
Meta Objects for Access Control: 
A Formal Model for Role-Based Principals 

Thomas Riechmann 
Martensstr. 1, D-91058 Erlangen 
University of Edangen, Germany 

Dept. of Computer Science IV 
+49-9131-85-2-7269 

riechmann @cs.fau.de 
http://www4.cs.fau.de/-riechmann/ 

Franz J. Hauck 
Martensstr. 1, D-91058 Erlangen 
University of Erlangen, Germany 

Dept. of Computer Science IV 
+49-9131-85-2-7906 
hauck@cs.fau.de 

http://www4.cs.fau.de/-hauck/ 

*This work is supported by the Deutsche Forschungsgemeinschaft DFG Grant Sonderforschungsbereich SFB 182, Project B2. 

Abstract 

Object-based programming is becoming more and more popular 
and is currently conquering the world of distributed programming 
models. In object-based systems access control is often based on ca- 
pabilities, despite the difficulty to keep track of their distribution. 
Access control lists are used only rarely, as information about the 
principal on whose behalf an operation is to be executed is needed 
and it is difficult to determine which principal information to use for 
a specific method invocation. Current object-based systems use do- 
main-based or thread-based principals. Domains or threads are as- 
sociated with principals. If a specific object or a specific thread in- 
vokes a method, the invocation is always executed on that princi- 
pal's behalf. Both policies suffer from the reference proxy problem: 
A low privileged object can pass references to a highly privileged 
object and may animate it to call methods with its high privileges 
via these obtained references (Unix S-bit problem). As there are no 
formal models for such systems, we cannot decide if such a situa- 
tion actually occurs. On the other hand, most mandatory access con- 
trol policies (where we have formal models) are too restrictive for 
many applications. In this paper, we introduce role-based princi- 
pals. An object domain may act in different roles to different other 
parties. Each object reference to objects of other domains is associ- 
ated with a specific role, which determines trust, authentication (i.e., 
which principal information to use) and allowed data flow via the 
reference. Exchanged references automatically inherit the role. By 
initially defining such roles, we can establish a security policy on a 
very high abstraction level. We provide a formal model and present 
two examples, where we show that we can prove that accidental 
propagation of references and unintentional use of privileges are 
prevented. 

Permission to make digital or hard copies of aS1 or part of this work for 
personal or classroom use is granted wi thout  fee provided that 
copies are not made or distributed for prof i I  or commercial advan- 
tage and that copies bear this notice and the full ci tat ion on the first page. 
To copy otherwise, to republish, to post on servers or to  
redistribute to lists, requires prior specific permission and/or a fee. 
1998 NSPW 9/98  Charlottsvil le, VA, USA 
© 1999 ACM 1-58113-168-2 /99 /O007. . .  $ 5 .00 

I Introduction 
The object-based programming paradigm is becoming more and 
more popular. Currently, it is conquering the world of distributed 
programming models. There are two basic paradigms for access 
control in such systems. Capabilities [2], [18], [6], [16], [8] is the 
most obvious one: An object reference is per se a capability. Capa- 
bilities suffer from the disadvantage that it is hard to keep track of 
their distribution [5]. It is hard to determine, who is able to access a 
specific object. It is also difficult to do auditing and accounting in 
pure capability-based systems. 

So most object-based systems additionally support access control 
lists (ACLs), Examples are CORBA [I0], DSOM [1], and Legion 
[19]. With ACLs it is easy to determine who has access to specific 
objects; auditing and accounting are easily implemented. For each 
operation (that is, each method invocation) information about the 
principal on whose behalf an operation is to be executed is needed. 
For each method invocation, such principal information may be 
provided by the caller. Then the invocation is executed on behalf of 
that principal. The principal is held responsible for the call and ac- 
cess checks can be done. 
In object-based environments, there are three common policies for 
the decision on how to provide principal information for method in- 
vocation [17]: 

• The principal information can be provided explicitly for 
each call. 

• The principal information can be bound to objects or groups 
of objects (e.g., domains). Examples are DSOM, Java [13], 
Legion, and Unix. An object uses the same principal infor- 
mation for every call it executes (object-group--based prin- 
cipals). 

• The principal information can be bound to threads (e.g., 
Java-l.2 [15] uses a mixture of a domain-based and a 
thread-based model). All invocations executed by a thread 
use the thread's principal information. 

These three policies suffer from disadvantages: Call-based decision 
leads to an unstructured and distributed security policy. An object- 
group--based decision suffers from the reference proxy problem: a 
low-privileged application part can pass object references to a high- 
privileged application part to make that part accidently call methods 

30 



via that references with its high privileges. Thread-based decision 
suffers from the callback problem: If a privileged thread invokes 
methods of an untmsted object, the untrusted object gets all privi- 
leges of the thread. 

Additionally, all of these policies have another disadvantage in 
common: there are no formal models to check if the above men- 
tioned problems actually occur in a system. 

On the other hand for most systems and applications mandatory 
policies like multilevel security or role-based access control 
(RBAC, [3]) are too restrictive and even RBAC can suffer from the 

above mentioned problems 1. 

In this paper, we introduce a new security paradigm which elimi- 
nates these problems. Our mechanism allows us to configure roles: 
An application part can act in different roles to different other par- 
ties. It can use different principal information for authentication for 
different roles (role-basedprincipals). In Fig. 1, the system admin- 
istration application is a highly privileged application: it has privi- 
leges to alter the system's password database. On the other hand it 
does not need these privileges for printing. With role-based princi- 
pals we can define two roles which are assigned to two different 
principals and are used in these two different situations. 

password database application [ act a~s gtii,t~ I 
act~as system administration ~ 

system administrator standard user 

Fig. 1 Role-based principals 

As we consider object-oriented systems, we assign roles to object 
references: The system administration application has, for example, 
an object reference to the printer object which is associated with the 
role "standard user". Our system administration application might 
even have a second reference to the printer object for administrating 
the printer (e.g., resetting it) with administration privileges (role 
"system administrator"). We have the principle of least privilege on 
a per-reference basis: The application only uses the minimal privi- 
leges it needs for interaction with other parties. The configuration 
of these roles is orthogonal to the application implementation and 
is automatically applied to object references that are exchanged be- 
tween application parts. 

We achieve that with so-called Security Meta Objects (SMOs) [11]. 
Such an SMO can be attached to an object reference. It can provide 
principal information for method invocation, keeps track of refer- 
ences that are passed due to method calls and can do access checks. 
In this paper we will concentrate on SMOs that provide principal in- 
formation and keep track of references. 

Each SMO is associated with a specific role and implements the 
role-specific behavior, for example, which principal information to 
use for method invocations and what to do with passed parameters 
and return values (exchanged references). When such an SMO is at- 
tached to a reference, calls via this reference are automatically pro- 
cessed by the SMO and use the role-specific behavior of the SMO. 

1. RBAC is a sort of mandatory access control. A princi- 
pal can choose a specific role from a set of roles associ- 
ated with it. In that role it can execute transactions 
which are assigned to that role. The roles are indepen- 
dent of each other, so security problems between differ- 
ent roles can be prevented. But, when used in object- 
oriented environments, for each role the allowed trans- 
actions have to be selected carefully. Otherwise the 
thread-based-principal problem occurs. 

In many object-oriented systems object references, which are in 
fact capabilities, can be passed without restriction. As an object ref- 
erence with attached SMO is a capability for method invocations on 
behalf of a specific principal, we have to restrict propagation of 
such references. We define so-called virtual object domains, which 
contain a set of objects and object references (e.g., the above men- 
tioned "system administration application" may be such a domain). 
If an object reference leaves such a domain (that is, the capability is 
passed to objects outside of the domain), our SMOs are invoked and 
they can deny passing or remove the principal-providing SMO from 
the reference before it is actually passed. 

We define a formal model for SMOs that allows to analyze systems 
built with SMOs. Our formal model defines the semantics of SMOs 
exactly. We will show that we are able to prove specific properties 
of such systems. 

The paper is structured as follows: In Section 2 we introduce SMOs 
and virtual object domains and present the basic idea of our security 
mechanism. In Section 3 we define the formal model for SMOs. In 
Section 4 we show two applications of our formal model. 

2 Security Meta Objects and Virtual 
Domains 

In this section we explain SMOs and what we call a virtual object 
domain. Although SMOs can also be used to restrict access via a 
reference ([ 11 ], [ 12]), we will concentrate on the possibility to pro- 
vide principal information and restrict propagation of object refer- 
ences. 

As in most object-based models, we see object references as capa- 
bilities. If a client has an object reference at hand, it can access the 
corresponding object. If a client cannot get an object reference to an 
object, it is not able to access it. We extend this simple model by 
adding the possibility to attach one or more special objects to an ob- 
ject reference. These special objects are invoked for each security- 
relevant operation on the object reference. The special objects are 
not visible to the application; that is, protected and unprotected ob- 
ject references look the same to the application. In general, such 
special objects can be considered as meta objects [7]; we call them 
Security Meta Objects or SMOs for short. 

~ a n O b j e c t )  Ce zD 

Reference 

Fig. 2 A reference with an attached security meta object 

SMOs are attached on a per-reference basis. There may be many 
references to an object, each with a different set of attached SMOs. 
Fig. 2 shows an object reference stored in variable v l ,  which has a 
meta object anSMO attached to it. The SMO is invoked each time a 
method is called via this reference. There may be other references 
to the same object in the system, with no, another, or even multiple 
SMOs attached to it (e.g., the reference stored in variable v2).  

We will only look at SMOs that affect distribution of references and 
provide principal information. For example, in Fig. 2 the object 
a n O b j  e c t  may be only accessible by a specific principal (this re- 
striction could be implemented by an access control list in object 
a n O b j  ec t2) .  In our model, principal information (information 

31 



about on whose behalf a call is to be executed) is provided by 
SMOs. Thus, a n O b j e c t  may be accessible via the reference 
stored in e l ,  if anSl~O provides the required principal information. 
In our example v l  is a capability for method invocations to object 
anObj  ec  t: on behalf of a specific principal. 

SMOs are also able to keep track of object references which are to 
be propagated due to method invocations: If a method is to be in- 
voked via a reference with SMO attached, each parameter of the in- 
vocation is passed to the SMO, The SMO might cancel the method 
invocation by disallowing the parameter to be passed or it might at- 
tach or detach SMOs to or from the parameter. We use this mecha- 
nism to implement virtual domains. 

2 . 1  V i r t u a l  D o m a i n s  

Our model is just based on SMOs. They implement the functional- 
ity of providing principal information and restricting propagation of 
references. SMOs seem to suffer from the disadvantage of distrib- 
uted policies (each SMO implements a part of the policy). If we 
look at a system with SMOs, it is very difficult to determine the glo- 
bal security policy. That is why we introduce so-called virtual do- 
mains as a global property of the system. If initially SMOs are at- 
tached to cross-domain references in a certain way the SMOs will 
take care of this property and establish the virtual domain. 

A virtual domain consists of objects and object references. Only ob- 
jects in a domain are able to use the object references of the domain. 
An object domain may have different roles. For example, objects of 
the domain may act on behalf of different principals when interact- 
ing with other domains: Object references to other domains may 
have different SMOs with different principal information attached 
to them. As such object references are capabilities for method invo- 
cation on behalf of a specific principal, we have to be careful: if we 
pass such a reference to another domain, that domain is able to act 
on behalf of that principal. In Fig. 3 we have one domain d l  with a 
reference or with no SMO attached to it. If we call a method via this 
reference with parameter (e.g., or.method(p)), we may pass a pa- 
rameter with principal SMO attached (p is passed as pn). The  target 
domain is able to act on that principal's behalf. 

/ dl  

I 
I 

\ 

l /  d l  

] 

i N 
\ 

Fig. 3 

I 

act as principal x / 

or.method(p) \ ~ f 

act as principal x / 

Passing principal-SMO-attached references via 
unprotected references is dangerous 

. We can also implement such access control lists with 
SMOs, but in this paper we will not examines such 
SMOs. 

In some special cases we might want to delegate our rights, but cer- 
tainly not in general. Usually, when we have a reference with a prin- 
cipal SMO attached, we only want our object domain to be able to 
act on the principal's behalf. As mentioned above, SMOs are able 
to keep track of passed references. We use that feature to remove 
principal SMOs, when references leave a domain. 

We have to make sure, that our SMOs are invoked, when references 
leave the domain. The only way to do so is to have SMOs attached 
to all references which refer to other domains. So, references like 
o r  in Fig. 3 must not exist in our system; Fig. 3 shows an invalid 
state of our system. 

I 
i 

' N \ 

l /  dl  

I 

\ 

Fig. 4 

act as principal x / 

or.method(p) ~ ~ f f  

act as principal x / 

SMOs are removed automatically when 
leaving a domain 

In Fig. 4 shows a secure state. The references or  and p are protected 
by SMOs. When the parameter p is to be p~/ssed, it is first given to 
the SMO m2, which controls the invocation. It notices the attached 
SMO m l  and removes it. 

Let us now examine, what happens, if we have references into a do- 
main. In Fig. 5 we have a reference or, which points into domain d l .  
If we call a method which returns a reference (e.g., rn=or.meth- 
od0), we again pass a principal SMO reference out of our domain. 

\ [ ~ ]  act a 
~ re=or.method( ) 

I [ ~ ]  s p d n c i ~ p ~  x ~ palx 
\ act a 

Fig. 5 References into a domain without SMO attached are 
dangerous, too. 

So, also references into a domain have to be protected with an SMO 
(Fig. 6). The SMO for such references has to be different: our do- 
main d l  does not want, for example, to provide principal informa- 
tion for method invocations via object reference or. Instead of using 
completely different SMOs, we define two sorts of attachments: 
source attachment (src) and destination attachment (ds0. If an SMO 

32 



is attached in source mode, it provides principal information. If it is 
attached in destination mode, it does not provide principal informa- 
tion. Source-attached and destination-attached SMOs keep track of 
exchanged references: If we pass parameters via references with 
source-attached SMO or pass return values via references with des- 
tination-attached SMO, these references leave our domain (in our 
formal model, which we will describe later, the function out of the 
SMO is called). Parameters passed via references with destination- 
attached SMO or return values passed via references with source- 
attached SMO enter our domain (the function in of the SMO is 
called). 

f 

I ~ f "  ~ src-attached 

I ( ~ ) ,  } 011 dst-attached 

O \ -.. act 

/ ~ m = or. method( ) 

1\ ~ a c t  

Fig. 6 SMOs are removed automatically 
when leaving a domain 

Let us now present an example with two domains. In Fig. 7 (upper 
part) we have two object domains: d l  and d2. Initially d l  has the 
object reference o r  to an object in d2. Because the boundaries of 
d2 and d2 are crossed, it has two SMOs ml and m2 attached to it. 
The SMO ral is attached in source mode, ra2 is attached in destina- 
tion mode. Let us assume, in dl the method call 
r n - - o r ,  someMethod (p) is executed. This method call passesp 
as parameter. The parameter is stored in the target domain d2 and 
it returns r as result. 

When calling the method, principal information may be provided 
by ml to authenticate the call. The SMO m2 may not provide prin- 
cipal information, as only source-attached SMOs may provide prin- 
cipal information in our model. 

The parameter p is passed via the reference o r  to domain d2. The 
SMOs have to keep the virtual domain property. In our example 
they simply attach themselves to the passed object references (p, 
r). Note, that after the method call invocations via r n  are authenti- 
cated by the principal information ml provides; calls via pn  are au- 
thenticated by the principal information provided by ra2 (if it pro- 
vides principal information). 

The SMOs (e.g., ml)  implement a specific policy (e.g., provide 
principal information) for a specific role: The initial object refer- 
ence or and all resulting object references (rn, pn) inherit that role. 
The SMOs use the same policy for such references. There may be 
other references from dl  to d2 or to other domains with different 
roles (that is, with different SMOs attached to them, which can pro- 
vide different principal information). 

In the next section we will provide a formal model for our SMOs 
and define the semantics of the SMOs exactly. 

/ d l  I"i-1 ,K ~ ~ ( - - - - - - - ~  
I L__l 

I 

I I 
I / / 
\._ / \ . _  / 

a l  "~ ~ rn=or.meth(p)/ " -  / 
I"7771 ~ ~ , . _ / - - - - - - " ~  

Fig. 7 Method invocation to another domain 

3 T h e  f o r m a l  m o d e l  

Let us now present a formal model for Security Meta Objects. As 
the general model for SMOs is quite complicated, we will just for- 
malize one aspect of SMOs: the implementation of virtual object 
domains with SMOs. 

Thus, our model only contains virtual object domains and the acces- 
sibility of object references from an object domain. Our model does 
not consider the state of objects. In fact, the formal model does not 
even consider objects, but only object references. Such an object 
reference has a source domain, that is the domain, from where the 
reference is accessible, and a target, that is the domain containing 
the target object of the reference. As the target object of the refer- 
ence is not important, we do not include objects in our model. Only 
the domain, which contains the target object, is important. In this 
section we will only examine propagation of references. In the next 
section we will assign principal information to references and im- 
plement role-based principals. 

3.1 B a s i c  de f in i t i ons  

We define the following sets: 

D = set of object domains 

M = set of meta objects 

A = set of meta attachments = {src, dst} × M 

So a meta attachment consists of the type of attachment (we have 
two types of attachments: src and dst) and a meta object. An exam- 
ple for such an attachment is: (src, ml) .  

An object reference consists of a list of attachments and a target ob- 
ject. As the target object is not important, we only look at the list of 
attachments. We define the set of object references as follows: 

OR = set of object references = A* 

An example of an object reference is: 

( (src, m 1 ), (src, m2), ( dst, m3)). 

33 



The object domains are organized hierarchically (Fig.8). 

Fig. 8 Object domains  

The function parent  defines the encapsulating domain. For exam- 
ple, parent(d2)  is d/ .  
p a r e n t :  D u { 2 _ } - - ) D u { 2 _ }  

The symbol 2_ means "undefined". The function parent  is hierar- 
chical: it has no cycles. So if  we apply parent  several times to a do- 
main, the result is a top-level domain, which has no parent (that is, 
parent  of the top-level domain is 2_ ). 

parent(&) = .L 

Vd  ~ D: 3n ~ N: parent(n)(d) = 2- 

There may be more than one top-level domain. The set of top-level 
domains can be computed as follows: 

Dro p = {d ~ D lparen t (d )=  2_} 

3.2 Domains 

Now we have to define the relation of meta objects and object ref- 
erences to domains. Each meta object is assigned to a domain. It can 
only be used by that domain. We use the function metadom to define 
this assignment. Note, that top-level domains cannot contain 
SMOs. 

metadom : M ~ D\DTo p (defines the location of an SMO) 

We need a similar function for object references. It assigns a do- 
main to an object reference. The reference is valid in that domain, 
that is, only objects located in that domain may be able to use the 
object reference for method invocations. We call that function dora. 
Note, that dora is a function, which means that an object reference 
is only valid in one domain. For example, an object reference can- 
not be passed to another domain without being changed, as we will 
see later. The function dom either assigns a domain to an object ref- 
erence, which means that the object reference may exist in the as- 
signed domain, or it is undefined, which means that the object ref- 
erence is invalid and cannot exist in our system. I f d o m  assigns a do- 
main to a reference, the reference may or may not exist, but if it 
exists, it is in that domain. The function dora is recursively defined 
by the following: 
dora : OR v {2-} ~ D v  {2-} 

dom(2-) = 2-, dora( ( ) ) = 2- 

rnetadom(m) if or = ( ) v 
dom((src, m), or) = dora(or) = p a r e n t ( m e t a d o m ( m ) )  

2_ else 

paren t (metadom(ra) )  if or = ( ) v 
dom((dst, m), or) = dom(or)  = me tadom(m)  

2_ else 

Additionally, we define the function "target" which defines the tar- 
get domain, that is the domain, where the target object of an object 
reference is located. 
targe t  : OR v {2_} --) D u {2_} 

target(Z)  = 2-, target(  ( ) ) = _k 

me tadom(m)  
target(or,  (dst,m)) = if dom(or,  (dst, m)) :# Z 

_1_ else 

p a r e n t ( m e t a d o m ( m ) )  
target(or,  (src,m)) = if dora(or, (src,m)) ~ 2- 

2_ else 

Let us have an example for a valid object reference. In Fig. 9 we 
have four domains. The relations between the domains and meta 
objects are as shown: 
for example, parent (d2)  = d l  and metadorn(m3) = d 4 .  

The object reference or = ( (src ,m I ), (ds t ,m2) ,  (dst,  m3)) is a valid 
object reference with dom(or) = d2 and targe t (or )  = d4.  That 

means, that or might exist in our system and if it exists, it is in do- 
main d2. 

Fig. 9 Object reference example 

3.3 Method invocations 
The definitions in the previous section are static and do not define, 
which object references actually exist in our system. So let us now 
define a "current state" of our system and define how the state of the 
system can change. 

The system itself is defined by the above-mentioned sets D and M 
and the functions metadom and parent.  All other sets and functions 
(e.g., dom and target) result from these definitions. 

The current state of our system is completely defined by the set of  
object references that currently exist. The current state can only 
contain valid object references: 

O R c u r ~ O R ,  V o r E  ORcur: dom(or)  C=..l_vor = ( )  

If an object reference is in that set, the statically defined functions 
dora and target compute, where the target object is and in which do- 
main the reference exists. 

The system starts with a set of  initial object references ORinit. T i le  

only way to change the state of the system is via method invoca- 
tions. Thus, if we invoke a method, new object references may be 
created and added to the set of  current object references. 

The function meth  executes a method invocation. We start with a 
current state OR~ and apply a method invocation to that state. Af- 

terwards we have a state OR 2 . For the method invocation we need 

a target object reference (or), a parameter (p), and a return value (r). 
In our model we only look at method invocations with one param- 
eter and one return value. Method invocations take no time, that is, 
during an invocation no other invocation can take place. That is no 
limitation, because all other cases can be implemented with our 

34 



model. Passing several parameters can be implemented by calling a 
method several times. Invocations without parameter can be imple- 
mented by passing a dummy object. Methods that take a long time 
to execute, can be implemented by two method invocations: one at 
the beginning of the "real" method invocation and one at the end. 

In this section we sometimes need the empty reference () .  This is a 
reference inside one domain without SMOs attached ("local object 
reference"). We do not examine method invocations via such a ref- 
erence, as they cannot propagate object references to other do- 
mains. But we examine method invocations with local object refer- 
ences as parameter or return value. The empty reference ( ) is the 
only valid reference with dora(( ))=.1_. 

As our model only covers distribution of object references, we do 
not need information about the method to be invoked. We assume 
that the target object domain stores the object reference and that the 
calling object domain stores the return value. 
OR 2 = meth(ORl ,  or, p, r) 

with ORi, O R 2 ~ O R ;  o r e  OR1; p , r ~  O R i u { (  )} 

Such a method invocation passes two object references: the param- 
eter and the return value. The function meth just adds these two ob- 
ject references, which are computed by the func t ionsparam and ret, 
to the set of current object references in the system. 
meth(OR 1, or, p, r) = 

OR! U {param(or ,  p)} u {ret(or ,  r)} 

if (dom(or)  = dom(p)  v p = ( )) ^ ret(or,  r) g.L ^ 

( targe t (or)  = dom(r)  v r = ( ) )  ^ param(or ,  p) ~ _l. 

OR 1 else 

Now we have to define the functions param and ret. 

param((  ) ,p )  = p 

param(( ( src ,  m), or), p)  = param(or ,  outm(p) ) 

param(( (ds t ,  m), or), p) = param(or ,  into(p) ) 

re t ( (  ), r) = r 

ret((or,  (src, m)), r) = ret(or,  into(r)) 

ret((or,  (dst, m)), r) = ret(or,  outm(r)) 

The functions in and out  are provided by each meta object. They de- 
fine how passed references are protected. These two functions must 
have specific properties, because the passed references have to fit 
into our domain model, that is, they have to be valid object referenc- 
es. We do not define these properties. Instead we present an imple- 
mentation of in and out  and prove that only valid object references 
are created by them. 
into(p) = ((src,  m), p) 

OUtm(( )) = I 
_L if ~a l lowm((  )) 

t (dst, m) else 

or) = I .1_ if ~allowm((Src,  m2), or) OUtm((Src, m2), 
t or else 

/ _l. if-~allowm((dst, m2), or) 
OUtra( (dst, m2), or) [ ((dst,  m), (dst, m2) , or) else 

There is just the boolean function allow left, which is defined by 
each meta object. We will now prove, that with these functions in 
and out  only valid object references can be created. 

So we have to prove, that parameters and return values are valid in 
the domain where they are passed to: 

(1) dora(or) ~ _1_ ̂  (dora(p) = dom(or)  v p = ( ) )  
param(or ,  p) ~ {() ,  _1.} v 

dom(param(or ,  p))  = target (or)  

(II) target (or)  a.l_ ^ (dora(r) = targe t (or )  v r = ( ) )  
ret(or,  r) ~ {() ,  _1.} v dom(re t (or ,  r)) = dora(or) 

We will now present the outline for the proof for the f unc t ionparam 

(I). If one of the called out functions returns .1., the param function 
returns undefined and (I) is true. So we will not examine that case 
in our proof. In our proof we do not look at some special cases, for 
example, that the parameter (p) may become empty. As we just 
want to present an outline, we do not show the proof for this special 
case. 

First we present the proof for object references with size I. After- 
wards we assume, that we already have the proof for object refer- 
ences with size n and proof (I) for object references of size n+l .  
So we assume, 

dom(or)  ~ _1_ ̂  (dora(p) = dom(or)  v p = ( ) )  

For object references of size 1 there are two possibilities. 

(1) or = (src, m) 

( la)  p =  ((dst,  m 2 ) , P 2 ) v P  = ( ) 

dorn(param(or,  p) )  = dom(outm(p)  ) = dom((ds t ,  m), p) = 
p a r e n t ( m e t a d o m ( m ) )  = targe t (or)  

q.e.d. 

( lb)  p = ((src,  m2), P2) 

dom(param(or ,  p) )  = dom(out ,n(p))  = 
dom(P2) = paren t (me tadom(m2)  ) 

= p a r e n t ( m e t a d o m ( m ) )  = targe t (or)  

q.e.d. 

(2) or = (dst, m) 

dom(param(or ,  p) )  = dom(inm(P) ) = dom((src ,  m ) , p )  = 
rnetadom(m) = target (or)  

q.e.d. 
Now we assume that we already have proved (I) for object referenc- 
es of size n. 
So or has size n+l .  There are again two possibilities: 

(1) or = ((src,  m), orz) 

( la)  p = ((dst ,  m2), P2) v p = ( ) 

dom(param(or ,  p) )  = dom(param(or2 ,  ((dst ,  m), p)))  

As 

dora(or2) = parent(dora(or))  = 
p a r e n t ( m e t a d o m ( m ) )  = dom((ds t ,  m), p)  

we use our assumption: 

d o m ( p a r a m ( o r  2, ((dst ,  m), p))) = target(or2)  = targe t (or)  

q.e.d. 

( lb)  p = ((src,  m2), P2) 

dom(param(or ,  p ) )  = dom(param(or2 ,  P2)) 

As dom(or  2) = dom(p2) 

we use our assumption: 

d ° m ( p a r a m ( ° r 2 ,  P2)) = target(°r2)  = targe t (or )  

q.e.d. 

(2) or = ((dst ,  m), or2) 

dom(param(or ,  p) )  = d o m ( p a r a m ( o r  2, ((src, m), p))) 

35 



As or is valid, we have: 

dora(or2) = metadom(m) = dom((src, m), p) 

and from our assumption follows: 

dom(param(or2, ((src, m), p))) = target(or2) = target(or) 

q.e.d. 

As we just proved, param only creates valid object references. The 
proof for ret is nearly the same, so we do not present it here. 

3.4 Conclus ion  

Our model covers object references and their distribution. We 
showed that our meta objects keep the domains intact. Method in- 
vocations only propagate valid object references, that are references 
that consist of one SMO per domain boundary. In the next section 
we will show two example configurations. 

4 Appl icat ion of  virtual  domains  

In the previous section we provided definitions for our model. Let 
us now examine two example configurations. To define a configu- 
ration, we have to determine the basic sets (D, M), the allow func- 
tion of our meta objects and the initial state ORi~ . . We define this 

configuration and afterwards we prove specific properties of the 
system. 

4.1 The  hierarchical  domain  example  

In many systems we have hierarchical system parts. For example, 
we have a printing system containing printer spoolers and printers. 
User applications have to interact with the printer spooler and the 
printer spooler has to interact with user applications (e.g., with the 
documents, that are to be printed) and with the printers. We now as- 
sume, that the printer spooler needs special principal information to 
authenticate to the printers. The problem with the authentication 
policies mentioned in the introduction is, that malicious user appli- 
cations may trick the spooler to use its principal information. Fig. 
10 shows an example. The user application (left side) may obtain a 
reference to a temporary spool file. It cannot access that file, as it 
has neither spooler nor printer principal information to authenti- 
cate. But the application may simply try to print that file by passing 
it to the spooler, which in turn accesses it or passes it to the printer. 
With domain-based principals that would succeed, as the spooler or 
the printer would accidently use its privileges (spooler principal in- 
formation) to access that file. This is the object-oriented version of 
the Unix S-Bit problem. 

/ spooler - - .  , printer - - .  
_,~xo~ (nrotected temp. spool fil L ~ " 

Fig. 10 Pr in te r  spooler with domain-based principals 

As we will see, with hierarchical domains that kind of attack does 
not succeed. 

/ printing system (ps) ~ 

I f -" " 7 - - ~  ~ 
/ p n n t e r  (p) I [ spooler (s) \ [ 

,,.,.J.x b..~ ii 
O A\ A [] ii 

I _/1/ 
~ J 

Fig. 11 The printer spooler with hierarchical domains 

Our printing system consists of three domains (Fig. 11): the printing 
system des, the spooler d s and the printer dp. Of course, there may 

be other domains, for example, there must be a parent domain of 
dps in the system. The domains d s and dp do not have any son do- 

mains (that are domains, that have d, or d e as parent) and the do- 

main dps only has the two sons d s and dp. These domains only 

contain the SMOs m s, m v, raps, as shown in Fig. 11. Of course, there 

may be other SMOs in other domains of our system. For this con- 
figuration we do not need to restrict the distribution of object refer- 
ences, so allow(or)=true for all object references and all SMOs. 

We define the authentication policy as follows: 

• Method invocations via references containing (src, raps) 
are never authenticated. 

• Method invocations via references not containing 
(src, raps) but containing (src, rap) are authenticated with 
the printer principal information. 

• Method invocations via references not containing 
(src, mp,) but containing (src, m s) are authenticated with 
the spooler principal information. 

• All other method invocations are not authenticated or au- 
thenticated by different principal information. 3 

For this configuration we do not need any restriction for the set of 
initial references ORi~i,. We can now prove the following: 

(1) Method invocations via object references to objects in other do- 
mains than d s, dp, dps are never authenticated with the printer or 

spooler principal information. 

(2) Object references obtained via references from or to other do- 
mains than d s, dp, dps are never authenticated with the printer or 

spooler principal information. 

(1) target(or) ~ {d s, dp, dp~, i }  
30r 1, or2: or = (orp (src, mps), or2) 
V ~30r3, or4, m E {rap, ms}: or = (or3, (src, m), or4) 

. Note that we do not examine local calls. A method in- 
vocation inside the printer domain via a reference with- 
out SMOs attached to it might have to be authenticated, 
too. Otherwise the printer cannot call methods of its 
own objects. 

36 



Proof: 
We assume the opposite: 

target(or)  ~ {d s, dp, dps, .L} 
A--,3orp or2: or  = (or l, (src, mps), or2) 
A 3or3, or4: or = (or3, (src, m), or4) 

If we look at the definition of target  we find that: 

target((src,  m), or4) = target(or)  ~ {ds, dp, dps, .1_} 

But as targe t ( ( src ,  m)) = ps  ~ {ds, dp, dps, .1.} 

there must be a position in (src, m), or  4 where the target changes: 

30r5, orr, or7: (ors,  orr, or7) = ((src, m), or4) ^ Iorr[ = 1 
^ ta rge t (or s )  ~ {d  s, dp, dps, .1.} 
A target((or 5, or r ) )  ~ {d s, dp, dps, .k} 

From the definition of target  we conclude or 6 = (src, mps) , which 

contradicts our assumptions. 

q.e.d. 

For (2) we do not want to present the proof here. We will now just 
present the first half of (2) as formal expression: 

dom(or)  ~ {ds, d e, dp~, .L} A target(or)  ~ {ds, de, des } 
Vorl,  or2: param(  or, p) = (or  t, (src, raps), or2) 

v param(or ,  p) = .1_ 

So we know (1) that method invocations to objects outside of our 
domains are never authenticated, so we cannot accidently use our 
principal information for outside references. 

And we know (2) that an outside application cannot trick our ob- 
jects to use our principal information for references that are ob- 
tained from other domains. In Fig.12 we have two references from 
the printer domain to the spooler. One reference was obtained di- 
rectly from the spooler, the other one was obtained from a domain 
outside of the printing system. Calls via the internal reference are 
authenticated, calls via the other reference are not authenticated, as 
it contains the reference part (src, raps). 

f printing system (ps) - "  \ 

I - ~  / -  \ I 
I [ spooler (s) ~ , printer (p) , 

t J 
~ i I 

\ / 

Fig. 12 A reference obtained from another domain 

4.2 The disjunct interaction example 
In many applications we have disjunct interaction with other appli- 
cation parts. That means, that our application part interacts with 
other application parts, but it does not initiate interaction between 
these other application parts (although these other parts themselves 
may initiate such interaction). Let us examine our printer spooler 
example: The printer spooler interacts with the printers and with 
user applications that might want to print, but the user applications 
do not have to interact with the printer directly. For example, if a 
user application prints a text object, the printer spooler must not 
pass the reference to the printer, otherwise the printer and the user 

application interact directly. We assume, that the printer only inter- 
acts with the spooler and that external applications only interact 
with the spooler. (Fig. 13). 

f ~ f 
[ spooler (s) ] /' printer (p) 

I 
I 

Fig. 13 The printer spooler with disjunct interaction 

We need only two domains: the spooler domain d s and the printer 

domain dp .  Initially the only references to the printer should be ref- 

erences from the spooler and these references (and only these refer- 
ences) should have mp and ms2 attached to them: 

(1) 'v'mE M: ra = m p v m e t a d o m ( m ) # d p  

(2) V o r  ~ ORin . ,  or  1..3: or  = (or t, or  2, or3) 
A or  2 ~ {(src,  me), (dst ,  mp), (src, m~2), (dst,  ms2) ) 

or = ((src, ms2), (dst,  mp)) v or  = ((src, mp), (dst,  ms2)) 

For some situation condition (2) is too restrictive, as no other do- 
mains may have references to printer objects. Sometimes the printer 
references are obtained via the name server, so anybody can obtain 
such a reference, but the printer objects are protected with an access 
control list, so only the spooler may invoke methods. If we substi- 
tute (2) by this condition (which is a little more complicated), the 
following is also tree. 

Let us now define the function allow: 

(m = msl v m = ms2) 

fa l se  if 3or2: or = ((src, m2), Orz) ^ m # m  2 
allowm(or) 

t true else 

T h e  a l low  functions of the other SMOs may be t rue for all object 
references. 

With these definitions the printer spooler cannot accidently pass 
printer object references to applications and vice versa. From the 
definition of the method invocation follows, that the condition (2) is 
true for all possible states of the system. We can now define the 
principal policy as follows: 

• If an object reference contains msz, the spooler principal in- 
formation is iased. 

• In all other cases no principal information is used. 

So only calls from the spooler to the printer via references obtained 
from the printer are authenticated. Applications cannot trick the 
spooler to use aceidently its privileges to access, for example, a doc- 
ument passed to it. 

Both configurations solve the object-oriented version of the Unix S- 
Bit problem. 

37 



5 Conclusion 

We introduced a new security model based on Security Meta Ob- 
jects, which allows fine-grained configuration of the principal infor- 
mation used for authentication on a per-reference basis. The projec- 
tion to virtual object domains helps to define a global security pol- 
icy based on these meta objects. We defined a formal model which 
describes the semantics of the Security Meta Objects. We are able 
to examine possible propagation and principal information usage 
with our formal model and we showed, that we are able to prove 
such properties for two very generic configurations. We proved, that 
these configurations do not suffer from the problem of unintentional 
use of privileges (Unix S-Bit problem) and we prevent accidental 
propagation of references. We built a Java prototype, to show, that 
our security model can be implemented. 

6 References 

[I] Benantar, M.; Blakley, B.; Nadalin, A.: Approach to 
object security in Distributed SOM, IBM Systems 
Journal, Vol. 35 No. 2, 1996, New York 

[2] Dennis, J.B.; Van Horn, E.C.: "Programming Semantics 
for Multiprogrammed Computations", Comm. of the 
ACM, March 1966 

[3] Ferraiolo, D.; Kuhn, R.: "Role-based access control", 
In: 15th NIST-NCSC National Computer Security 
Conference, p. 554-563, Baltimore, Oct. 1992 

[4] Flanagan, D.: Java in a Nutshell, O'Reilly & 
Associates, 1st edition, Feb 1996 

[5] Larnpson, B.: "A Note on the Confinement Problem", 
In: Communications of the ACM 1973, October, 1973 

[6] Levy, H.: Capability-Based Computer Systems, 
Bedford, Mass.: Digital Press, 1984 

[7] Maes, P.: Computational Reflection, Ph.D. Thesis, 
Technical Report 87-2, Artificial Intelligence 
Laboratory, Vrije Universiteit Brussel, 1987 

[8] Mitchell, J. ; Gibbons, J.; Hamilton, G. et.al.: An 
Overview of the Spring System. Proc. of the Compcon 
Spring 1994 (San Francisco), Los Alamitos: IEEE, 
1994 

[9] Neumann, C. B.: "Proxy-Based Authorization and 
accounting for Distributed Systems", In: Proceedings of 
the 13th International Conference on Distributed 
Computing Systems, Pittsburgh, May 1993 

[10] OMG: CORBA Security, OMG Document Number 95- 
12-1, 1995Rashid, R.: "Threads of a New System". 
UNIX Review, 1986 

[11] Riechmann, T.; Hauck, E J.: "Meta objects for access 
control: extending capability-based security", In: Proc. 
of the ACM New Security Paradigms Paradigms 
Workshop 1997, Great Langdale, UK, Sept. 1997 

[12] Riechmann, T.; Kleintder, J.: "Meta objects for access 
control: Role-based Principals", In: Proc. of the Third 
Australasian Conference on Information Security and 
Privacy, Springer LNCS, Brisbane, Austalia, July 1998 

[13] Sun Microsystems Comp. Corp.: Hot Java: The Security 
Story, White Paper, 1995 

[14] Sun Microsystems Comp. Corp.: The Java Language 
Environment, White Paper, 1995 

[15]Sun Microsystems Comp. Corp.: Java Security 
Architecture, JDK 1.2 Beta Draft, 1997 

[16] Tanenbaum, A. S.; Mullender, S. J.; van Renesse, R.: 
"Using sparse capabilities in a distributed operating 
system." Proc. of the 6th Int. Conf. on Distr Comp. Sys., 
pp. 558-563, Amsterdam, 1986 

[17] Wallach, D. S.; Balfanz, D.; Dean, D.; Felten, E. W.: 
"Extensible Security Architecture for Java". SOSP 
1997: p. 116-128, Oct. 1997, Saint-Malt, France 

[18] Wulf, W.; Cohen, E.; Corwin, W.; Jones, A.; Levin, R.; 
Pierson, C.; Pollack, F.: "HYDRA: The Kernel of a 
Multiprocessor Operating System". Communications of  
the ACM, 1974 

[19] Wang, C.; Wulf, W.; Kienzle, D.: A New Model of 
Security for Distributed Systems, In: Proceedings of the 
1996 ACM New Security Paradigms Workshop, 1996 

38 


