
A Graph-Based System for Network-Vulnerability Analysis
Cynthia Phillips

Sandia National Laboratories, MS 1110
Albuquerque, NM 87105

505-845-7296

caphill @ sandia..qov

Laura Painton Swiler
Sandia National Laboratories, MS 0746

Albuquerque, NM 87105
505-844-8093

Ipswile @ sandia.flov

ABSTRACT
This paper presents a graph-based approach to network
vulnerability analysis. The method is flexible, allowing analysis
of attacks from both outside and inside the network. It can
analyze risks to a specific network asset, or examine the universe
of possible consequences following a successful attack. The
graph-based tool can identify the set of attack paths that have a
high probability of success (or a low "effort" cost) for the
attacker. The system could be used to test the effectiveness of
making configuration changes, implementing an intrusion
detection system, etc.

The analysis system requires as input a database of common
attacks, broken into atomic steps, specific network configuration
and topology information, and an attacker profile. The attack
information is "matched" with the network configuration
information and an attacker profile to create a superset attack
graph. Nodes identify a stage of attack, for example the class of
machines the attacker has accessed and the user privilege level he
or she has compromised. The arcs in the attack graph represent
attacks or stages of attacks. By assigning probabilities of success
on the arcs or costs representing level-of-effort for the attacker,
various graph algorithms such as shortest-path algorithms can
identify the attack paths with the highest probability of success.

Keywords
Computer security, network vulnerability, attack graph

1. INTRODUCTION
Military, government, commercial, and civilian operations all
depend upon the security and availability of computer systems
and networks. In October 1997, the Presidential Commission on
Critical Infrastructure recommended increasing spending to a $1B
level during the next seven years. The Commission recommended
that this money be heavily focused on cyber-security research,
including vulnerability assessment, risk management, intrusion
detection, and information assurance technologies [16]. In this
paper, we describe a systematic analysis approach that can be used
by persons with limited expertise in risk assessment, vulnerability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted wi thout fee provided that
copies are not made or distr ibuted for profrt or commercial advan-
tage and that copies bear this notice and the full c i tat ion on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission end/or a fee.
1998 NSPW 9t98 Charloltsvil le, VA, USA
© 1999 ACM 1 - 5 8 1 1 3 - 1 6 8 - 2 / 9 9 / 0 0 0 7 . . $ 5 . 0 0

analysis, and computer security to (1)examine how an adversary
might be able to exploit identified weaknesses in order to perform
undesirable activities, and (2) assess the universe of undesirable
activities that an adversary could accomplish given that they were
able to enter the network using an identified weakness.

Quantifying security risks i.n computer networks is very difficult.
Ideally, a network-vulnerability risk-analysis system should be
able to model the dynamic aspects of the network (e.g., virtual
topology changing), multiple levels of attacker ability, multiple
simultaneous events or multiple attacks, user access controls, and
time-dependent, ordered sequences of attacks.

~1~robabi~tik Risk Assessment (PRA) techniques such as fault-tree and
event-tree analysis provide systematic methods for examining
how individual faults can either propagate into or be exploited to
cause unwanted effects on systems. For example, in a fault-tree a
negative consequence, such as the compromise of a file server, is
the root of the tree. Each possible event that can lead directly to
this compromise (e.g., an attacker gaining root privileges on the
machine) becomes a child of the root. Similarly, each child is
broken into a complete list of all events which can directly lead to
it and so on. Wyss, Schriner, and Gaylor [19] have used PRA
techniques to investigate network performance. Their fault tree
modeled a loss of network connectivity, specifically the "all
terminal connectivity" problem. Since PRA methods can measure
the importance of particular components to overall risk, it seems
that they could provide insights for the design of networks more
inherently resistant to known attack methods. These methods,
however, have limited effectiveness in the analysis of computer
networks because they cannot model multiple attacker attempts,
time dependencies, or access controls. In addition, fault trees
don't model cycles (such as an attacker starting at one machine,
hopping to two others, returning to the original host, and starting
in another direction at a higher privilege level). Methods such as
influence diagrams and event trees suffer from the same
limitations as fault trees.

A major advance of our method over other computer-security-risk
methods is that it considers the physical network topology in
conjunction with the set of attacks. Thus, it goes beyond the
scanning tools. A seminal tool, SATAN (Security Administrator
Tool for Analyzing Networks), checks a "laundry list" of services
or conditions that are enabled on a particular machine [17]. For
example, on UNIX systems SATAN checks for NFS file systems
exported to unprivileged programs or arbitrary hosts, but gives
little indication of how these items lead to system compromise.
More recent scanners such as the Intemet Scanner TM from Internet
Security Systems (ISS) also attempt attack scenarios and provide
information about potential vulnerabilities and how they can be
exploited [7]. These scanning tools can provide a system

71

administrator with a set of items to patch or fix. However, these
scanners do not verify that all conditions for a complete attack are
met, or identify linked attacks potentially more harmful than
individual attacks. Though they can suggest fixes for local
potential problems, they don't consider the network as a whole,
proposing a global set of cost-effective defenses designed to
protect the network' s most critical resources.

Intrusion detection systems such as lnternet Security Systems'
Real Secure TM form another class of network security tools.
Intrusion-detection systems attempt to monitor abnormal patterns
of system usage (such as suspicious configuration information
changes) to detect security violations [4,9]. Our system would be
complementary to an intrusion detection system. If an
administrator does not want to pay the full cost (development cost
or system-performance hit) of all possible intrusion-detection
strategies, our system could suggest cost-effective subsets which
focus on the most vulnerable system components.

Our approach to modeling network risks is based on an attac,f.
graph. Each node in the graph represents a possible attack state. A
node will usually be some combination of physical machine(s),
user access level, and effects of the attack so far, such as
placement of trojan horses or modification of access control.
Edges represent a change of state caused by a single action taken
by the attacker (including normal user transitions if they have
gained access to a normal user's account) or actions taken by an
unwitting assistant (such as the execution of a trojan horse).
Attack graphs will be presented in more detail in Sections 2 and 3.

The attack graph is automatically generated given three types of
input: attack templates, a configuration file, and an attacker
profile. Attack templates represent generic (known or
hypothesized) attacks including conditions, such as operating
system version, which must hold for the attack to be possible.
The configuration file gives detailed information about the
specific system to be analyzed including the topology of the
network and configuration of particular network elements such as
workstations, printers, or routers. The attacker profile contains
information about the assumed attacker's capabilities, such as the
possession of an automated toolkit or a sniffer as well as skill
level. The attack graph is a customization of the generic attack
templates to the attacker profile and the network specified in the
configuration file. Though attack templates represent pieces of
known attacks or hypothesized methods of moving from one state
to another, their combinations can lead to descriptions of new
attacks. That is, any path in the attack graph represents an attack,
though it could be cobbled together from many known attacks.

Each edge has a weight representing a success probability,
average time to succeed, or a cost/effort level to an attacker (edges
with zero probability are generally omitted). In this paper we use
success probability as the example of edge weight, but the edge
weight could be any of the above metrics. This weight is a
function of configuration and attacker profile. Furthermore, each
node can have local "overwrites" of these files representing
effects of previous attacker actions on configuration (e.g. severed
network connections, or changes to file-access privileges) or
acquired attacker capabilities. In Section 2 we discuss possible
ways to estimate edge weights.

A short path in the attack graph represents a low-cost attack.
Since edge weights will only be estimates, we consider the set of
all near-optimal paths. If the edge weights are reasonably

accurate, this set as a group represents the most vulnerable parts
of the network. If one can assume independence of success
probabilities, the same (shortest-path) algorithms can find paths
with high success probability. By having multiple weights on
each edge, one can represent potentially-conflicting criteria (e.g.
the attacker wishes to minimize both cost and probability of
detection).

This system can answer "what-if' questions regarding security
effects of configuration changes such as topology changes or
installation of intrusion-detection systems. It can indicate which
attacks are possible only from highly-skilled well-funded
attackers, and which can be achieved with lower levels of effort.
A business owner might decide it is acceptable to allow a
relatively high probability of network penetration by a "national-
scale" effort, but will tolerate only a small probability of attack
from an "'average" attacker. Government sites, which are attacked
with much higher frequency 1, may need exceptionally low
probability of success for a particular attacker level in order to
expect few penetrations, and they may be more willing to pay the
cost for that level of security.

Finally, this system can simulate dynamic attacks and use the
results to test intrusion-detection systems. These analysis
methods, as well as possible ways to calculate cost-effective
defense strategies, are explained in more detail in Section 4.

This is not the first system to represent attacks graphically. For
example Meadows [10] uses a graph representation to model
stages of attacks, particularly attacks on cryptographic protocols.
These visual representations resemble attack templates, but nodes
in her graphs represent stages of the attack (a to-do list for an
attacker) at a much higher level than we envision. Edges
represent temporal dependencies. There is no tie-in to particular
user level, machine, configuration, etc, and there are no weights.
Meadows describes previous work that also breaks attacks into
atomic steps.

Moskowitz and Kang [11] use a graph to represent insecurity
flow. Edges represent penetration of a security barrier such as a
firewall. Each edge is weighted with the probability of
successfully breaching the defense. They want to compute the
probability that any path exists from the source to the sink (i.e.
any hole exists in the system). They give an exponential-time
algorithm to determine a set of edge-disjoint paths that correspond
to "reasonable" attacks. The resulting paths seem to have series-
parallel structure which can then be exploited for computing the
probability, assuming all edges fail independently.

The system we are proposing is closely related to that of Dacier et
al. [3] although these systems were developed independently.
Dacier et al. use a "'privilege graph" which is similar to our attack
graph, but seems to represent complex attacks with a single edge,
and does not explicitly represent attacker capabilities. It is not
clear how the privilege graph is generated, but they appear to use
a scanning tool and static "average" costs. The authors transform
the privilege graph into a Markov model and determine the

i The Defense Information Systems Agency reports that the
Department of Defense is attacked 250,000 times a year. Los
Alamos National Laboratories is attacked daily, with 22 proven
outsider intrusions in the last five months. From "Security
Measures," Albuquerque Journal, March 24, 1998, pp. B l-B2.

72

estimated mean time and effort to target by enumerating all
searches in the privilege graph. The Markov model represents all
possible probing sequences of a non-omniscient attacker. Ortalo
et al. [13,14], present experimental results using this model, based
on a privilege graph constructed from 13 major UNIX
vulnerabilities. They conclude that Mean Effort to Failure
(METF) is more valuable as a security metric than the single
shortest path or raw number of paths to target. However, they
were not always able to compute METF, even for fairly small
graphs.

We can compute all near-optimal shortest paths much more
efficiently than the enumeration required to compute METF. We
believe that the set of near-optimal shortest paths provides a good
measure of overall system security. We expect the set of paths to
evolve appropriately with underlying changes in the system, but
not to be unduly volatile. In addition, by modeling at a finer
level, we can potentiaUy discover new attacks, have more
confidence in our cost metrics for common operations, and
provide more informative output for system administrators with
limited security experience. Our method is more comprehensive
since it can model time dependencies, multiple attempts, and
multi-prong attacks. Our edge costs are more customized to a
particular network and attacker.

As an example of an attack with timing constraints not covered in
standard tools, suppose an attacker can listen on a network link
and detects a valid user initiating a telnet session. The attacker
then crashes or disables the machine initiating the telnet session
(e.g., using the "ping of death" or syn flooding) and hijacks the
telnet session.

The remainder of the paper is organized as follows. Section 2
gives a more detailed description of attack templates, the
configuration file, and attacker profile. Section 3 discusses
attack-graph generation. Section 4 presents analysis methods.
Section 5 discusses implementation issues, and Section 6 provides
some concluding remarks.

2. CONFIGURATION FILES, ATTACKER
PROFILES, AND ATTACK TEMPLATES
This section explains the inputs required for our method:
configuration files, attacker profiles, and attack templates.

2.1 Configuration files
The configuration file contains information relevant to operating
system, network type, router configuration, and network topology.
More specifically, each device (i.e., workstation, printer, file
server, etc.) should have the following information:

1. Machine class: workstation, printer, router, etc.

2. Hardware type: e.g., SUN SPARCstation TM 5

3. Operating System

a. O.S. patches that have been installed.
4. Users (Initially just the classes of users, i.e. root,

normal, privileged.)
5. Configuration

a. Ports enabled
b. Services enabled and privilege level on the
services
c. Any intrusion detection applications installed

6. Type of network(s) the device is on (Ethernet,
FDDI, ATM, etc.)

7. Physical link information such as type of
communications media

A configuration file includes a graph of the topology of the
network and can extend to other criteria such as information
related to user behavior, like password implementation (i.e., are
users required to change their password on a routine basis, do
they pick their own password, is there periodic security training,
etc.).

Building and maintaining configuration files by hand will be a
tedious, time-consuming and error-prone task which could
seriously limit the utility of the system. Therefore, we envision an
automated tool to help generate and maintain this configuration
file. For example, a root-level daemon on each network
component can periodically send information to a central server.
The configuration file could be based upon the information
available from a tool like SATAN or the ISS scanner, augmented
to match the conditions in the set of attack templates. We expect
that we can add system topology information (e.g., from Cisco
routers) and rlogin information across machines. Policy issues
such as password policies will need to be entered manually, but
won't change frequently. We hope the system administrator will
have reasonable defenses in place to protect the system data when
using an automated tool. For example, it may only be available
online in one place while the administrator is running analyses.

2 .2 A t t a c k e r P r o f i l e s
We do not expect to model human behavior at this point, however
we do believe the system needs to incorporate attacker capability,
as this can have a significant impact on security decisions. The
attacker profile contains information about an assumed attacker's
capabilities, such as the possession of an automated toolkit or a
sniffer, access to supercomputing facilities or significant financial
resources, physical access to a network or machine, etc. The
attacker profile is used to determine the probability of success for
particular attack methods. The attacker profile represents the
initial capabilities of the attacker in the same way that the
configuration file represents the initial state of the network. To
assist the analyst, default profiles for various attacker skill levels
such as novice vs. expert could be provided. The network
owner's security policies and strategies can be guided by the level
of attacker they wish to strongly deter and their available budget.

73

r vulnerabilities:
Condition: anon ftp enabled

Action: attacker changes permissions

Condition: tip owns tip directory

/ machine:
•l ~leasbiihnt i~t~: dir~dc't ° ~ te' de let e }

\ v u ! n e r a b i l i t i e s : ~

Figure 1. Example template for anonymous ftp attack

2.3 Attack template
Attack templates represent generic steps in known attacks,
including conditions which must hold for the attack to be
possible. Each node in the attack template represents a state of an
attack, as detailed below. The nodes are distinguishable, and
therefore, each edge represents a change in state on one or more
devices. Examples of state changes are: a file was changed, a
configuration setting was altered, an executable was run, an
attacker gains root privileges on a machine, etc. An example of
attack templates using the following definitions and fields is
shown in Figure 1. Nodes have the following fields:

1. User level: Possible user levels include: none,
guest (anonymous), normal user, privileged user,
root, or system administrator. This could be one-
time access.

2 . Machine(s): This field could specify an individual
machine or set of machines, all machines on a
subnet, or all machines on multiple subnets. In the
attack templates, this field contains placeholders
(variables) that are instantiated in the attack graph.

3 . Vulnerabil i t ies: This field indicates changes to
the original configuration caused by attacker
actions. When building the attack graph, the
vulnerabilities "overwrite" the relevant portions of
the configuration file for a given node.

4 . Capabili t ies: This field locally overwrites the
attacker profile in the same way the vulnerabilities
field overwrites the configuration file. Possible
entries include physical access to part of the
network, installation of a trojan horse, delivery of
mail or an applet with executable content, or
installation of a sniffer on an edge of the network.
It can also indicate other programs that the attacker
has successfully installed or has access to, such as
crack programs, root kits, etc.

5 . State: The state field breaks attacks into atomic
pieces. An attack may require several steps, each of
which could fall and none of which adds a new
capability, vulnerability, etc. The states
distinguish the nodes by indicating progress in the
attack.

Edges in the attack template represent actions taken by the
attacker or his/her victim/unwitting assistant. They can also
indicate an event such as the detection of a particular type of
packet on a network by some hardware and/or software under

attacker control. To allow maximum detection of new attack
sequences, these events should be atomic and nontrivial
(probability of success is strictly above 0). Probability-one edges
must change the environment (introduce a vulnerability, change
user level, etc.). Each edge has conditions on the users and/or
machines, if all the conditions are met, the attack succeeds with a
given probability and/or cost. The edges can be a function of
configuration and attacker capability. If a user is only interested
in viewing the possible universe of attacks regardless of
cost/success probability, then these functions could be extremely
simple. The probability-of-success numbers can be obtained from
polling experts (assessing the best subjective judgments), from
information about the frequency of attacks on certain kinds of
networks [6], and from experimentation. Computer-security
personnel can test various attacks. Furthermore, one can make
increasingly-automated testbeds accessible from the internet and
advertise them as challenges to the computer-security community,
then gather statistics about success probability.

In the above paragraph, we use probability for edge weights, but
one could also use other metrics such as time to success, effort
required, or "cost" as an edge weight. The time to success can be
an appealing metric, especially when network assets have a well-
defined lifetime (i.e., password files or encryption keys changing
regularly). Time as a metric also has a more obvious tie-in with
intrusion detection. For example, if one can detect an attack step
with a test, the test should be run more frequently than the
average time to success of the attack.

A number of issues are not completely resolved. There is some
flexibility in assigning conditions to the arcs (requirements for the
attack) vs. the nodes (part of the state). For example, possession
of a root kit may be required for a certain attack. It can be made a
condition of the edge (hence the edge is not added to the attack
graph unless the attacker possesses a root kit) or it can be made a
state of the start node (thus the attacker must have a root kit in
order for the node to be reached in the first place). In addition,
one must carefully chose levels of machine aggregation.
Generating nodes for all possible subsets of machines wilt be
impossible even for small systems. However, we believe the
design described above can model a wide variety of attacks. For
example, we have developed a set of templates for several attacks
in each of the following classes: sendmail, ftp, telnet, Windows
NT, and Java. Furthermore, the system has sufficient flexibility to
evolve smoothly as new, previously unanticipated modeling needs
arise.

3. GENERATING THE A T T A C K G R A P H
In this section we describe how one might generate the attack
graph from a configuration file, an attacker profile, and a database
of attack templates. In general the nodes of the attack graph look

74

like nodes of the attack templates instantiated with particular
users and machines. Edges are labeled only by a probability-of-
success (or cost) measure, and a documentation string for the user
interface. For ease of exposition, for the remainder of this
section, we will call the measure the weight of the edge. This
weight is determined by an instantiation function associated with
each edge of an attack template. This function accesses the
configuration file and the attacker profile. If an edge goes from
node u to node v, then we call node u the tail of the edge and
node v the head of the edge.

We now describe how the attack graph could be generated by
building backwards from a goal node, One could also build
forward from a start node (to explore the universe of possibilities)
or assume both a start and a goal node. We illustrate this
description with the simple example in Figure 2. The attacker
profile, which is not shown in Figure 2 for space reasons, assumes
that the attacker has physical access to B and the boot CD. The
goal state is to obtain user level access on machine M, and the
start state(s) is nothing beyond the capabilities in the attacker
profile. We maintain a queue of generated nodes which have not
been processed. Initially this queue contains only the goal node
and nodes are added as they are created.

Start with the goal node: achievement of user-level access on
machine M. The graph generator checks the database of attack
templates and identifies all edges whose heads match the goal
node. Assuming this database contains only the two templates
shown in Figure 2, we find two matches, namely the head of each
attack template. Consider the first template for a rlogin attack.
Machine M matches the variable M2 in the template. The
instantiation function can then generate the tail node (node NO by
generating all (user, machine) pairs that meet the constraints (the
user has an account on this machine and M, and an appropriate
rlogin file on M). Note that if machine M has rlogin disabled,
then node Nl would not be generated. On the assumption that
machines A and B can communicate with M (given the rlogin
file), the probability of the edge from node N~ to the goal is I.
Node Nl is an OR node, meaning that achievement of any (user,
machine) pair suffices.

The goal node also matches the last node of the second template
for physical access. Machine M matches the variable X and the
instantiation function creates node N4, which in turn generates N 5.

However, the attacker does not have physical access to M. Thus,
the nodes N4 and N 5 are marked with a dotted line to show that

under existing conditions, they would not be reachable from the
start state. There could be other attack templates which would
lead to physical access to M, and then these nodes would be
enabled. In this case, the capability of physical access to M is an
addition (or overwrite) to the attacker profile.

Since there are no more matches for the goal, node N1 is removed
from the queue and matched against the database against both
heads and tails. In principle, it can again match with the head of
the rlogin attack. However, assuming transitivity (i.e. that a user
has rlogin set up symmetrically for all his accounts), applying this
edge again will give no new information. Recognizing and
preventing this in all cases is still a research issue. Node N~ also
matches with the last node of the second template on physical
access, which generates node N2.

Node N2 matches the middle node of the second template. The
attacker profile indicates that the attacker has physical access to

machine B, but not to machine A. Since N2 is an OR node, it can
be satisfied by the attacker becoming root on B. In this example,
node N3 is created with a subset of the machines in node N2.
Alternatively, we could have generated an intermediate node for
becoming root only on B rather than A or B. The advantage of
this is that additional paths to the goal can pass through this
intermediate node (i.e. a path unique to B cannot be built off a
node which can be satisfied by either A or B). When both goal
and start nodes are specified, either method is likely to work,
since if this node is required for a path, it will be generated later.
If only one of goal and start are specified, the more verbose
method may be advantageous. We recognize node N 3 as a start
node in this graph, and thus we do not try to match backwards
from it. Although it is not shown, the attack graph would also
contain a node for A similar to N 3 which, like nodes N 4 and Ns, is
unreachable because the attacker has no physical access to A.

When a node is matched with a template in the database, the other
endpoint could either be generated as in the example above, or be
a node already generated. Thus the generator must be able to
efficiently search the nodes generated so far. Edges created
between two nodes already generated can lead to interactions
between attack templates and the "discovery" of new attack
sequences.

There are a number of implementation issues which must be
resolved when the system is tested on large datasets. These issues
are presented in Section 5.

4. ANALYSIS METHODS
In this section we discuss analysis of the attack graph:
determining a (set of) low-cost attack paths, finding a set of cost-
effective defenses, and simulating dynamic attacks. A path from a
start node to a goal node has a weight equal to the sum of the
weights of the edges in the path. In the case where weights
represent success probabilities rather than costs, we can convert to
a problem of this form. By replacing each weight by its
logarithm, the weight of the path (sum) now represents the
product of the probabilities, and we wish to find highest-cost
paths. Because the probabilities are all between 0 and 1, the logs
are all non-positive numbers. Therefore, if we negate all the
probabilities (i.e., multiply by -1), all weights become non-
negative and the problem is converted from maximization to a
minimization problem, that of finding the low-cost paths. The
structure of the weights is critical for this conversion, because in
general finding the longest paths in a network is NP-complete [5].

If one wishes to find only a single shortest path, representing the
most likely or least-cost attack, from a start node to any number of
goal nodes, then any standard shortest-path algorithm, such as
Dijkstra's algorithm will suffice. Such codes are very efficient
(near linear-time) and readily available [2].

75

~ I ~ o ~ -~:~ I " ~ ~ I ~._~ ~

/! \z W~.".y \--/X

: ~.,l ~ E : - - ; - - , ~ :

. , , ~ <~ ~ ., ~ . . . £ ' F . ~ ~ I
", \ . = t~ 8 ~ i

0

r -

°

= ~ .~.×

o

I

i .

76

However, the weights on the edges will almost surely not be
sufficiently accurate to merit looking only at shortest paths. A
better method is to use the technique of Naor and Brutlag [12].
Their algorithm computes a compact representation of all paths
that are within $ of optimal for some given error parameter 8 (the
S-optimal paths). For example, edges that are common to many
k-optimal paths are likely to represent vulnerable points. Their
method applies to undirected graphs, and may need to be
modified for directed graphs.

If edges have two weights representing different optimization
criteria, bicriteria shortest-path algorithms compute a set of paths
that are (near) optimal with respect to one weight while obeying a
bound (e.g. a budget) on the second weight. Current (near) exact
solution methods involve shortest-path computations in
significantly expanded graphs. However, scaling provides a
graceful tradeoff between approximation quality and the time and
space needed to compute the solution [15]. Very recently, Tayi et
al. [18] have shown how to compute all undominated (Pareto
optimal) paths for multiple edge weights. Their algorithm runs in
pseudo-polynomial time provided the number of criteria is
bounded (i.e., the exponent in the running time depends on the
number of criteria).

Given a set of possible defenses, each with a cost (financial, loss
of service, etc.) and defense budget, we would like to compute a
set of defenses to implement which will maximally decrease the
probability of success (or increase attacker cost). Implementing a
defense strategy on a particular machine could have a widespread
effect on the attack graph, since it affects the weight on every
edge involving that machine and an attack affected by the defense.
In its most general form, this problem is NP-hard to approximate
to within better than a logarithmic factor (by reduction from set
cover). However, it is possible that attack graphs have special
structure which makes the problem easier than this worst case.

A reasonable first question is to take the set of paths computed by
the Naor-and-Bmtlag algorithm and find a set of defenses that
increases the cost of each of those paths above some threshold
such as the value of the data stored in the system. The Naor-and-
Brutlag algorithm also gives the number of 5-optimal paths.
Therefore, one can use the following greedy algorithm: for
defense di, compute the total gain gi (increase in cost or decrease
in success probability) over all the paths. Let ci be the cost of
defense d i. Choose the most cost-effective defense (the one which
maximizes (gi / cl)). Iterate until all paths are over the threshold.
Alternatively, one can modify exact set-cover algorithms for this
problem. Because one can model airline crew scheduling as a set-
cover problem, there has been extensive work in (near) exact
methods for this problem.

The unweighted version of this defense problem can model the
placement of monitors for intrusion detection. The question
becomes: choose a minimum number of monitor placements such
that all the near-optimal attack paths are monitored at least k
times. That is, any attempt to execute any of the attacks will
potentially be observed by k (possibly nondisjoint) monitors. If
monitoring of each edge or node in the attack graph were
independent (i.e. we must pay for each monitor placed on any
edge), we have the k-hurdle problem, which can be solved
efficiently [1]. When sets of edges are affected by a single
monitor placement, the problem is still theoretically as hard as set

cover (assuming no special structure). However, it will be easier
than the weighted version in practice.

Even in the absence of automated defense-selection tools,
however, the system can serve as a defense-selection tool. A
network administrator can change the configuration file to reflect
the placement of a set of defenses, and then run the shortest-paths
analysis to determine their effect. Using global search techniques,
this iterative procedure could be automated as well.

Alternatively, a system administrator could use the attack graph as
the foundation for a simulation tool. The simulation could start
from the node where the attacker breaks in or begins. The attacker
could pick an edge (representing an attack), have the simulation
"flip a coin" to see if the path is successful according to the edge
probability, and if successful, the attacker continues down the
path, otherwise, she backtracks. This kind of a model could
represent the real behavior of attackers (going down one branch,
figuring that it is too difficult to do something such as get root on
a particular machine, so backing up and trying another method.
This is one of the attacker models for which Dacier et al. compute
METF). Another strategy would be that the attacker chooses his
next attack edge based on configuration knowledge of all
outgoing links, plus an estimate of the shortest path from
neighboring nodes. The success probabilities used in the
simulation can change dynamically to reflect the success/failure
the attacker has had so far (i.e. as the attacker learns more about
the particular system). This simulation technique would be
appropriate for a graphical user interface which could show a
network designer the paths the attacker is most likely to take (for
example, by lighting up nodes with a green light as the attacker is
successful, and displaying a red light where the attacker gets
blocked).

5. I M P L E M E N T A T I O N ISSUES
There are a number of implementation issues which must be
resolved when the system is tested on large datasets. For
example, it may be useful to allow some hierarchy in the attack
graph generation. If there is a common set of attack paths that
allow an attacker to become root from a normal user account on
the same machine, this could be a useful building block. If
multiple machines have identical parameters, this subgraph need
only be built once. It can be collapsed to one edge, with the
option of expanding the graph for the system administrator via the
user interface.

For each piece of the configuration or attacker profile files, it
would be useful to maintain a list of edges whose probability was
influenced by that attribute. This will allow quick recomputation
of edge weights if a configuration or attacker parameter is
changed. However, it is more challenging to leave such a "trail"
for pieces that were missing in the configuration file or lead to
edges not existing.

Instantiation functions could become quite complicated. For
example, suppose one is searching for the universe of possible
consequences from a break-in. In "spam" attacks on networks, an
attack is replicated on many machines, tf one wants to predict the
number of machines comprortused, the instantiation function must
have an inclusion/exclusion calculation if the weights are
probabilities.

The instantiation function may generate multiple nodes if
reachability is a condition on an edge and there are multiple

77

routers between a pair of machines. The steps necessary for
routing a message, telnet session, etc., are explicitly included in
the attack graph because this access is an important security
parameter. If a worrisome attack path involves going through
multiple routers, the system administrator has the option of
modifying the access-control tables to forbid the access.

There are two possible ways to represent the users and/or
machines in a node: as an explicit list, or as a list of conditions
(from edge conditions). Since each condition is associated with
an instantiation function, one can go from condition lists to
explicit user lists. Both representations could be used in different
parts of the attack graph during generation depending upon the
ways the lists will be refined. For example, the list-of-conditions
method may be better for matching.

Another issue is how to model attacks that require access to two
different user accounts possibly on two different machines. This
could be done as a 2-step process in the attack template. However,
in the attack graph, getting access to two users' accounts is highly
correlated within the various attacks, and this correlation must be
incorporated into both instantiation functions. Therefore,
obtaining access to two or more accounts should probably be
combined as a single atomic event. Since we expect most attacks
to require access to only a small number of accounts
simultaneously, this consolidation/duplication should not cause
overwhelming graph expansion.

Matching methods will evolve experimentally. However,
unification techniques used in logic programming languages are a
natural starting place. It is possible that using lists of conditions,
one can search the set of generated nodes efficiently using
hashing techniques.

6. CONCLUSIONS
We have spoken with computer security experts, and the general
consensus is that an attack-graph analysis could work well for
modeling enterprise-level (commercial or military) network risks.
We would like to take this work further and develop a robust tool
with a graphical interface which is easy to use and which links to
a large list of vulnerabilities, such as the databases that
commercial vendors (i.e., lntemet Security Systems' X-force
database) have created or that CERT has compiled. We envision
that the user could choose to view representations of all near-
optimal paths, or individual high risk paths. He/she could
examine edges of interest, obtain relevant topology or
configuration information, or choose to ignore some
vulnerabilities, recompute the graph, and review. In addition, the
attack graph would allow system administrators to look at
potentially high-risk paths, even if there are no vulnerabilities on
individual portions of them.

This paper has presented a method for risk analysis of computer
networks. The method is based on the idea of an attack graph
which represents attack states and the transitions between them.
The attack graph can be used to identify attack paths that are most
likely to succeed, or to simulate various attacks. The attack graph
could also be used to identify undesirable activities an attacker
could perform once they entered the network. The major advance
of this method over other computer security risk methods is that it
considers the physical network topology in conjunction with the
set of attacks. Thus, it goes beyond the scanning tools that are

currently available which check a "laundry list" of services or
conditions that are enabled on a particular machine.

The method we have presented addresses many of the modeling
issues that current scanning technology cannot. Specifically, our
graph-based approach allows for modeling dynamic aspects of the
network (this can be done by overwriting the configuration file as
the attacker makes system changes). Our approach allows for
several levels of attacker capability that can change dynamically.
It allows for the modeling of user access levels and transitions
between them, which are critical in network security. And it
represents the time dependencies in sequences of attacks. We
would like to examine the possibility of using the attack graph
approach, especially the idea of attack templates, for testing
intrusion detection systems. The attack graph could also be the
basis for identifying the most cost-effective set and placement of
defenses.

There are potential limitations with our method. We have not
generated a realistic size attack graph based on 10 or 20
templates, and we have not resolved all of the issues associated
with the matching of templates to configuration and attacker
profile. Also, the existence of attack templates and of the
configuration file could be another vulnerability in itself. If these
got into the wrong hands, they would be very valuable tools for
the attacker. However, we believe that the approach we have
presented is an advance in network-vulnerability modeling and
will ultimately help network security if implemented in a
reasonable way.

7. ACKNOWLEDGMENTS
Timothy Gaylor, formerly at Sandia National Laboratories and
currently at 3M, was instrumental in the development of the
approach in this paper. The basic notion of an attack graph is due
to Fred Cohen of Sandia National Laboratories. The authors also
thank Stefan Chakerian, Greg Wyss, and John Howard of Sandia
National Laboratories and Jean Camp at the Kennedy School of
Government/Harvard University for helpful and insightful
discussions. This work was supported in part by the United States
Department of Energy under contract DE-AC04-94AL85000.

8. REFERENCES
[1] Burch, C., Krumke, S., Marathe, M., Phillips C., and

Sundberg, E. "Multicriteria Approximation Through
Decomposition", submitted, 1998.

[2] Cherkassky, B.V., A.V. Goldberg, and T. Radzik. "Shortest
Paths Algorithms: Theory and Experimental Evaluation,"
Math Programming, 73, pp.129--174, 1996. Web site:
http://www.neci .nj .nec.com/homepages/avg/soft/so ft.html

[3] Dacier, M., Y. Deswarte, and M. Kaaniche. "Quantitative
Assessment of Operational Security: Models and Tools."
LAAS Research Report 96493, May 1996.

[4] Denning, D. E. "An Intrusion-Detection Model." IEEE
Transactions on Software Engineering, 13(2), 1987.

[5] Garey, M. R. and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, NY, 1979.

[6] Howard, J. D. "An Analysis of Security Incidents on the
Internet, 1989-1995." Doctoral dissertation, Carnegie
Mellon University, 1997.

78

[7] Internet Security Systems, Inc. 41 Perimeter Center East,
Suite 550, Atlanta, GA 30346. Creator of the X-force
database, accessed via http://www.iss.net/xforce.

[8] Lundqvist, U. and E. Jonsson. "A Map of Security Risks
associated with using COTS." Computer, 31(6): 60-66,
1998.

[9] Lunt, T. F. "A Survey of Intrusion Detection Techniques."
Computers and Security 12, pp. 405-418, 1993.

[10] Meadows, C., "A representation of Protocol Attacks for
Risk Assessment", Network Threats, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
Vol. 38, R. N. Wright and P.G. Neumann editors, American
Mathematical Society, pp. 1-10.

[11] Moskowithz, I.S, and M. H. Kang, "An Insecurity Flow
Model", Proceedings of the Sixth New Security Paradigms
Workshop", Langdale, Cumbria, UK, September, 1997, pp.
61-74.

[12] Naor, D. and D. Brutlag, "On suboptimal alignment of
biological sequences," Proceedings of the 4th annual
Symposium on Combinatorial Pattern Matching, Springer
Verlag, 1993, pp. 179-196.

[13] Ortalo, R., Y. Deswarte, and M. Ka~niche, "Experimenting
with Quantitative Evaluation Tools for Monitoring
Operational Security", in Dependable Computing for Critical
Applications 6 (DCCA'6), (M.Dal Cin, C. Meadows and
W.H. Sanders, Eds.), Grainau, Germany, March 5-7 1997,
Dependable Computing and Fault-Tolerant Systems, vol. 11,

pp.307-328, ISBN 0-8186-8009-1, IEEE Computer Society
Press, 1998.

[14]Ortalo, R., Y. Deswarte, "Quantitative Evaluation of
Information System Security", in Global IT Security, Proc. of
the IFIP TC11 14th International Conference on Information
Security (IFIP/SEC'98), (G. Papp, R. Posch, eds.), August 31
- September 4, Vienna-Budapest, Austria-Hungary, Austrian
Computer Society, ISBN 3-85403-116-5, pp. 321-332, 1998.

[15] Phillips, C. A., "The network inhibition problem,"
Proceedings of the 25 th Annual ACM Symposium on the
Theory of Computing, May 16-18, 1993, pp. 776-785.

[16] Presidential Commission on Critical Infrastructure
Protection. Commission Report "Critical Foundations:
Protecting America's Infrastructures," October 1997.
Available at: http:l/www.pccip.govlreport index.html

[17] SATAN. (Security Administrator Tool for Analyzing
Networks) tool. SATAN's creators, Mr. Dan Farmer and
Mr. Wietse Venema, made SATAN widely available over the
Internet without cost starting April 5, 1995. It can be
obtained from the web site:
http:/l 142.3.223.54/~short/SECURITY/satan.html

[18] Tayi, G., Rosencrantz, D. and S. Ravi. "Path Problems in
Networks with Vector Valued Edge Weights." Submitted
for publication, October 1997.

[19] Wyss, G. D., Schriner, H. K., and T. R. Gaylor (1996).
"Probabilistic Logic Modeling of for Hybrid Network
Architectures." Published in the Proceedings of the 21st
IEEE Conference on Local Computer Networks.

79

