
Position Paper: Prolepsis on The Problem of Trojan-Horse-
Based Integrity Attacks

J. McDermott
Department of Computer Science

James Madison University, Harrisonburg, VA 22807, USA
mcdermot @ cs.jm u.edu

1. ABSTRACT
The problem of integrity attacks via Trojan
horse applications is so difficult that some com-
puter security researchers and practitioners
may object to it as an unreasonable research
topic. We agree that the problem is difficult,
but we argue that it is reasonable to consider it.
We argue that the problem of application-based
Trojan horses per se has not been solved; that
previous integrity approaches do not offer sig-
nificant protection in today's architectures and
third, solutions that offer significant protection
are available. Some of these solutions have been
researched, but others have not. We invite other
researchers to investigate the problem.

1.1 Keywords
Trojan horse, security, integrity, storage

2. INTRODUCTION
Surreptitious destruction of stored data [4] is a particularly
troublesome kind of integrity attack that seeks to disrupt the
real-world operations of an organization. The motive for the
attack is not fraud, but competitive advantage or simply mal-
ice. The most effectNe means of attack is a Trojan horse.
This presents a significant problem for conventional security
mechanisms and traditional approaches to data integrity pro-
tection. The problem of integrity attacks via Trojan horse
applications is so difficult that some computer security
researchers and practitioners may object to it as unreason-
able. We agree that the problem is difficult, but we argue that
it is reasonable to consider it. First of all, the problem of
application-based Trojan horses per se has not been solved,
so the Trojan horses will be present. Second, previous integ-

1998 NSPW 9/98 Charlo'ttsville, VA, USA
1-58113-168-2/99/0007...

rity approaches do not offer significant protection in today's
architectures and third, solutions that offer significant pro-
tection are available.

We take the Trojan horse problem as a given. No general
method of preventing Trojan horses has been established.
Security standards like the Orange Book sometimes imply
one, but they lack some clearly necessary techniques, such as
recursive application of the standards to the programming
systems used to generate the trusted code. Most security
researchers could come up with a reasonable collection of
formal methods, database techniques (i.e. version control),
software engineering processes, and management controls
that would arguably minimize the chances of picking up a
Trojan horse. Unfortunately, current and future market forces
rule out even these kinds of approximate implementations.
The current trend is toward rapidly developed special pur-
pose applications based on low-cost shrink-wrapped general
purpose software [2]. Neither the applications nor the under-
lying general purpose software are developed with more than
a minimal amount of engineering. The best we can hope for
in today's market is approximately Trojan horse free imple-
mentations of security specific components.

It is difficult to argue that these kinds of attacks are not
likely. The National Computer Security Center writes [8]

"There are many systems in which integrity may be
deemed more important than confidentiality (e.g., edu-
cational record systems, flight-reservation systems,
medical records systems, financial systems, insurance
systems, personnel systems.) While it is important in
many cases that the confidentiality of information in
these types of systems be preserved, it is of crucial
importance that this information not be tampered with
or modified in unauthorized ways. Also included in this
categorization of systems are embedded computer sys-
tems. These systems are components incorporated to
perform one or more specific (usually control) func-
tions within a larger system. They present a more
unique aspect of the importance of integrity as they
may often have little or no human interface to aid in
providing for correct systems operation."

Since it is difficult to prevent the introduction of Trojan
horses and there are systems whose integrity reasonably
could be attacked, we should consider how well existing
integrity models work. The key limitation is that integrity
solutions must work in a climate of rapidly developed spe-

48

cial purpose applications based on low-cost shrink-wrapped
general purpose software.

3. P R E V I O U S I N T E G R I T Y M O D E L S D O
N O T W O R K
The concept of tampering I with data in transmission is well-
understood. Many defenses, both practical and theoretical,
have been proposed and some are in use. However, informa-
tion systems not only transmit data, but also transform and
store it. The differences between transmission, transforma-
tion, and storage make both the attack and the defense funda-
mentally different. When we protect transmitted data, we
assume that we start with a correct copy of the data. Data
that originates from a transformation may not be correct and
we may have no easy way to check it. Data is stored for pro-
tracted periods of time, so it is difficult to apply the concepts
of time, freshness, or session to ensure its authenticity. Fur-
thermore the persistence of stored data restricts the number
of bits we can use for overhead.

Data storage in database systems and similar repositories is
protected against accidental introduction of bad values by
various integrity constraints. Integrity constraints are rela-
tively successful when used this way. They work because
they are only related to the bad values in a statistical way.
When bad data is introduced by tampering, it can match the
integrity constraint up to an arbitrary number of bits, less the
one bit needed to make the value invalid. In fact, the only
integrity constraints that will detect tampering in general are
identity relations. While identity relations may be mathemat-
ically simple, they are truly difficult to impose on real-world
data, if they can be imposed at all. For example, a check sum
and its corresponding value define an integrity constraint
that is an equivalence relation. Unfortunately, we cannot use
check sums, because they are computed internally. Check
sums are not an integrity constraint on real-world data, but
on internal representation. Since a Trojan horse has access to
both the computation of check sums and the internal repre-
sentation of data, it can bypass check sums (and digital sig-
natures).

Access controls do not provide protection against integrity
attacks. The reasons for this is that access controls block
Trojan horses from sharing data, but not from accessing it at
its source or sink. As an example, take the Clark-Wilson
model. A Trojan horse can either be embedded inside a
transformation procedure (TP) or an integrity verification
procedure (IVP). A Trojan horse in a transformation proce-
dure can delete values, insert new bogus values, or replace
valid updates with their before images. Even if all of the
IVP's are free of Trojan horses, they may never detect a
bogus value inserted by a Trojan TE This is because their
integrity specifications have the same limitations as integrity
constraints: they must be identity relations defined on the
real world. A Trojan horse IVP has even more freedom to
tamper without detection. I f it restricts its tampering to the

1. We use the word tamper to mean intentional introduc-
tion of incorrect data.

constrained data items that it is responsible for checking,
then its bogus changes will never be detected.

Some readers will object that Clark-Wilson TP's and IVP's
are Trojan-horse free, by definition. Clark-Wilson and other
models assume that systems of Trojan-horse-free compo-
nents can be constructed. However, even an approximate
implementation of a Trojan-horse-free system is not possible
in today's market. What is missing from Clark-Wilson and
other integrity models is an assumption that only a handful
of system components may be assumed to be relatively Tro-
jan horse free.

Another assumption that does not hold in today's climate is
the notion that data with different integrity "levels" (i.e.
requirements) will be processed by different programs. This
assumption is part of the Clark-Wilson model, but is most
apparent in the familiar Biba integrity model. In current sys-
tems (and many legacy systems) data processing almost
always involves a few large tightly integrated subsystems,
for data of all integrity "levels." Differences in processing
are handled by rapidly-developed special purpose logic such
as scripts, macros, client programs, or other "front-end"
mechanisms. The effect is that access control classes do not
separate the writing of different classes of data, because all
data is written by the same programs.

An integrity model that does work, in principle, is the Byz-
antine generals problem [I0]. Although the original idea was
to model a faulty low-level process as a traitor, the model
also describes Trojan horses quite nicely. A Byzantine agree-
ment protocol can prevent Trojan horses from tampering
with data. Unfortunately, Byzantine generals solutions do
not scale wel l Byzantine generals problems are usually
phrased in terms of agreement on a single atomic value, and
often the value must be of a fairly simple type such as Bool-
ean or integer. Cryptographic authentication, non-repudia-
tion, and communication integrity protocols must added to
enforce the necessary assumptions. If not, then 3t+l copies
of the system are needed to detect t Trojan horses. These
requirements, and the need for multi-round voting algo-
rithms, make it impractical to apply a Byzantine generals
solution to a large high-level components such as database
systems.

Since existing models and mechanisms do not work in the
present environment, an alternative approach is needed. Our
suggestion has been to simulate the presence of an oracle
that can predict what values should be recorded. There are
several ways to simulate this, not all of which have been
investigated.

4 . E F F E C T I V E S O L U T I O N S A R E A V A I L -

A B L E
One of the most effective techniques for simulating an oracle
is to replicate the data over distinct systems. Ammann, Jajo-
dia, et al. [1] have shown that the kind of replication com-
monly used in general purpose database systems is not
effective. However, McDermott and Froscher have shown
how n replicas can defend against n-I Trojan horses [5].

49

NRL has also developed a proprietary defense that allows
two copies to defend against n Trojan horses [7]. A platform-
specific replication-based defense has been prototyped by
McDermott, Gelinas, and Ornstein [6].

Replication in general is problematic in an information war-
fare context. Under many commercial transaction processing
approaches, bogus data can be replicated automatically and
precisely to many locations. However replication works as a
defense if we use one-copy serializable logical replication
over distinct database systems.

4.1 Logical Replication
Many commercial replication mechanisms copy data values
from the source data item to its replicas and others only copy
the command after an update takes place. However, logical
replication copies the command that caused the source data
item to change. The command is executed at each replica's
site and, because of one-copy serializability, results in the
same new value for the replica. If we assume a distinct prov-
enance I for the software at each site, then the Trojan horse
will not be replicated at all sites. An attack must compromise
multiple, possibly heterogeneous, host programs, an unlikely
event in practical systems. Even if the attackers can succeed
at every site, the attack still may fail. If the Trojan horses are
not able to deliberately malfunction in a one-copy serializ-
able fashion, their bogus values will diverge. This can be
ensured by restricting communication between the sites to
just the protocols needed to carry out the authorized replica-
tion. So we can expect a scheme using n replicas to detect up
to n-I cooperating Trojan horses and possibly detect an n-
Trojan horse attack.

Detection is simple in the replication defense. There is a
detection process at each source or replica site. Following
changes to protected data, the process at the source site com-
putes a check sum over the changed data and sends it to each
replica site, along with the identification of the change. After
the logical update is performed at a replica site, the detection
process at the replica site compares its results with the results
of the primary site. If there is disagreement, there is a prob-
lem. Check sums are not essential to the approach and are
merely used to facilitate efficient comparison. The granular-
ity of the comparisons or checks is a trade-off between speed
and storage. Comparisons over individual data items allow
quicker response to attacks but take more storage to perform.
We also do not need to check every change, since the inser-
tion of bogus data at some sites will ultimately diverge the
copies.

The use of logical replication may allow us to disconnect
compromised systems until the Trojan horse can be disabled.
If an uncompromised site can act as a data source, it can take
over from a compromised source. Replica sites that do not
originate data are also easily disconnected.

1. The development, administration, and maintenance of
the software is done by distinct sets of people.

4.2 Other Solutions
Logical replication is not the only approach to simulating an
oracle that checks stored or transformed data. We will
describe two here that have never been proposed or investi-
gated: session replay and pre- and post-condition checks.

In the session replay technique, only certain user-selected
sessions are protected against Trojan-horse-based integrity
attacks. The inputs to these sessions are recorded and then
replayed on a second system to check the results. The dis-
tinction between this approach and logical replication is that
session replay provides temporary logical replication of a
subset of an application. This conserves resources at the
expense of additional complexity. The limitations of this
approach are its complexity and its coverage of only selected
sessions.

In the pre- and post-condition check approach, only certain
user-selected sessions are protected against attacks. A snap-
shot of the data is taken before the session. A second snap-
shot is taken at the end of the session. The two snapshots are
compared and the differences are mapped back to commands
of the session. If a difference fails to map to a command,
then some form of attack may have taken place. This tech-
nique has the same advantages and limitations as the session
replay technique.

Our point here is not to present the techniques, but to estab-
lish the existence of solutions, either researched or not inves-
tigated.

5. C O N C L U S I O N
The problem of Trojan-horse-based integrity attacks should
not be dismissed as too difficult. Trojan horses are unavoid-
able at present and it is easy to use them to tamper with
stored data. Existing security mechanisms based on current
paradigms do not provide protection from these kinds of
attacks, in the kinds of systems that are built today. On the
other hand, there are feasible ways to protect current archi-
tectures against these attacks, so it is a worthwhile problem
to investigate. We hope that other researchers will become
interested in this problem; there may be other ways to solve
it.

5.1 REFERENCES

1. Ammann , P., Jajodia, S. McCol lum, C. and Blaust-
ine, B. Surv iv ing informat ion warfare attacks on data-
bases. Proc. of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, USA, May, 1997.

2. Cusumano, M. and Selby, R. H o w Microsof t builds
software. CACM, 40, 6, June 1997, pp. 53-61.

3. Depar tment o f Defense . Department of Defense
Trusted Computer System Evaluation Criteria, DoD-52
00 .28-STD, December , 1985.

4. McDermot t , J. and Goldschlag, D. Storage j am-
ming. In Database Security IX: Status and Prospects
(D. Spooner , S. Demurj ian, and J. Dobson, eds.), 365-
381. Ch ap m an and Hall, 1996.

50

5. McDermott, J. and Froscher, J. Practical defenses
against storage jamming. Proc. of the 20th National
Information Systems Security Conference, Baltimore,
MD, USA, October 1997.

6. McDermott, J. Gelinas, R. and Ornstein, S. Doc,
Wyatt, and Virgil: Prototyping storage jamming
defenses. Proc. Annual Computer Security Applica-
tions Conference, San Diego, CA, USA, December
1997.

7. McDermott, J. and Gelinas, R. Record and Disclo-
sure of Invention 5540-092:JPM:jms dated 3 March
1998.

8. National Computer Security Center. Integrity in
Automated Information Systems, C Technical Report
79-91, September 1991.

9. National Computer Security Center. Integrity-Ori-
ented Control Objectives: Proposed Revisions to the
Trusted Computer System Evaluation Criteria. C Tech-
nical Report 111-91, October 1991.

10. Silberschatz, A. and Galvin, E Operating System
Concepts, 4th e.d., Addison-Wesley, 1995, ISBN 0-
201-50480-4.

51

