~ and a joint project P2 

with a company c 2 . Suppose c I and c 2 are competitors. How 

much I can trust an assertion by pt depends on whether the 

assertion is about p~ or P2- 

Our model would be more valuable if it took this dependency into 
account. As it stands, one must take this dependency into account 
when fixing the prior probabilities for the model. 

11.4 Hedging Probabilities 
In case the sensitivity analysis mentioned above find that the 
model is sensitive to the exact values of probabilities, one could a 
system for hedging probabilities. In Dempster-Shafer theory, for 

example, each event is given a range of probabilities rather than a 
single number. 

11.5 Measure of Adversary's Effort 
It is hard to tell how much good this model would do in a given 
case, even if all of the probabilities were accurately estimated. It 
would be useful to have the model predict how much work the 
adversary would have to do to defeat the model, to make the 
analyzer believe something false. 

This would have profound affects upstream in the model. For 
each influence the model would have a cost of compromise. This 
cost might replace the probability of compromise. Or perhaps the 
model would have a combination of cost and probability, 
reflecting the fact that the adversary also lives in an uncertain 
world and cannot predict his or her costs exactly. 

12. EXISTING SIGNS OF INDEPENDENCE 
A serious question with the foregoing model or anything in the 
same vein is: Where would all of the information about 
independence come from? Practically speaking, we must take 
advantage of existing authentication infrastructure. Administra- 
tors will not add independence information to all the principals by 
hand. It is too much work. 

The following are ways that an administrator might add a lot of 
independence information in one fell swoop, by taking advantage 
of existing practice. The information that follows is information 
about barriers among principals. 

• An authentication source's administrators may have practices 
to insure that the source certifies only one key per principal, 
and that the principals have some measure of independence. 

For example, an employer's certification authority (CA) might 
certify exactly one key for each employee. Although 
employees are not necessarily independent of each other, they 
are independent to a first order: they are different people. 

If this practice exists and the CA software is suitably 
equipped, the administrator could tell the CA to automatically 
certify a specified barrier level among all of its principals, 
except for specific cases where the administrator overrode this 
level. 

Similarly, an authentication source's administrators may have 
practices to insure that a particular security group contains 
only one key for each principal, and that the principals have 
some degree of independence. 

Administrative practices may insure that the members of 
group a are independent of the members of group b.  This 
occurs in the world: companies are required to hire auditors, 
and the premise seems to be that every certified auditor is 
independent of every client. 

The foregoing are the general cases. Special cases and 
variations follow. 

In most DCE[15] cells it would probably be somewhat hard to 
get two keys assigned to the same host. To spoof the cell 
administrators and acquire multiple keys, what would an 
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adversary say: that his/her host forgot its key? Of course, 
everything depends on how the cell is run. 

In most Domain Name Service (DNS) domains, it will 
probably be somewhat hard to get two keys assigned to the 
same host, assuming the domain uses the forthcoming public- 
key system DNSsee (RFC 2065). 

This independence is quite weak since two hosts might still 
depend on the same NFS file server, for example. 

A global certification authority (CA) typically has practices 
that make it unlikely to sign a false certificate. If so, the key 
assigned to a principal whose DNS name is * . /¢ .X is likely 
to be independent of the key assigned to *. Y.Z, if 
I,I.X~ Y.Z. This independence inference is stronger if the 
associated organizations' names are reputable - for example, if 
they are found on some list of established and non-shady 
companies, or of government agencies. 

So many clear signs of independence can be found in existing 
security infrastructures, if one selects carefully. The administrator 
must be able to decide which sources to import such information 
from, and how completely to trust those sources. Also, the 
imported information indicates that certain barriers exist to 
compromising connections. These barriers create some 
presumption of independence. But the administrator may still 
know of affiliations that are relevant between particular 
principals, and must be able to enter this information. 

13. SECOND-HAND INDEPENDENCE 
Suppose that every principal had sufficiently accurate indepen- 
dence metrics for the principals it knew first-hand - the principals 
to which it had been manually introduced. This would be enough 
if one learned everything through direct observation or from these 
first-hand informants, as illustrated in Figure 1. 

In the figures in this section, an arrow .x b 
represents a belief by the principal at the tail - x ~  
that it can authenticate the principal at the head, a } 
and that the principal at the head is fairly 
trustworthy. (For simplicity this section c 
assumes a yes or no scale of independence and 
a yes or no scale of trust.) For example, a can Figure 1: 
authenticate b and c ,  and trusts them. Arcs First-Hand 
represent beliefs about independence, a Independence 
believes that b and c are independent. 

However, what if a meets a principal through an intermediary? 
Then checking for the proper degree of independence is harder. 

In Figure 2, a believes that b and c are independent of each 
other. But this is not enough, a has no basis, not even a shaky 
one, for inferring that d and e are 
independent. If a takes e ' s  assertions 
to corroborate d ~, then a accepts a 
single point of vulnerability if d and e 
happen to be the same person, or close 
associates. 

In Figure 3, b and c both believe that 
d and e are independent, a may infer 
that d and e are indeed independent, 

• b ~ d  

a { c  re 

Figure 2: Second- 
Hand Independence 

Unknown 

and therefore can corroborate each other. There is no single point 
of vulnerability. 

We should note that there is an b ~ 7 - -  ~ d 
intellectual tradition around nth-hand 7 
trust, including Pretty Good Privacy[5] a \ and Reiter and Stubblebine's work on 
trust meshes.[11][12] We have adopted e 
their goal of avoiding a single point of 
compromise. However, to the best of Figure 3: Second- 
our knowledge they lack a real theory of Hand Independence 
independence, and (again to the best of Known 
our knowledge) they have not yet solved 
the problems just discussed. 

We expect that the last example, Figure 3, can be generalized to 
more elaborate graphs. It also needs extension to handle graded 
rather than black-and-white trust, and to handle the more 
sophisticated criteria of independence discussed in the preceding 
sections. With these enhancements, we would have a solid theory 
of nth-hand independence, which in turn would allow principals to 
share information about other principals' trustworthiness and 
independence. This is a critical step toward practicability for 
compromise-tolerant systems. 

14. EFFICIENT COMPUTATION 
A straightforward implementation of the computations mentioned 
above would be inefficient in practice. 

We do not propose to represent all of the S' nodes and the r 
node of the Bayesian network as objects in memory. Rather, 
when a set X of agents asserts Q,  we will construct the 

S'(X,Q) node on the fly. We will estimate that node's 

significance value. This significance value equals the spoof score, 
as we will show. We will compare the estimated spoof score to 
the estimated value to the threshold, and thus determine whether 
an arc from that node to r probably exists. 

There are three main steps: determining the significance value of 
the S' node, determining the spoof score, and determining the 
threshold. We treat them in turn, 

14.1 Determining the Significance Value of an 
S' Node 
Given a set of agents X ~ A,  the significance value of the 

S'(X,Q) node is, by definition, P(s'(x,a)l-~O ). 
Lemma 1 p(S'(X,Q)I~Q) = 

X(II (1- cu)) lH c(j)Flli- H (l- 
d~l~j~Y j~l'-Y xeXl,, j$d 

Proof: If J c / ' i s  a set of influences, let 2(J)  mean that 

J are the compromising influences. So ;t(J) is 

equivalent to J = {i ~ I'I-~H(i)}. 

p(z< J) l P(S'( X, Q)I- o, 
J~:' i 
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Z P( (J)llFI e(s(x, 
J~l"  xeX 
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,Y_, 
J~ l '  xGX 

~ P(A(J))~x(1-j~(1-w'(j'x)) ] 

(H 13 
I j e J  j e l ' - J  I 

' / ~ t  H f l -  H ( 1 -  w ' ( j ' x ) ) / /  i 
\ xeXk,  j e J  JJ 

We can estimate this sum by sampling a random set of terms, 
taking the mean of the sample as an estimator of the mean of the 
terms of the sum, and multiplying this estimator by the number of 

terms, which is 2 Itt. To know how many terms we need in the 
sample, we choose a desired confidence, such as 99%, decide on 
the width of the desired confidence interval, and by standard 
population-sampling techniques[ 13] compute the number of terms 
needed. 

14.2 Determining the Spoof Score 
Lemma 2 If X c Y c_ A, then P(S'(X, Q)I~Q) -> 

P(s'(Y,Q)I~Q). More agents asserting Q can only lower the 

significance value, increasing confidence. 

Proof: If we look at Lemma 1 we see that the only effect of 
adding another agent y to the set X is to add another 

factor of the form 1- F[ (1- w'(j, y) ) to each term of the 
j e J  

significance value. Since the w' values are all between zero and 
one, this new factor must be between zero and one. Since the 
other factors are also nonnegative, adding a factor between zero 
and one leaves the value of the term the same or smaller. 
Therefore the value of the sum is the same or smaller. 

We defined the spoof score as the minimum significance value of 
the S'(X,Q) nodes that are known by observation to be true. 

Suppose the set of agents that say Q is Y: Y = {ylS(y,Q)}. 
Then, for any subset X of Y, S'(X,Q) must be true, by the 

structure of the Bayesian network. For any set of agents Z that is 

not a subset of Y, S'(Z,Q) must be false, by the structure of the 

Bayesian network. 

Combining this with Lemma 2, we see that the S' node that is 
true and has the lowest significance value is S'(Y,Q). And its 

significance value is the spoof score, by definition. 

Therefore we need not do any additional computing to determine 
the spoof score. 

14.3 Determining the Threshold 
As Section 7.3 discussed, we need to set a threshold for the spoof 
score. Again we use a sampling technique. 

For each sample, we randomly set each of the root nodes in the 
Bayesian network, according to each node's prior probability, 
except that we set Q false. Now we identify the set of agents 

that assert Q: Z={z~AIS(z,Q)istrue}. S'(Z,Q) is the S' 

node whose significance score is lowest, as we showed in Section 
14.2. 

Sample repeatedly, and then set the threshold such that the desired 
fraction of the sample is below the threshold, according to the 
significance level chosen. This is a standard statistics problem of 
estimating a quantile. Once we decide how wide a confidence 
interval we can tolerate for the quantile and what confidence we 
want that the quantile is in that interval, we can compute how 
many samples we need to take, using standard statistical 
techniques.[14] 

We can compute the threshold oflline. If we wish, we can use an 
anytime algorithm, running more samples over time so that our 
threshold will get better and better. 

15. WORKSHOP DISCUSSION 
Some highlights of the discussion of this paper at the 1998 New 
Security Paradigms Workshop follow. 

Q: A core premise of the paper is that people have good common 
sense about independence. Granting that humans have good 
common sense about independence of humans, do they have 
good common sense about independence of computer artifacts? 
I doubt it. 

A: No, we agree. Because computer artifacts are complex and 
because the interdependencies among them are partly hidden, 
humans probably lack good common sense about them. 
However, we claim that the kinds of factors that need to be 
considered when reasoning about the independence of humans 
and of computer artifacts are much the same. If that is not true, 
then this paper has no value. 

Q: Systems employing Byzantine algorithms often do not 
withstand malicious attack. They may use unprotected 
eornmunieation, for example. 

A: Byzantine algorithms can be used to achieve compromise 
tolerance, but are not enough. The Related Work section has 
been revised. 

Q: Can the model deal with unintentional compromises, such as 
leaving the key to the machine room at a restaurant? 

A: Yes. One can create an influence representing such an event - 
an unintended exposure of the machine room, for example - 
estimate its probability, and predict which agents would be 
compromised as a result. 
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Q: can  the model handle attempts to compromise agents by 
deceiving t h e m -  by messing with their inputs? If the agents are 
intrusion detectors, this is a very plausible mode of attack. 

A: Yes. If two agents are likely to fall for the same deception, 
one can model that threat as a vulnerability affecting both 
agents. In the case of intrusion detectors, this event is more 
probable if the two detectors use the same analytical method, or 
if the two detectors employ many of the same sources (directly 
or indirectly). Thus the model can help ensure that a distributed 
intrusion detection system always uses more than one analytical 
method to confirm an attack, and that the system avoids double 
counting of its sources. 

Q: Removing a compromised operator does not necessarily 
remove the compromise. 

A: Certainly true. The model we gave does not represent time. 
Without changing the model, one could let some influence arcs 
represent past influences whose effects linger. By changing the 
model, one could add some representation of history. 

Q: Does the model include a measure of how sure I am that I 
have enumerated all of the influences on a given agent? 

A: No single number in the model captures this. However, if you 
know a lot about what influences a given agent, you put large 
values in its row and column of the barrier matrix (see Section 
7.1), and otherwise you put small values. 

Q: Could you add confidence factors, to deal with the fact that 
the probability estimates may be off? 

A: Yes, that could be a good enhancement. There has been work 
on hedging probabilities, such as Dempster-Shafer theory. We 
have added this to the Enhancements section. But first, we 
should try a sensitivity analysis. If the results of the model are 
not too sensitive to the exact probability values, then we can 
relax. 

Q: The weights in the strength-of-influence matrix may be hard 
for humans to estimate, but may be easy to measure. One could 
observe the "peacetime" behavior and see what influences 
whom. 

A: This is appealing: an additional source of ground truth. There 
are learning algorithms for Bayesian networks. 

Q: This model is reactionary. It discounts lone prophets. By the 
time their reports are corroborated, it may be too late! 

A: Yes. That is a limitation. We suspect it may be fundamental. 
How can we ask a computer program to make an independent 
judgement about whether an information source is sincere? 
That seems to require human judgement. 

Q: How would you attack a system based on the model? 

Q2: You would find a least-cost spanning tree of agents and trick 
those (or otherwise compromise them). How much additional 
work does this impose on attackers? 

A: The model has a tunable threshoM that allows one to tune how 
much work the adversary will have to do. Of course, it also 
affects the rate of false positives and false negatives. 

The model should come with a measure of the work imposed on 
attackers. This would have to involve a measure of the cost of 

exploiting each vulnerability. We have added this to the 
Enhancements section. 

16. CONCLUSIONS 
A designer can eliminate many single points of vulnerability in a 
distributed system by requiring corroboration from independent 
principals, or agents. For corroboration to be meaningful, each 
agent making decisions must have a system of judging which 
principals are likely to be independent. Dynamic use of this 
system can be viewed as diagnosis, because the analyzer tries to 
account for the news it receives, deciding whether to believe the 
news or to believe that the sources of the news lie. Thus, a strong 
hope for making a system tolerant of compromise is to integrate 
continual diagnosis into each agent's moment-by-moment 
decision making. 

For agents to make independence judgments, they must have 
sources of information bearing on independence. Administrators 
who set up and maintain an authentication infrastructure can 
supply independence information as they introduce principals. 
The cost of doing so appears to be bearable. A great deal of 
independence information can be extracted from existing 
authentication infrastructure. 

Though administrators can supply independence information only 
about first-hand, manually introduced principals, it appears that it 
will be feasible to infer independence nth-hand, and therefore to 
leverage existing independence information. 

These enhancements will make authentication infrastructures far 
more tolerant of compromise, and therefore more survivable. 
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