
A N e w M o d e l for Avai labi l i ty in the Face of Se l f -Propagat ing At tacks *

Meng-Jang Lin Aleta M. Ricciardi
Department of Electrical and Computer Engineering

The University of Texas at Austin

Keith Marzullo
Department of Computer Science and Engineering

University of California at San Diego

1 Overview

There are similarities between problems associated with pro-
cesses tha t are under the control of an intruder and problems
associated with processes that are arbitrarily faulty. A pro-
cess tha t is under the control of an intruder may masquerade
as a legitimate process yet, like an arbitrarily faulty process,
may not follow the specification that other processes expect
it to.

Given this similarity, it seems plausible to mask the ef-
fects of such compromised processes in the same way that
one masks arbi t rary failures. Masking the effects of fail-
ures requires replication, and several protocols have in fact
been designed to use replication to mask the effects of such
processes [7, 8]. The bounds for masking arbitrary failures
hold for these protocols, such as the need for either digi-
tal signatures or 3 f + 1-fold replication in order to mask]
compromised processes when reaching agreement [6].

However, an intruder may wreak more damage than what
is captured by the arbi trary failure model. For example,
an intruder may launch a malicious attack towards other
processes on the system. It can create other seemingly be-
nign processes by exploiting transitive trust tha t is assumed
with the use of, for example, a .rhosts file, or it can co-opt
otherwise correct processes through mechanisms like t rap
doors and race condition attacks. This implies that the
techniques used to mask arbitrarily faulty processes may
not be applicable, because too many processes may become
compromised thereby violating the replication assumption.
Accepting that the natura l occurrence of arbitrary failures
is vanishingly small, and that the likely explanation for such
failures is due to malicious attacks, then the self-propagating
nature of these attacks should also be considered.

We have been examining how different multicast strate-
gies effect the efficacy of such attacks. We model these at-
tacks as a simple form of infection. We assume that intrud-
ers can infect processes with a given probabili ty by sending

* S u p p o r t e d b y D O D - A I : t P A u n d e r c o n t r a c t n u m b e r F 3 0 6 0 2 - 9 6 - 1 -
0313. T h e v i ews a n d c o n c l u s i o n s c o n t a i n e d in t h i s d o c u m e n t a r e
t h o s e o f t h e a u t h o r s a n d s h o u l d n o t b e i n t e r p r e t e d as necessarily
r e p r e s e n t i n g t h e official po l i c ies or e n d o r s e m e n t s , e i t h e r e x p r e s s e d o r
i m p l i e d , o f t h e Ai r F o r c e o r t h e U.S. G o v e r n m e n t .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
'To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
1998 NSPW 9/98 Charlottsville, VA, USA
© 1999 ACM 1-58113-168-219910007- . $5.00

it a message. We consider only the messages in multicast
strategies tha t carry the user's data, since these axe the mes-
sages over which an application process has the most control.

We measure this effect in terms of availability, which
for us is the probabili ty tha t no more than a certain num-
ber processes are infected. We consider the two questions
"what is the availability of the system after having run for
some period of time?" and "how long can a system run un-
til the availability is unacceptably low?" We examine how
the answers to these questions change as the number of pro-
cesses grows, as the probabili ty of a message being infective
changes, and as different multicast strategies are used.

1.1 Implications for Secure Middleware

Our results impact the design of middleware for group-based
communicat ion systems [3]. An attack at this level of a
system would be very hard to detect. Using the results
of our work, one could use a s tandard protocol for mask-
ing arbitrary failures. Given a desired availability, one can
determine how long this protocol can run before the pro-
cesses must be "cleaned", either by restart ing processes from
known clean images or by runn ing a diagnostic program.
This periodic cleaning ensures tha t the initial assumption
of no more than f processes being arbitrari ly faulty is main-
tained with an acceptable likelihood.

Our results are applicable to more than group-based com-
munications. For example, in a mobile agent system, one can
model a compromised landing pad as an infected process,
and a mobile agent capable of compromising a landing pad
as a message from an infected process. In this context, avail-
ability is the probabili ty tha t no more than a given number
of landing pads are compromised. If one uses mobile agents
to collect information in a web-crawl-like manner , a compro-
mised landing pad can corrupt the information that agents
carry while passing through that pad. Our results can be
used to choose a dissemination mechanism for the agents
and decide how often the landing pads must be cleaned.

1.2 Relation to Other Work

Our definition of the metric availability differs from that
commonly used in the security community, but both are in-
stances of how availability is generally defined. Consider a
system and a specification. The system's availability with
respect to the specification is the probabili ty that the system
satisfies the specification. In security, the specification of in-
terest is usually "the service responds in a t imely manner

134

to all requests", and so the availability measures the prob-
ability of the service not suffering from a denial of service.
In this paper, the specification we are concerned with is "no
more than f processes are infected". The two can be re-
lated. If one considers infection due to multicast protocols,
then the processes using the multicast may together be im-
plementing a service tha t masks f failures. If more than f
processes are infected and therefore faulty, then the masking
technique will be unable to stop the faulty processes from
providing an arbitrarily faulty service.

From a modeling point of view, our work resembles the
application of epidemiology [2]. Our model is essentially
that of a simple epidemic with a zero latency period. If
cleaning were also modeled, then one would have a general
epidemic. There has been work on modeling the spread of
computer viruses as a general epidemic (e.g., [5]). How-
ever, our work is different from existing epidemiological ap-
proaches in several aspects. For example, our transmission
of infection is more restricted than general mixing of popula-
tions or a mixing restricted to undirected graphs. A second
difference is that we measure ayailability rather than the ex-
pected percentage of infected processes as a function of time.
This is impor tant because we wish to apply the results to
multicast protocols. If one builds a protocol that can mask f
arbitrarily faulty processes, then one would like to know how
likely this assumption holds. Knowing the average number
of infected processes does not address this question.

We differ in a third way as well: rather than using a
general epidemic model, we use a simple epidemic model
and treat disinfection as a separate and unmodelled activ-
ity. Inherent in our notion of availability is the assumption
that the system will not misbehave if no more than f pro-
cesses are infected. And, disinfection is most likely an ex-
pensive operation: either diagnostics must be run to locate
infected processes or all the processes need to be reloaded
from trusted images. Hence, disinfection should be done as
infrequently as possible as long as not too many processes
become infected.

Some of the observations we draw in this paper are con-
sistent with earlier work in epidemiological algorithms. For
example, [5] observe that when connectivity is low, a higher
transmission rate is required for an epidemic to become
widespread. We observe a similar effect. Our work could
also be used to extend prior research. For example, in [4],
different epidemiological techniques are applied to propagate
database updates. By understanding the effect of commu-
nication pat terns on the speed of propagation, one might be
able to design faster epidemic-based information diffusing
mechanisms.

2 Results to be Discussed

2.1 Model and Simulation Set-up

We consider an asynchronous distr ibuted system composed
of n processes that communicate with one another by pass-
ing messages over a network of point-to-point channels. An
infected process may send an infective message to an unin-
fected process, which will then become infected as soon as
it receives this message (i.e., latency period = 0).

Each process has a probability of being infected in the
initial state. We assume that this is the same for all pro-
cesses, and we denote it with the simple variable Pinit. We
assume that Pinit is small enough to ignore the probability
that more than one process is initially infected. Each mes-
sage sent by an infected process is infective with probabili ty

Pinfect. Both parameters can be enriched to tune the model
to specific platforms, security domains, and so forth.

D e f i n i t i o n 1 An infective system o" is parameterized by <
n, Pinit~ Pinfect >.

Since infection spreads through communication, the rate
of infection depends on the pa t te rn of communication, which
is determined by considerations including message efficiency,
time efficiency, and the underlying network topology. We
have considered four pat terns of communication:
Ring: The processes are totally ordered, {0, 1 , . . . , n - 1}.
Process i starts a multicast by sending the message to its
successor, process (i + 1) rood n. The multicast terminates
when i receives the message from its predecessor, process
(i - - l) m o d n .
Coordinator-cohort: A process starts a multicast by send-
ing its message to a special process called the coordinator.
The coordinator forwards the message to all of the other
processes.
Peer: A process starts a multicast by sending its message to
all other processes.
Tree: The processes are partially ordered into a single, unidi-
rected, balanced binary tree. Being undirected, each process
can be considered to be a root of this tree (of course, the tree
will not be balanced for all of these roots). A process starts
a multicast by considering itself to be the root of this tree
and sending the message to its children in the tree. The
multicast continues by having a process, upon receiving a
message from its parent in this tree, send the message to its
children.

Def in i t i on 2 Given an infective system a, the availability
A(a, f , m) is the probability that, after m multicasts, no more
than f processes in a are infected. A(~r, f, m) = (1 -Pini t) +
P(o', f, m) × Pinit-

We estimate availability through simulation, and then
consider the two questions posed earlier:

1. Given Pinfect, Pinit, some maximum number of infected
processes f and some number of multicasts m, what
is the availability of the system? This can determine
whether a given strategy is acceptable.

2. Given a desired availability, a, and given Pinfect, Pinit,
and f , how many multicasts can occur before the avail-
ability falls below a? This determines how often some
anomalous behavior detection util i ty or disinfecting
program must be run to enforce the assumption that
no more than f processes are infected.

We have run simulations to determine the effects on
availability of varying Pinyect, of varying n, and of vary-
ing the multicast strategy. Each simulation generated 1,000
runs, each run lasting 300 multicasts. This is sufficiently
long for most processes to become infected when Pinyect =
0.04, which is the value we normally used in the simula-
tions. Exactly one process is infected in the initial state of
each run.

2.2 Effect of Varying PinIect

Our simulations show that within each group strategy, and
for the same values of f and n, scaling Pinlect by a factor of
1/k is equivalent to scaling m by k. This is not surprising. If
Pinlect is reduced by k, then an infected process must send k
times more messages to generate the same expected number
of infective messages.

135

,%

/
I

I ' i

.!

Y

n = 7, P i n l t = 0 . 0 0 0 1 , P i n f e c t = 0 . 0 4 , a = 0 . 9 9 9 9 9 5

i coo rd i na to r - cohoa
. • tree

t l t I t I t I t
10 20 30 40 50 60 70 80 90 100

m

Figure 1: a = < 7,0.0001, 0.04 > , a = 0 . 9 9 9 9 9 5 .

30

25

. ~15

n = 3 0 , P i n k = 0 . 0 0 0 1 , P i n f e c t = 0 . 0 4 , a = 0 . 9 9 9 9 9 5

i i i = •

t t
p e e r

. r i n g

- / ~ c o o ~ d i n a t o c - e o h o r t

/ - - / tree

I ~ 1 J I r

i I

I
I :"

t I I ~11"" . . . " " •. :

1 . " " : ¢ ' - - "

11 :
1

!

i i i l t i i i i

10 20 30 40 50 60 70 80 90 100
m

Figure 2: a = < 30, 0.0001, 0.04 >, a = 0.999995.

2.3 Effect of Varying Protocol

Let H(a, a, m) be the smallest f tha t ensures an availability
of at least a given a and m. We plot the curves H(a, a, m)
versus m for different protocols, given a and a.

If a multicast strategy spreads infection quickly, the plot
of H(a,a, m) will be nearly vertical; if it spreads infection
slowly, each step of H(a , a, m) will endure for many multi-
casts. Consequently, the most resilient strategies will show
intervals lasting many multicasts between H(a,a, m) = f
and H(a, a, rn) = f + 1.

Figure 1 plots H p~r (or, 0.99995, m), H ~ a (a , 0.99995, m),
and H¢¢(a, 0.99995, m) for a = < 7, 0.0001, 0.04 >. It shows
that Ring is the most resilient, followed by Tree, followed
by Peer. Coordinator-cohort is the least resilient strategy.
No strategy can mainta in an availability of 0.999995 for 65
multicasts without the entire system becoming infected.

The explanation for Ring's resilience is int imately related
to its drawback. Each multicast of the Ring strategy is
composed of n - 1 sequential point-to-point messages; before
the next hop can be undertaken, all previous hops must be
completed. Thus, the t ime to complete a Ring multicast
is long, roughly the sum of the t imes to complete each of
the n -- 1 hops. Relatedly, each process can only infect one
specific target, its successor, so before the fourth process
can become infected, the third must be, and before it, the
second; infection, like message hops, is sequential and each
process's target is restricted with Ring.

Tree is similar to Ring. The only difference is tha t each
process can infect up to 2 processes (i. e., its children) simul-
taneously. Wi th Peer, an infected init iator may, with each
multicast, infect any other process. However, the t ime to
complete a multicast is roughly the maximum transmission
delay between the initiator and the other processes.

Coordinator-cohort can also infect n - 1 processes per
multicast, once the coordinator becomes infected. The rea-
son why it is less resilient than Peer is because in Peer if the
initiator of a multicast is not infected, then the messages it
sends are not infective, while in Coordinator-cohort an in-
fected coordinator can send out infective messages in every
single multicast.

2.4 Effect of Varying n

Our simulations show that as the number of processes n in-
creases, the availability A((r, f , m) decreases. This finding is
at odds with the tradit ional reasoning behind fault tolerance
based on masking. A system of n processes can mask n/3
malicious failures or a minori ty of crash failures; thus, as
n increases more failures can be masked. Our results show
that larger systems, though able to tolerate a larger abso-
lute number of failures, will actually incur tha t fraction of
failures at a faster rate than will small systems.

The t rend of strategies' relative resilience remains the
same, Ring the best and Coordinator-cohort the worst. How-
ever, the advantage of, say, the Ring strategy is more obvi-
ous when n = 30, since it is still the case tha t each process
can only infect one specific target. Compared, for example,
to Peer where more process can become infected with each
multicast.

3 Conclusions

This simple model of infection, in some cases, may not be
appropriate. For example, the Morris In ternet Worm [9] had
a fixed set of tricks tha t it used to t ry to replicate itself. In
this case, a more appropriate model would have PinSect drop
rapidly with time. Or, many sites run the same operating
system on many machines, and should infected process ex-
ploit a t rap door in one process, then it should be able to
do the same for a large number of processes. In this case,
if one message a process sends during a given multicast is
infective, then most of the messages it sends during that
multicast are infective. We are interested in exploring these
models of infection.

Our results are a step towards unders tanding when Byzan-
t ine masking protocols can be used. However, we have ab-
stracted the message flow of multicast protocols to a degree
that the results are not immediately applicable. To be ap-
plicable, one would need to choose specific protocols and to
refine the infection model. Such research would generalize
the work done on reliability for reliable multicast protocols
(for example, [1]), and is an obvious next step for us.

Our model is also applicable to mobile agent systems,

136

in which an infective message is equivalent to a malicious
mobile agent. Our results suggest that if one wishes to allow
for the collection of information in a large network, then the
mobile agents should be forced to visit the landing pads in a
fixed sequence. This raises the question of how landing pads
could cooperate to enforce an ordering on the sequence of
landing pads an agent visits. This also begs the question of
the effect of compromised landing pads. Assuming that a
compromised landing pad can change the information that
an agent carries, the best strategy a non-malicious agent
should adopt is to send independent copies of itself to all
landing pads. It would be interesting to see how these two
goals, protection against malicious agents and compromised
landing pads, could be balanced.

References

[1] O. Babao~lu, "On the reliability of consensus-based
fault-tolerant distributed computing systems", in ACM
Transactions on Computer gystems, vol. 5, pp. 394-416,
1987.

[2] N.T. Bailey, The Mathematical Theory of Infectious Dis-
eases and Its Applications, second edition, Oxford Uni-
versity Press, 1975.

[3] K. P. Birman and R. van Renesse, "Software for Reliable
Networks," in Scientific American, May 1996.

[4] A. Demers et al., "Epidemic Algorithms for Replicated
Database Maintenance," in Proceedings of the ACM 6th
Annual Symposium on Principles of Distributed Com-
puting, pp. 8-32, 1987.

[5] J. O. Kephart and S. R. White, "Directed-Graph Epi-
demiological Models of Computer Viruses," in Proceed-
ings of the 1991 Computer Society Symposium on Re-
search in Security and Privacy, pp. 343-359, 1991.

[6] L. Lamport, R. Shostak and M. Pease, "The Byzantine
Generals Problem," in ACM Transactions on Program-
ming Languages and Systems, vol. 4, pp. 382-401, 1982.

[7] L. E. Moser et al., "Totem: A Fault-Tolerant Multicast
Group Communication System," in Communications of
the ACM, April 1996.

[8] M. K. Reiter, "Secure Agreement Protocols: Reliable
and Atomic Group Multicast in Rampart," in Proceed-
ings of the 2nd A CM Conference on Computer and Com-
munication Security, pp. 68-80, November 1994.

[9] D. Seeley, "A Tour of the Worm," in USENIX Confer-
ence Proceedings, pp. 287-304, Winter 1989.

137

