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ABSTRACT 
This paper presents a graph-based approach to network 
vulnerability analysis. The method is flexible, allowing analysis 
of attacks from both outside and inside the network. It can 
analyze risks to a specific network asset, or examine the universe 
of possible consequences following a successful attack. The 
graph-based tool can identify the set of attack paths that have a 
high probability of success (or a low "effort" cost) for the 
attacker. The system could be used to test the effectiveness of 
making configuration changes, implementing an intrusion 
detection system, etc. 

The analysis system requires as input a database of common 
attacks, broken into atomic steps, specific network configuration 
and topology information, and an attacker profile. The attack 
information is "matched" with the network configuration 
information and an attacker profile to create a superset attack 
graph. Nodes identify a stage of attack, for example the class of 
machines the attacker has accessed and the user privilege level he 
or she has compromised. The arcs in the attack graph represent 
attacks or stages of attacks. By assigning probabilities of success 
on the arcs or costs representing level-of-effort for the attacker, 
various graph algorithms such as shortest-path algorithms can 
identify the attack paths with the highest probability of success. 
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1. INTRODUCTION 
Military, government, commercial, and civilian operations all 
depend upon the security and availability of computer systems 
and networks. In October 1997, the Presidential Commission on 
Critical Infrastructure recommended increasing spending to a $1B 
level during the next seven years. The Commission recommended 
that this money be heavily focused on cyber-security research, 
including vulnerability assessment, risk management, intrusion 
detection, and information assurance technologies [16]. In this 
paper, we describe a systematic analysis approach that can be used 
by persons with limited expertise in risk assessment, vulnerability 
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analysis, and computer security to (1)examine how an adversary 
might be able to exploit identified weaknesses in order to perform 
undesirable activities, and (2) assess the universe of undesirable 
activities that an adversary could accomplish given that they were 
able to enter the network using an identified weakness. 

Quantifying security risks i.n computer networks is very difficult. 
Ideally, a network-vulnerability risk-analysis system should be 
able to model the dynamic aspects of the network (e.g., virtual 
topology changing), multiple levels of attacker ability, multiple 
simultaneous events or multiple attacks, user access controls, and 
time-dependent, ordered sequences of attacks. 

~1~robabi~tik Risk Assessment (PRA) techniques such as fault-tree and 
event-tree analysis provide systematic methods for examining 
how individual faults can either propagate into or be exploited to 
cause unwanted effects on systems. For example, in a fault-tree a 
negative consequence, such as the compromise of a file server, is 
the root of the tree. Each possible event that can lead directly to 
this compromise (e.g., an attacker gaining root privileges on the 
machine) becomes a child of the root. Similarly, each child is 
broken into a complete list of all events which can directly lead to 
it and so on. Wyss, Schriner, and Gaylor [19] have used PRA 
techniques to investigate network performance. Their fault tree 
modeled a loss of network connectivity, specifically the "all 
terminal connectivity" problem. Since PRA methods can measure 
the importance of particular components to overall risk, it seems 
that they could provide insights for the design of networks more 
inherently resistant to known attack methods. These methods, 
however, have limited effectiveness in the analysis of computer 
networks because they cannot model multiple attacker attempts, 
time dependencies, or access controls. In addition, fault trees 
don't model cycles (such as an attacker starting at one machine, 
hopping to two others, returning to the original host, and starting 
in another direction at a higher privilege level). Methods such as 
influence diagrams and event trees suffer from the same 
limitations as fault trees. 

A major advance of our method over other computer-security-risk 
methods is that it considers the physical network topology in 
conjunction with the set of attacks. Thus, it goes beyond the 
scanning tools. A seminal tool, SATAN (Security Administrator 
Tool for Analyzing Networks), checks a "laundry list" of services 
or conditions that are enabled on a particular machine [17]. For 
example, on UNIX systems SATAN checks for NFS file systems 
exported to unprivileged programs or arbitrary hosts, but gives 
little indication of how these items lead to system compromise. 
More recent scanners such as the Intemet Scanner TM from Internet 
Security Systems (ISS) also attempt attack scenarios and provide 
information about potential vulnerabilities and how they can be 
exploited [7]. These scanning tools can provide a system 
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administrator with a set of items to patch or fix. However, these 
scanners do not verify that all conditions for a complete attack are 
met, or identify linked attacks potentially more harmful than 
individual attacks. Though they can suggest fixes for local 
potential problems, they don't consider the network as a whole, 
proposing a global set of cost-effective defenses designed to 
protect the network' s most critical resources. 

Intrusion detection systems such as lnternet Security Systems' 
Real Secure TM form another class of network security tools. 
Intrusion-detection systems attempt to monitor abnormal patterns 
of system usage (such as suspicious configuration information 
changes) to detect security violations [4,9]. Our system would be 
complementary to an intrusion detection system. If an 
administrator does not want to pay the full cost (development cost 
or system-performance hit) of all possible intrusion-detection 
strategies, our system could suggest cost-effective subsets which 
focus on the most vulnerable system components. 

Our approach to modeling network risks is based on an attac,f. 
graph. Each node in the graph represents a possible attack state. A 
node will usually be some combination of physical machine(s), 
user access level, and effects of the attack so far, such as 
placement of trojan horses or modification of access control. 
Edges represent a change of state caused by a single action taken 
by the attacker (including normal user transitions if they have 
gained access to a normal user's account) or actions taken by an 
unwitting assistant (such as the execution of a trojan horse). 
Attack graphs will be presented in more detail in Sections 2 and 3. 

The attack graph is automatically generated given three types of 
input: attack templates, a configuration file, and an attacker 
profile. Attack templates represent generic (known or 
hypothesized) attacks including conditions, such as operating 
system version, which must hold for the attack to be possible. 
The configuration file gives detailed information about the 
specific system to be analyzed including the topology of the 
network and configuration of particular network elements such as 
workstations, printers, or routers. The attacker profile contains 
information about the assumed attacker's capabilities, such as the 
possession of an automated toolkit or a sniffer as well as skill 
level. The attack graph is a customization of the generic attack 
templates to the attacker profile and the network specified in the 
configuration file. Though attack templates represent pieces of 
known attacks or hypothesized methods of moving from one state 
to another, their combinations can lead to descriptions of new 
attacks. That is, any path in the attack graph represents an attack, 
though it could be cobbled together from many known attacks. 

Each edge has a weight representing a success probability, 
average time to succeed, or a cost/effort level to an attacker (edges 
with zero probability are generally omitted). In this paper we use 
success probability as the example of edge weight, but the edge 
weight could be any of the above metrics. This weight is a 
function of configuration and attacker profile. Furthermore, each 
node can have local "overwrites" of these files representing 
effects of previous attacker actions on configuration (e.g. severed 
network connections, or changes to file-access privileges) or 
acquired attacker capabilities. In Section 2 we discuss possible 
ways to estimate edge weights. 

A short path in the attack graph represents a low-cost attack. 
Since edge weights will only be estimates, we consider the set of 
all near-optimal paths. If the edge weights are reasonably 

accurate, this set as a group represents the most vulnerable parts 
of the network. If one can assume independence of success 
probabilities, the same (shortest-path) algorithms can find paths 
with high success probability. By having multiple weights on 
each edge, one can represent potentially-conflicting criteria (e.g. 
the attacker wishes to minimize both cost and probability of 
detection). 

This system can answer "what-if' questions regarding security 
effects of configuration changes such as topology changes or 
installation of intrusion-detection systems. It can indicate which 
attacks are possible only from highly-skilled well-funded 
attackers, and which can be achieved with lower levels of effort. 
A business owner might decide it is acceptable to allow a 
relatively high probability of network penetration by a "national- 
scale" effort, but will tolerate only a small probability of attack 
from an "'average" attacker. Government sites, which are attacked 
with much higher frequency 1, may need exceptionally low 
probability of success for a particular attacker level in order to 
expect few penetrations, and they may be more willing to pay the 
cost for that level of security. 

Finally, this system can simulate dynamic attacks and use the 
results to test intrusion-detection systems. These analysis 
methods, as well as possible ways to calculate cost-effective 
defense strategies, are explained in more detail in Section 4. 

This is not the first system to represent attacks graphically. For 
example Meadows [10] uses a graph representation to model 
stages of attacks, particularly attacks on cryptographic protocols. 
These visual representations resemble attack templates, but nodes 
in her graphs represent stages of the attack (a to-do list for an 
attacker) at a much higher level than we envision. Edges 
represent temporal dependencies. There is no tie-in to particular 
user level, machine, configuration, etc, and there are no weights. 
Meadows describes previous work that also breaks attacks into 
atomic steps. 

Moskowitz and Kang [11] use a graph to represent insecurity 
flow. Edges represent penetration of a security barrier such as a 
firewall. Each edge is weighted with the probability of 
successfully breaching the defense. They want to compute the 
probability that any path exists from the source to the sink (i.e. 
any hole exists in the system). They give an exponential-time 
algorithm to determine a set of edge-disjoint paths that correspond 
to "reasonable" attacks. The resulting paths seem to have series- 
parallel structure which can then be exploited for computing the 
probability, assuming all edges fail independently. 

The system we are proposing is closely related to that of Dacier et 
al. [3] although these systems were developed independently. 
Dacier et al. use a "'privilege graph" which is similar to our attack 
graph, but seems to represent complex attacks with a single edge, 
and does not explicitly represent attacker capabilities. It is not 
clear how the privilege graph is generated, but they appear to use 
a scanning tool and static "average" costs. The authors transform 
the privilege graph into a Markov model and determine the 

i The Defense Information Systems Agency reports that the 
Department of Defense is attacked 250,000 times a year. Los 
Alamos National Laboratories is attacked daily, with 22 proven 
outsider intrusions in the last five months. From "Security 
Measures," Albuquerque Journal, March 24, 1998, pp. B l-B2. 
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estimated mean time and effort to target by enumerating all 
searches in the privilege graph. The Markov model represents all 
possible probing sequences of a non-omniscient attacker. Ortalo 
et al. [13,14], present experimental results using this model, based 
on a privilege graph constructed from 13 major UNIX 
vulnerabilities. They conclude that Mean Effort to Failure 
(METF) is more valuable as a security metric than the single 
shortest path or raw number of paths to target. However, they 
were not always able to compute METF, even for fairly small 
graphs. 

We can compute all near-optimal shortest paths much more 
efficiently than the enumeration required to compute METF. We 
believe that the set of near-optimal shortest paths provides a good 
measure of overall system security. We expect the set of paths to 
evolve appropriately with underlying changes in the system, but 
not to be unduly volatile. In addition, by modeling at a finer 
level, we can potentiaUy discover new attacks, have more 
confidence in our cost metrics for common operations, and 
provide more informative output for system administrators with 
limited security experience. Our method is more comprehensive 
since it can model time dependencies, multiple attempts, and 
multi-prong attacks. Our edge costs are more customized to a 
particular network and attacker. 

As an example of an attack with timing constraints not covered in 
standard tools, suppose an attacker can listen on a network link 
and detects a valid user initiating a telnet session. The attacker 
then crashes or disables the machine initiating the telnet session 
(e.g., using the "ping of death" or syn flooding) and hijacks the 
telnet session. 

The remainder of the paper is organized as follows. Section 2 
gives a more detailed description of attack templates, the 
configuration file, and attacker profile. Section 3 discusses 
attack-graph generation. Section 4 presents analysis methods. 
Section 5 discusses implementation issues, and Section 6 provides 
some concluding remarks. 

2. CONFIGURATION FILES, ATTACKER 
PROFILES, AND ATTACK TEMPLATES 
This section explains the inputs required for our method: 
configuration files, attacker profiles, and attack templates. 

2.1 Configuration files 
The configuration file contains information relevant to operating 
system, network type, router configuration, and network topology. 
More specifically, each device (i.e., workstation, printer, file 
server, etc.) should have the following information: 

1. Machine class: workstation, printer, router, etc. 

2. Hardware type: e.g., SUN SPARCstation TM 5 

3. Operating System 

a. O.S. patches that have been installed. 
4. Users (Initially just the classes of users, i.e. root, 

normal, privileged.) 
5. Configuration 

a. Ports enabled 
b. Services enabled and privilege level on the 
services 
c. Any intrusion detection applications installed 

6. Type of network(s) the device is on (Ethernet, 
FDDI, ATM, etc.) 

7.  Physical link information such as type of 
communications media 

A configuration file includes a graph of the topology of the 
network and can extend to other criteria such as information 
related to user behavior, like password implementation (i.e., are 
users required to change their password on a routine basis, do 
they pick their own password, is there periodic security training, 
etc.). 

Building and maintaining configuration files by hand will be a 
tedious, time-consuming and error-prone task which could 
seriously limit the utility of the system. Therefore, we envision an 
automated tool to help generate and maintain this configuration 
file. For example, a root-level daemon on each network 
component can periodically send information to a central server. 
The configuration file could be based upon the information 
available from a tool like SATAN or the ISS scanner, augmented 
to match the conditions in the set of attack templates. We expect 
that we can add system topology information (e.g., from Cisco 
routers) and rlogin information across machines. Policy issues 
such as password policies will need to be entered manually, but 
won't change frequently. We hope the system administrator will 
have reasonable defenses in place to protect the system data when 
using an automated tool. For example, it may only be available 
online in one place while the administrator is running analyses. 

2 .2  A t t a c k e r  P r o f i l e s  
We do not expect to model human behavior at this point, however 
we do believe the system needs to incorporate attacker capability, 
as this can have a significant impact on security decisions. The 
attacker profile contains information about an assumed attacker's 
capabilities, such as the possession of an automated toolkit or a 
sniffer, access to supercomputing facilities or significant financial 
resources, physical access to a network or machine, etc. The 
attacker profile is used to determine the probability of success for 
particular attack methods. The attacker profile represents the 
initial capabilities of the attacker in the same way that the 
configuration file represents the initial state of the network. To 
assist the analyst, default profiles for various attacker skill levels 
such as novice vs. expert could be provided. The network 
owner's security policies and strategies can be guided by the level 
of attacker they wish to strongly deter and their available budget. 
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r vulnerabilities: 
Condition: anon ftp enabled 

Action: attacker changes permissions 

Condition: tip owns tip directory 

/ machine: 
•l ~leasbiihnt i~t~: dir~dc't ° ~  te' de let e } 

\ v u ! n e r a b i l i t i e s : ~  

Figure 1. Example template for anonymous ftp attack 

2.3 Attack template  
Attack templates represent generic steps in known attacks, 
including conditions which must hold for the attack to be 
possible. Each node in the attack template represents a state of an 
attack, as detailed below. The nodes are distinguishable, and 
therefore, each edge represents a change in state on one or more 
devices. Examples of state changes are: a file was changed, a 
configuration setting was altered, an executable was run, an 
attacker gains root privileges on a machine, etc. An example of 
attack templates using the following definitions and fields is 
shown in Figure 1. Nodes have the following fields: 

1. User level: Possible user levels include: none, 
guest (anonymous), normal user, privileged user, 
root, or system administrator. This could be one- 
time access. 

2 .  Machine(s):  This field could specify an individual 
machine or set of  machines, all machines on a 
subnet, or all machines on multiple subnets. In the 
attack templates, this field contains placeholders 
(variables) that are instantiated in the attack graph. 

3 .  Vulnerabil i t ies:  This field indicates changes to 
the original configuration caused by attacker 
actions. When building the attack graph, the 
vulnerabilities "overwrite" the relevant portions of 
the configuration file for a given node. 

4 .  Capabili t ies:  This field locally overwrites the 
attacker profile in the same way the vulnerabilities 
field overwrites the configuration file. Possible 
entries include physical access to part of the 
network, installation of a trojan horse, delivery of 
mail or an applet with executable content, or 
installation of a sniffer on an edge of the network. 
It can also indicate other programs that the attacker 
has successfully installed or has access to, such as 
crack programs, root kits, etc. 

5 .  State: The state field breaks attacks into atomic 
pieces. An attack may require several steps, each of 
which could fall and none of which adds a new 
capability, vulnerability, etc. The states 
distinguish the nodes by indicating progress in the 
attack. 

Edges in the attack template represent actions taken by the 
attacker or his/her victim/unwitting assistant. They can also 
indicate an event such as the detection of a particular type of 
packet on a network by some hardware and/or software under 

attacker control. To allow maximum detection of new attack 
sequences, these events should be atomic and nontrivial 
(probability of success is strictly above 0). Probability-one edges 
must change the environment (introduce a vulnerability, change 
user level, etc.). Each edge has conditions on the users and/or 
machines, if all the conditions are met, the attack succeeds with a 
given probability and/or cost. The edges can be a function of 
configuration and attacker capability. If a user is only interested 
in viewing the possible universe of attacks regardless of 
cost/success probability, then these functions could be extremely 
simple. The probability-of-success numbers can be obtained from 
polling experts (assessing the best subjective judgments), from 
information about the frequency of attacks on certain kinds of 
networks [6], and from experimentation. Computer-security 
personnel can test various attacks. Furthermore, one can make 
increasingly-automated testbeds accessible from the internet and 
advertise them as challenges to the computer-security community, 
then gather statistics about success probability. 

In the above paragraph, we use probability for edge weights, but 
one could also use other metrics such as time to success, effort 
required, or "cost" as an edge weight. The time to success can be 
an appealing metric, especially when network assets have a well- 
defined lifetime (i.e., password files or encryption keys changing 
regularly). Time as a metric also has a more obvious tie-in with 
intrusion detection. For example, if one can detect an attack step 
with a test, the test should be run more frequently than the 
average time to success of the attack. 

A number of issues are not completely resolved. There is some 
flexibility in assigning conditions to the arcs (requirements for the 
attack) vs. the nodes (part of the state). For example, possession 
of a root kit may be required for a certain attack. It can be made a 
condition of the edge (hence the edge is not added to the attack 
graph unless the attacker possesses a root kit) or it can be made a 
state of the start node (thus the attacker must have a root kit in 
order for the node to be reached in the first place). In addition, 
one must carefully chose levels of machine aggregation. 
Generating nodes for all possible subsets of machines wilt be 
impossible even for small systems. However, we believe the 
design described above can model a wide variety of attacks. For 
example, we have developed a set of  templates for several attacks 
in each of the following classes: sendmail, ftp, telnet, Windows 
NT, and Java. Furthermore, the system has sufficient flexibility to 
evolve smoothly as new, previously unanticipated modeling needs 
arise. 

3. GENERATING THE A T T A C K  G R A P H  
In this section we describe how one might generate the attack 
graph from a configuration file, an attacker profile, and a database 
of attack templates. In general the nodes of the attack graph look 
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like nodes of the attack templates instantiated with particular 
users and machines. Edges are labeled only by a probability-of- 
success (or cost) measure, and a documentation string for the user 
interface. For ease of exposition, for the remainder of this 
section, we will call the measure the weight of the edge. This 
weight is determined by an instantiation function associated with 
each edge of an attack template. This function accesses the 
configuration file and the attacker profile. If an edge goes from 
node u to node v, then we call node u the tail of the edge and 
node v the head of the edge. 

We now describe how the attack graph could be generated by 
building backwards from a goal node, One could also build 
forward from a start node (to explore the universe of possibilities) 
or assume both a start and a goal node. We illustrate this 
description with the simple example in Figure 2. The attacker 
profile, which is not shown in Figure 2 for space reasons, assumes 
that the attacker has physical access to B and the boot CD. The 
goal state is to obtain user level access on machine M, and the 
start state(s) is nothing beyond the capabilities in the attacker 
profile. We maintain a queue of generated nodes which have not 
been processed. Initially this queue contains only the goal node 
and nodes are added as they are created. 

Start with the goal node: achievement of user-level access on 
machine M. The graph generator checks the database of attack 
templates and identifies all edges whose heads match the goal 
node. Assuming this database contains only the two templates 
shown in Figure 2, we find two matches, namely the head of each 
attack template. Consider the first template for a rlogin attack. 
Machine M matches the variable M2 in the template. The 
instantiation function can then generate the tail node (node NO by 
generating all (user, machine) pairs that meet the constraints (the 
user has an account on this machine and M, and an appropriate 
rlogin file on M). Note that if machine M has rlogin disabled, 
then node Nl would not be generated. On the assumption that 
machines A and B can communicate with M (given the rlogin 
file), the probability of the edge from node N~ to the goal is I. 
Node Nl is an OR node, meaning that achievement of any (user, 
machine) pair suffices. 

The goal node also matches the last node of the second template 
for physical access. Machine M matches the variable X and the 
instantiation function creates node N4, which in turn generates N 5. 

However, the attacker does not have physical access to M. Thus, 
the nodes N4 and N 5 are marked with a dotted line to show that 

under existing conditions, they would not be reachable from the 
start state. There could be other attack templates which would 
lead to physical access to M, and then these nodes would be 
enabled. In this case, the capability of physical access to M is an 
addition (or overwrite) to the attacker profile. 

Since there are no more matches for the goal, node N1 is removed 
from the queue and matched against the database against both 
heads and tails. In principle, it can again match with the head of 
the rlogin attack. However, assuming transitivity (i.e. that a user 
has rlogin set up symmetrically for all his accounts), applying this 
edge again will give no new information. Recognizing and 
preventing this in all cases is still a research issue. Node N~ also 
matches with the last node of the second template on physical 
access, which generates node N2. 

Node N2 matches the middle node of the second template. The 
attacker profile indicates that the attacker has physical access to 

machine B, but not to machine A. Since N2 is an OR node, it can 
be satisfied by the attacker becoming root on B. In this example, 
node N3 is created with a subset of the machines in node N2. 
Alternatively, we could have generated an intermediate node for 
becoming root only on B rather than A or B. The advantage of 
this is that additional paths to the goal can pass through this 
intermediate node (i.e. a path unique to B cannot be built off a 
node which can be satisfied by either A or B). When both goal 
and start nodes are specified, either method is likely to work, 
since if this node is required for a path, it will be generated later. 
If only one of goal and start are specified, the more verbose 
method may be advantageous. We recognize node N 3 as a start 
node in this graph, and thus we do not try to match backwards 
from it. Although it is not shown, the attack graph would also 
contain a node for A similar to N 3 which, like nodes N 4 and Ns, is 
unreachable because the attacker has no physical access to A. 

When a node is matched with a template in the database, the other 
endpoint could either be generated as in the example above, or be 
a node already generated. Thus the generator must be able to 
efficiently search the nodes generated so far. Edges created 
between two nodes already generated can lead to interactions 
between attack templates and the "discovery" of new attack 
sequences. 

There are a number of implementation issues which must be 
resolved when the system is tested on large datasets. These issues 
are presented in Section 5. 

4. ANALYSIS METHODS 
In this section we discuss analysis of the attack graph: 
determining a (set of) low-cost attack paths, finding a set of cost- 
effective defenses, and simulating dynamic attacks. A path from a 
start node to a goal node has a weight equal to the sum of the 
weights of the edges in the path. In the case where weights 
represent success probabilities rather than costs, we can convert to 
a problem of this form. By replacing each weight by its 
logarithm, the weight of the path (sum) now represents the 
product of the probabilities, and we wish to find highest-cost 
paths. Because the probabilities are all between 0 and 1, the logs 
are all non-positive numbers. Therefore, if we negate all the 
probabilities (i.e., multiply by -1), all weights become non- 
negative and the problem is converted from maximization to a 
minimization problem, that of finding the low-cost paths. The 
structure of the weights is critical for this conversion, because in 
general finding the longest paths in a network is NP-complete [5]. 

If one wishes to find only a single shortest path, representing the 
most likely or least-cost attack, from a start node to any number of 
goal nodes, then any standard shortest-path algorithm, such as 
Dijkstra's algorithm will suffice. Such codes are very efficient 
(near linear-time) and readily available [2]. 
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However, the weights on the edges will almost surely not be 
sufficiently accurate to merit looking only at shortest paths. A 
better method is to use the technique of Naor and Brutlag [12]. 
Their algorithm computes a compact representation of all paths 
that are within $ of optimal for some given error parameter 8 (the 
S-optimal paths). For example, edges that are common to many 
k-optimal paths are likely to represent vulnerable points. Their 
method applies to undirected graphs, and may need to be 
modified for directed graphs. 

If edges have two weights representing different optimization 
criteria, bicriteria shortest-path algorithms compute a set of paths 
that are (near) optimal with respect to one weight while obeying a 
bound (e.g. a budget) on the second weight. Current (near) exact 
solution methods involve shortest-path computations in 
significantly expanded graphs. However, scaling provides a 
graceful tradeoff between approximation quality and the time and 
space needed to compute the solution [15]. Very recently, Tayi et 
al. [18] have shown how to compute all undominated (Pareto 
optimal) paths for multiple edge weights. Their algorithm runs in 
pseudo-polynomial time provided the number of criteria is 
bounded (i.e., the exponent in the running time depends on the 
number of criteria). 

Given a set of possible defenses, each with a cost (financial, loss 
of service, etc.) and defense budget, we would like to compute a 
set of defenses to implement which will maximally decrease the 
probability of success (or increase attacker cost). Implementing a 
defense strategy on a particular machine could have a widespread 
effect on the attack graph, since it affects the weight on every 
edge involving that machine and an attack affected by the defense. 
In its most general form, this problem is NP-hard to approximate 
to within better than a logarithmic factor (by reduction from set 
cover). However, it is possible that attack graphs have special 
structure which makes the problem easier than this worst case. 

A reasonable first question is to take the set of paths computed by 
the Naor-and-Bmtlag algorithm and find a set of defenses that 
increases the cost of each of those paths above some threshold 
such as the value of the data stored in the system. The Naor-and- 
Brutlag algorithm also gives the number of 5-optimal paths. 
Therefore, one can use the following greedy algorithm: for 
defense di, compute the total gain gi (increase in cost or decrease 
in success probability) over all the paths. Let ci be the cost of 
defense d i. Choose the most cost-effective defense (the one which 
maximizes (gi / cl)). Iterate until all paths are over the threshold. 
Alternatively, one can modify exact set-cover algorithms for this 
problem. Because one can model airline crew scheduling as a set- 
cover problem, there has been extensive work in (near) exact 
methods for this problem. 

The unweighted version of this defense problem can model the 
placement of monitors for intrusion detection. The question 
becomes: choose a minimum number of monitor placements such 
that all the near-optimal attack paths are monitored at least k 
times. That is, any attempt to execute any of the attacks will 
potentially be observed by k (possibly nondisjoint) monitors. If 
monitoring of each edge or node in the attack graph were 
independent (i.e. we must pay for each monitor placed on any 
edge), we have the k-hurdle problem, which can be solved 
efficiently [1]. When sets of edges are affected by a single 
monitor placement, the problem is still theoretically as hard as set 

cover (assuming no special structure). However, it will be easier 
than the weighted version in practice. 

Even in the absence of automated defense-selection tools, 
however, the system can serve as a defense-selection tool. A 
network administrator can change the configuration file to reflect 
the placement of a set of defenses, and then run the shortest-paths 
analysis to determine their effect. Using global search techniques, 
this iterative procedure could be automated as well. 

Alternatively, a system administrator could use the attack graph as 
the foundation for a simulation tool. The simulation could start 
from the node where the attacker breaks in or begins. The attacker 
could pick an edge (representing an attack), have the simulation 
"flip a coin" to see if the path is successful according to the edge 
probability, and if successful, the attacker continues down the 
path, otherwise, she backtracks. This kind of a model could 
represent the real behavior of attackers (going down one branch, 
figuring that it is too difficult to do something such as get root on 
a particular machine, so backing up and trying another method. 
This is one of the attacker models for which Dacier et al. compute 
METF). Another strategy would be that the attacker chooses his 
next attack edge based on configuration knowledge of all 
outgoing links, plus an estimate of the shortest path from 
neighboring nodes. The success probabilities used in the 
simulation can change dynamically to reflect the success/failure 
the attacker has had so far (i.e. as the attacker learns more about 
the particular system). This simulation technique would be 
appropriate for a graphical user interface which could show a 
network designer the paths the attacker is most likely to take (for 
example, by lighting up nodes with a green light as the attacker is 
successful, and displaying a red light where the attacker gets 
blocked). 

5. I M P L E M E N T A T I O N  ISSUES 
There are a number of implementation issues which must be 
resolved when the system is tested on large datasets. For 
example, it may be useful to allow some hierarchy in the attack 
graph generation. If there is a common set of attack paths that 
allow an attacker to become root from a normal user account on 
the same machine, this could be a useful building block. If 
multiple machines have identical parameters, this subgraph need 
only be built once. It can be collapsed to one edge, with the 
option of expanding the graph for the system administrator via the 
user interface. 

For each piece of the configuration or attacker profile files, it 
would be useful to maintain a list of edges whose probability was 
influenced by that attribute. This will allow quick recomputation 
of edge weights if a configuration or attacker parameter is 
changed. However, it is more challenging to leave such a "trail" 
for pieces that were missing in the configuration file or lead to 
edges not existing. 

Instantiation functions could become quite complicated. For 
example, suppose one is searching for the universe of possible 
consequences from a break-in. In "spam" attacks on networks, an 
attack is replicated on many machines, tf one wants to predict the 
number of machines comprortused, the instantiation function must 
have an inclusion/exclusion calculation if the weights are 
probabilities. 

The instantiation function may generate multiple nodes if 
reachability is a condition on an edge and there are multiple 
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routers between a pair of machines. The steps necessary for 
routing a message, telnet session, etc., are explicitly included in 
the attack graph because this access is an important security 
parameter. If a worrisome attack path involves going through 
multiple routers, the system administrator has the option of 
modifying the access-control tables to forbid the access. 

There are two possible ways to represent the users and/or 
machines in a node: as an explicit list, or as a list of conditions 
(from edge conditions). Since each condition is associated with 
an instantiation function, one can go from condition lists to 
explicit user lists. Both representations could be used in different 
parts of the attack graph during generation depending upon the 
ways the lists will be refined. For example, the list-of-conditions 
method may be better for matching. 

Another issue is how to model attacks that require access to two 
different user accounts possibly on two different machines. This 
could be done as a 2-step process in the attack template. However, 
in the attack graph, getting access to two users' accounts is highly 
correlated within the various attacks, and this correlation must be 
incorporated into both instantiation functions. Therefore, 
obtaining access to two or more accounts should probably be 
combined as a single atomic event. Since we expect most attacks 
to require access to only a small number of accounts 
simultaneously, this consolidation/duplication should not cause 
overwhelming graph expansion. 

Matching methods will evolve experimentally. However, 
unification techniques used in logic programming languages are a 
natural starting place. It is possible that using lists of conditions, 
one can search the set of generated nodes efficiently using 
hashing techniques. 

6. CONCLUSIONS 
We have spoken with computer security experts, and the general 
consensus is that an attack-graph analysis could work well for 
modeling enterprise-level (commercial or military) network risks. 
We would like to take this work further and develop a robust tool 
with a graphical interface which is easy to use and which links to 
a large list of vulnerabilities, such as the databases that 
commercial vendors (i.e., lntemet Security Systems' X-force 
database) have created or that CERT has compiled. We envision 
that the user could choose to view representations of all near- 
optimal paths, or individual high risk paths. He/she could 
examine edges of interest, obtain relevant topology or 
configuration information, or choose to ignore some 
vulnerabilities, recompute the graph, and review. In addition, the 
attack graph would allow system administrators to look at 
potentially high-risk paths, even if there are no vulnerabilities on 
individual portions of them. 

This paper has presented a method for risk analysis of computer 
networks. The method is based on the idea of an attack graph 
which represents attack states and the transitions between them. 
The attack graph can be used to identify attack paths that are most 
likely to succeed, or to simulate various attacks. The attack graph 
could also be used to identify undesirable activities an attacker 
could perform once they entered the network. The major advance 
of this method over other computer security risk methods is that it 
considers the physical network topology in conjunction with the 
set of attacks. Thus, it goes beyond the scanning tools that are 

currently available which check a "laundry list" of services or 
conditions that are enabled on a particular machine. 

The method we have presented addresses many of the modeling 
issues that current scanning technology cannot. Specifically, our 
graph-based approach allows for modeling dynamic aspects of the 
network (this can be done by overwriting the configuration file as 
the attacker makes system changes). Our approach allows for 
several levels of attacker capability that can change dynamically. 
It allows for the modeling of user access levels and transitions 
between them, which are critical in network security. And it 
represents the time dependencies in sequences of attacks. We 
would like to examine the possibility of using the attack graph 
approach, especially the idea of attack templates, for testing 
intrusion detection systems. The attack graph could also be the 
basis for identifying the most cost-effective set and placement of 
defenses. 

There are potential limitations with our method. We have not 
generated a realistic size attack graph based on 10 or 20 
templates, and we have not resolved all of the issues associated 
with the matching of templates to configuration and attacker 
profile. Also, the existence of attack templates and of the 
configuration file could be another vulnerability in itself. If these 
got into the wrong hands, they would be very valuable tools for 
the attacker. However, we believe that the approach we have 
presented is an advance in network-vulnerability modeling and 
will ultimately help network security if implemented in a 
reasonable way. 
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