
A N e w  M o d e l  for Avai labi l i ty  in the  Face of  Se l f -Propagat ing  At tacks  * 

Meng-Jang Lin Aleta M. Ricciardi 
Department of Electrical and Computer Engineering 

The University of Texas at Austin 

Keith Marzullo 
Department of Computer Science and Engineering 

University of California at San Diego 

1 Overview 

There are similarities between problems associated with pro- 
cesses tha t  are under  the control of an intruder and problems 
associated with processes that  are arbitrarily faulty. A pro- 
cess tha t  is under  the control of an intruder may masquerade 
as a legitimate process yet, like an arbitrarily faulty process, 
may not follow the specification that  other processes expect 
it to. 

Given this similarity, it seems plausible to mask the ef- 
fects of such compromised processes in the same way that  
one masks arbi t rary failures. Masking the effects of fail- 
ures requires replication, and several protocols have in fact 
been designed to use replication to mask the effects of such 
processes [7, 8]. The bounds for masking arbitrary failures 
hold for these protocols, such as the need for either digi- 
tal signatures or 3 f  + 1-fold replication in order to mask ] 
compromised processes when reaching agreement [6]. 

However, an intruder may wreak more damage than  what 
is captured by the arbi trary failure model. For example, 
an intruder may launch a malicious attack towards other 
processes on the system. It can create other seemingly be- 
nign processes by exploiting transitive trust tha t  is assumed 
with the use of, for example, a .rhosts file, or it can co-opt 
otherwise correct processes through mechanisms like t rap 
doors and race condition attacks. This implies that  the 
techniques used to mask arbitrarily faulty processes may 
not be applicable, because too many processes may become 
compromised thereby violating the replication assumption. 
Accepting that  the natura l  occurrence of arbitrary failures 
is vanishingly small, and that  the likely explanation for such 
failures is due to malicious attacks, then the self-propagating 
nature  of these attacks should also be considered. 

We have been examining how different multicast strate- 
gies effect the efficacy of such attacks. We model these at- 
tacks as a simple form of infection. We assume that  intrud-  
ers can infect processes with a given probabili ty by sending 
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it a message. We consider only the messages in multicast  
strategies tha t  carry the user's data,  since these axe the mes- 
sages over which an application process has the most control. 

We measure this effect in terms of availability, which 
for us is the probabili ty tha t  no more than  a certain num- 
ber processes are infected. We consider the two questions 
"what is the availability of the system after having run for 
some period of time?" and "how long can a system run un- 
til the availability is unacceptably low?" We examine how 
the answers to these questions change as the number  of pro- 
cesses grows, as the probabili ty of a message being infective 
changes, and  as different multicast  strategies are used. 

1.1 Implications for Secure Middleware 

Our results impact  the design of middleware for group-based 
communicat ion systems [3]. An attack at this level of a 
system would be very hard to detect. Using the results 
of our work, one could use a s tandard  protocol for mask- 
ing arbitrary failures. Given a desired availability, one can 
determine how long this protocol can run before the pro- 
cesses must  be "cleaned", either by restart ing processes from 
known clean images or by runn ing  a diagnostic program. 
This periodic cleaning ensures tha t  the initial assumption 
of no more than  f processes being arbitrari ly faulty is main- 
tained with an acceptable likelihood. 

Our results are applicable to more than  group-based com- 
munications.  For example, in a mobile agent system, one can 
model a compromised landing pad as an infected process, 
and a mobile agent capable of compromising a landing pad 
as a message from an infected process. In this context, avail- 
ability is the probabili ty tha t  no more than  a given number  
of landing pads are compromised. If one uses mobile agents 
to collect information in a web-crawl-like manner ,  a compro- 
mised landing pad can corrupt the information that  agents 
carry while passing through that  pad. Our results can be 
used to choose a dissemination mechanism for the agents 
and decide how often the landing pads must  be cleaned. 

1.2 Relation to Other Work 

Our definition of the metric availability differs from that  
commonly used in the security community,  but  both  are in- 
stances of how availability is generally defined. Consider a 
system and a specification. The system's availability with 
respect to the specification is the probabili ty that  the system 
satisfies the specification. In  security, the specification of in- 
terest is usually "the service responds in a t imely manner  
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to all requests", and so the availability measures the prob- 
ability of the service not suffering from a denial of service. 
In this paper, the specification we are concerned with is "no 
more than f processes are infected". The two can be re- 
lated. If one considers infection due to multicast protocols, 
then the processes using the multicast may together be im- 
plementing a service tha t  masks f failures. If more than f 
processes are infected and therefore faulty, then the masking 
technique will be unable to stop the faulty processes from 
providing an arbitrarily faulty service. 

From a modeling point of view, our work resembles the 
application of epidemiology [2]. Our model is essentially 
that  of a simple epidemic with a zero latency period. If 
cleaning were also modeled, then one would have a general 
epidemic. There has been work on modeling the spread of 
computer viruses as a general epidemic (e.g., [5]). How- 
ever, our work is different from existing epidemiological ap- 
proaches in several aspects. For example, our transmission 
of infection is more restricted than general mixing of popula- 
tions or a mixing restricted to undirected graphs. A second 
difference is that  we measure ayailability rather than the ex- 
pected percentage of infected processes as a function of time. 
This is impor tant  because we wish to apply the results to 
multicast protocols. If one builds a protocol that  can mask f 
arbitrarily faulty processes, then one would like to know how 
likely this assumption holds. Knowing the average number  
of infected processes does not address this question. 

We differ in a third way as well: rather than  using a 
general epidemic model, we use a simple epidemic model 
and treat disinfection as a separate and unmodelled activ- 
ity. Inherent in our notion of availability is the assumption 
that  the system will not misbehave if no more than  f pro- 
cesses are infected. And, disinfection is most likely an ex- 
pensive operation: either diagnostics must be run  to locate 
infected processes or all the processes need to be reloaded 
from trusted images. Hence, disinfection should be done as 
infrequently as possible as long as not too many processes 
become infected. 

Some of the observations we draw in this paper are con- 
sistent with earlier work in epidemiological algorithms. For 
example, [5] observe that  when connectivity is low, a higher 
transmission rate is required for an epidemic to become 
widespread. We observe a similar effect. Our work could 
also be used to extend prior research. For example, in [4], 
different epidemiological techniques are applied to propagate 
database updates. By understanding the effect of commu- 
nication pat terns on the speed of propagation, one might be 
able to design faster epidemic-based information diffusing 
mechanisms. 

2 Results to be Discussed 

2.1 Model and Simulation Set-up 

We consider an asynchronous distr ibuted system composed 
of n processes that  communicate with one another by pass- 
ing messages over a network of point-to-point  channels. An 
infected process may send an infective message to an unin-  
fected process, which will then become infected as soon as 
it receives this message (i.e., latency period = 0). 

Each process has a probability of being infected in the 
initial state. We assume that  this is the same for all pro- 
cesses, and we denote it with the simple variable Pinit. We 
assume that  Pinit is small enough to ignore the probability 
that  more than  one process is initially infected. Each mes- 
sage sent by an infected process is infective with probabili ty 

Pinfect. Both parameters can be enriched to tune  the model 
to specific platforms, security domains, and so forth. 

D e f i n i t i o n  1 An infective system o" is parameterized by < 
n, Pinit~ Pinfect >. 

Since infection spreads through communication, the rate 
of infection depends on the pa t te rn  of communication, which 
is determined by considerations including message efficiency, 
time efficiency, and the underlying network topology. We 
have considered four pat terns  of communication: 
Ring: The processes are totally ordered, {0, 1 , . . . , n -  1}. 
Process i starts a multicast by sending the message to its 
successor, process (i + 1) rood n. The multicast terminates 
when i receives the message from its predecessor, process 
( i - - l )  m o d n .  
Coordinator-cohort: A process starts  a multicast by send- 
ing its message to a special process called the coordinator. 
The coordinator forwards the message to all of the other 
processes. 
Peer: A process starts a multicast by sending its message to 
all other processes. 
Tree: The processes are partially ordered into a single, unidi- 
rected, balanced binary tree. Being undirected, each process 
can be considered to be a root of this tree (of course, the tree 
will not be balanced for all of these roots). A process starts 
a multicast by considering itself to be the root of this tree 
and sending the message to its children in the tree. The 
multicast continues by having a process, upon receiving a 
message from its parent in this tree, send the message to its 
children. 

Def in i t i on  2 Given an infective system a, the availability 
A(a,  f ,  m)  is the probability that, after m multicasts, no more 
than f processes in a are infected. A(~r, f, m) = (1 -Pini t )  + 
P(o', f, m) × Pinit- 

We estimate availability through simulation, and then 
consider the two questions posed earlier: 

1. Given Pinfect, Pinit, some maximum number  of infected 
processes f and some number  of multicasts m, what 
is the availability of the system? This can determine 
whether a given strategy is acceptable. 

2. Given a desired availability, a, and given Pinfect, Pinit, 
and f ,  how many multicasts can occur before the avail- 
ability falls below a? This determines how often some 
anomalous behavior detection util i ty or disinfecting 
program must  be run to enforce the assumption that  
no more than  f processes are infected. 

We have run simulations to determine the effects on 
availability of varying Pinyect, of varying n, and of vary- 
ing the multicast strategy. Each simulation generated 1,000 
runs, each run lasting 300 multicasts. This is sufficiently 
long for most processes to become infected when Pinyect = 
0.04, which is the value we normally used in the simula- 
tions. Exactly one process is infected in the initial state of 
each run. 

2.2 Effect of Varying PinIect 

Our simulations show that  within each group strategy, and 
for the same values of f and n, scaling Pinlect by a factor of 
1/k  is equivalent to scaling m by k. This is not surprising. If 
Pinlect is reduced by k, then an infected process must send k 
times more messages to generate the same expected number  
of infective messages. 
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Figure 2: a = <  30, 0.0001, 0.04 >,  a = 0.999995. 

2.3 Effect of Varying Protocol 

Let H(a, a, m) be the smallest f tha t  ensures an availability 
of at least a given a and m. We plot the curves H(a, a, m) 
versus m for different protocols, given a and a. 

If a multicast strategy spreads infection quickly, the plot 
of H(a,a, m) will be nearly vertical; if it spreads infection 
slowly, each step of H(a ,  a, m) will endure for many multi-  
casts. Consequently, the most resilient strategies will show 
intervals lasting many multicasts between H(a,a, m) = f 
and H(a, a, rn) = f + 1. 

Figure 1 plots H p~r (or, 0.99995, m),  H ~ a ( a ,  0.99995, m),  
and H¢¢(a, 0.99995, m) for a = <  7, 0.0001, 0.04 >. It  shows 
that  Ring is the most resilient, followed by Tree, followed 
by Peer. Coordinator-cohort is the least resilient strategy. 
No strategy can mainta in  an availability of 0.999995 for 65 
multicasts without the entire system becoming infected. 

The explanation for Ring's  resilience is int imately related 
to its drawback. Each multicast  of the Ring strategy is 
composed of n -  1 sequential point-to-point  messages; before 
the next hop can be undertaken,  all previous hops must  be 
completed. Thus, the t ime to complete a Ring multicast  
is long, roughly the sum of the t imes to complete each of 
the n -- 1 hops. Relatedly, each process can only infect one 
specific target, its successor, so before the fourth process 
can become infected, the third must  be, and before it, the 
second; infection, like message hops, is sequential and each 
process's target is restricted with Ring. 

Tree is similar to Ring. The only difference is tha t  each 
process can infect up to 2 processes (i. e., its children) simul- 
taneously. Wi th  Peer, an infected init iator may, with each 
multicast, infect any other process. However, the t ime to 
complete a multicast is roughly the maximum transmission 
delay between the initiator and the other processes. 

Coordinator-cohort can also infect n - 1 processes per 
multicast, once the coordinator becomes infected. The rea- 
son why it is less resilient than Peer is because in Peer if the 
initiator of a multicast is not infected, then the messages it 
sends are not infective, while in Coordinator-cohort an in- 
fected coordinator can send out infective messages in every 
single multicast. 

2.4 Effect of Varying n 

Our simulations show that  as the number  of processes n in- 
creases, the availability A((r, f ,  m)  decreases. This finding is 
at odds with the tradit ional  reasoning behind fault tolerance 
based on masking. A system of n processes can mask n/3 
malicious failures or a minori ty of crash failures; thus, as 
n increases more failures can be masked. Our results show 
that  larger systems, though able to tolerate a larger abso- 
lute number  of failures, will actually incur tha t  fraction of 
failures at a faster rate than  will small systems. 

The t rend of strategies' relative resilience remains the 
same, Ring the best and Coordinator-cohort the worst. How- 
ever, the advantage of, say, the Ring strategy is more obvi- 
ous when n = 30, since it is still the case tha t  each process 
can only infect one specific target. Compared, for example, 
to Peer where more process can become infected with each 
multicast.  

3 Conclusions 

This simple model of infection, in some cases, may not be 
appropriate. For example, the Morris In ternet  Worm [9] had 
a fixed set of tricks tha t  it used to t ry to replicate itself. In  
this case, a more appropriate model would have PinSect drop 
rapidly with time. Or, many sites run the same operating 
system on many machines, and should infected process ex- 
ploit a t rap door in one process, then it should be able to 
do the same for a large number  of processes. In this case, 
if one message a process sends during a given multicast  is 
infective, then most of the messages it sends during that  
multicast  are infective. We are interested in exploring these 
models of infection. 

Our results are a step towards unders tanding when Byzan- 
t ine masking protocols can be used. However, we have ab- 
stracted the message flow of multicast  protocols to a degree 
that  the results are not immediately applicable. To be ap- 
plicable, one would need to choose specific protocols and to 
refine the infection model. Such research would generalize 
the work done on reliability for reliable multicast  protocols 
(for example, [1]), and is an obvious next  step for us. 

Our model is also applicable to mobile agent systems, 
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in which an infective message is equivalent to a malicious 
mobile agent. Our results suggest that if one wishes to allow 
for the collection of information in a large network, then the 
mobile agents should be forced to visit the landing pads in a 
fixed sequence. This raises the question of how landing pads 
could cooperate to enforce an ordering on the sequence of 
landing pads an agent visits. This also begs the question of 
the effect of compromised landing pads. Assuming that  a 
compromised landing pad can change the information that  
an agent carries, the best strategy a non-malicious agent 
should adopt is to send independent copies of itself to all 
landing pads. It  would be interesting to see how these two 
goals, protection against malicious agents and compromised 
landing pads, could be balanced. 
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