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Abstract 
This paper presents a methodology for enumerating the vuinerabilities of a system, and determining what 
countermeasures can best close those vulnerabilities. We first describe how to characterize possible 
adversaries in terms of their resources, access, and risk tolerance, then we show how to map vulnerabilities 
to the system throughout its life cycle, and finally we demonstrate how to correlate the attacker's 
characteristics with the characteristics of the vulnerability to see if an actual threat exists. Countermeasures 
need to be considered only for the attacks that meet the adversaries' resources and objectives. Viable 
countermeasures must meet user needs for cost, ease of use, compatibility, performance, and availability. 
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Toward A Secure System Engineering Methodology 

1.0 Introduction 

Twenty years ago, corporate and military information infrastructures were separate and distinct. Today they 
are one and the same. The military depends upon the same computer networks and networking equipment 
to fight wars as industry depends upon to conduct business. The government has two roles with respect to 
its nation's information infrastructure: to be forthcoming about the genuine threat, and to foster public 
confidence. By drawing on the National Security Agency's experience in attacking and defending 
information systems, this paper opens a dialogue among academia, industry, and government toward 
securing the global information infrastructure. 

The security community needs a common vocabulary to discuss threats and countermeasures [DSB96], and 
a common methodology to discover weaknesses in systems, to prioritize weaknesses in terms of relative 
dangers to the system, and to determine cost-effective countermeasures [Amo94]. The purpose of this 
methodology is not to "penetrate and patch" a system, but rather to discover the sources of system 
weaknesses and to uncover reasonable design strategies to create stronger systems. This paper builds upon 
previous models, such as dynamic threat analysis [Smi89] and security vulnerability analysis [Wei91]. 

Before being able to design secure systems, designers must thoroughly understand the means, motives, and 
opportunities of adversaries. First, the system engineer derives the list of possible adversaries determined by 
who stands to profit in attacking the system. Next, the engineer characterizes adversaries in terms of their 
available resources, access to the targeted system, and risk tolerance. Then, the system engineer maps out 
how information flows throughout the system. Studying the information flow allows the engineer to 
discover all the critical components and procedures. Components are vulnerable during design, production, 
distribution, use, and retirement, Each step of a procedure must be scrutinized. The system engineer 
determines when and how an adversary can gain access at each point in time. For each access point, the 
engineer considers what an adversary could accomplish, within the bounds of his resources and objectives. 
Countermeasures are only needed for attacks that meet the adversaries' resources and objectives. To be 
useful, countermeasures must meet user needs for cost, ease of use, compatibility, performance, and 
availability. 

The paper has three major parts. The first part models adversaries, the second part models vulnerabilities, 
and the third part provides a secure system engineering methodology. The final section applies the 
methodology to a secure telephone as an example. 

2.0 Adversary Model 

Before even looking at the security properties of a system, it is necessary to build a model of  adversaries 
and their characteristics. Our Adversary Model characterizes adversaries in terms of their resources, access, 
risk tolerance, and objectives. Resources and access determine what adversaries can do, risk tolerance 
determines what they are wiUing to do, and objectives determine what they want to do. Different types of 
adversaries can be classified this way: hackers, malicious insiders, organized crime, industrial competitors, 
terrorists, and national intelligence organizations. For example, a hacker has low resources, low access, and 
moderate risk tolerance when compared to an infowarrior who has significant resources, high access, and 
high risk tolerance [Sch98]. 

A rational adversary follows the path of least resistance; that is, he chooses an attack that maximizes his 
expected return on investment, given his budget constraints of resources (money, expertise, manpower, and 
time), access, and risk. Some attacks require a great deal of access and risk, but not much expertise: e.g., a 
car bomb. Other attacks require a great deal of computational power, but minimal access and less risk: e.g., 
a brute-force search of the key space of an exportable encryption algorithm. Financial resources are not 
directly considered in this model, since they are used to buy either capabilities or access: a rich adversary 



can trade money for access by paying off  an insider, for expertise by buying technology, and for risk by 
executing a more sophisticated, less intrusive attack. 

Different adversaries value attack goals differently. For example, a criminal adversary might value the goal 
of  defrauding a system above simple denial of service attacks, while a malicious insider might be more 
interested in denial of service. Some of  the recent attacks against web browsers were motivated more by 
publicity than anything else [Ale97]. Attacks that might not be profitable or even rational to a criminal 
might be perfectly reasonable to someone interested only in exposing weaknesses in a particular product. 

The defender might value an asset completely differently than the attacker. An illustrative example from the 
bricks-and-mortar world is supermarket shopping carts. These carts cost almost $100 to the supermarket 
and are worth defending. When cart theft becomes a problem, supermarkets require a 25 cent deposit; the 
carts simply are not worth 25 cents to the attacker. 

3.0 Vulnerability Model 

After characterizing attackers as described above, the next step is to map the vulnerabilities of a system. 
The metaphor we use to describe the totality of vulnerabilities is called the Vulnerability Landscape. A 
vulnerability landscape is made up of peaks and valleys: the valleys represent vulnerabilities and the peaks 
represent countermeasures. The deeper the valley, the greater the vulnerability. The higher the peak, the 
more effective the countermeasure. The defender must build a wall to protect the entire system; he cannot 
build a single large defensive tower and hope that the attacker runs into it. 

To understand the vulnerability landscape, the security engineer first maps out the target system. This 
includes the system itself, as well as things related to it: physical facilities, personnel and their 
responsibilities, and equipment and procedures used to handle information. 

This landscape is built up over time, as more data accumulates and the system matures. The system 
engineer does not have to recreate the entire landscape whenever changes are made to the system or new 
weaknesses are found. Instead, the engineer can make changes to the model, allowing the model to be built 
up over time. 

Any successful attack has three steps: One, diagnose the system to identify some attack. Two, gain the 
necessary access. And three, execute the attack. To protect a system, only one of  these three steps needs to 
be blocked. The goal for the defender is to find the most cost-effective way to block any potential attack. 
He must estimate the adversary's risk tolerance and willingness to expend resources to gain access and 
execute an attack. Of course, blocking multiple steps, or blocking a single step multiple ways, provides 
defense in depth and more assurance against a flaw in a countermeasure. However, not all system engineers 
have the luxury of  implementing that many countermeasures. 

The vulnerability landscape sorts the weak points by access. To discover all the opportunities for access, 
hence all the opportunities to attack, the system engineer must consider the entire life cycle of  each 
component of the security environment. The two access categories are physical security and the t rust  
model. Then the system engineer can construct, from the access points, how the adversary executes an 
attack to meet the objectives. Finally, the system engineer finds countermeasures that block at least one of  
the three attack steps. 

3.1 The Life Cycle 
Assume an adversary decides to bug the telephones or copiers destined for a company's offices. The 
adversary has many opportunities to conduct an attack. The office equipment is vulnerable during its entire 
life cycle: on the drawing board, in the manufacturing plant, on the loading dock, in the work place, or (in 
memory devices [Gut96], for example) even after disposal. Depending on the available access, the 
adversary may alter or swap the equipment during production, shipment, installation, normal operations, or 
maintenance. For example, the Soviets placed a transmitter in a plaque presented as a gift to the U.S. 
ambassador in Moscow. 



The work environment of  the virtual world is software running on networked computers, and attacks against 
software systems can be just as varied. A software developer might inadvertently leave an exploitable bug 
in the latest release of  its system. An adversary could put a Trojan horse in a popular net browser and 
distribute it for free over the Internet. An adversary could write a virus that attacks accounting software and 
delivers it in an executable attachment to an e-mail message. System engineers must secure the entire 
software life cycle. 

All components of  an information system have a life cycle. For example, a vendor programs an e-mail 
client and ships it to a distributor. The distributor copies and forwards the product to a wholesaler or 
retailer. The retailer eventually delivers a product into the user's workplace. Note the recursive nature of 
the life cycle. By answering questions such as who was the designer, where was it made, who delivered it, 
who has access once it is deployed, and finally, what happens to it when discarded, the system engineer can 
burrow down to points of vulnerability. The table below provides examples of  attacks during a system's life 
cycle. 
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Design 
Production 
Deployment 

From initial idea to design specs 
From build-to specs to roll-out 
From roll-out to transit to delivery 
to user 

subtly alter system specification to create a flaw 
substitute security-critical chip on production line 
substitute system unit while in transit with bogus unit 

Operation and From delivery to maintenance to insert malicious code into application, OS, or network 
maintenance retirement 
Destruction From retirement to destruction extract stored key from unit to read back-traffic 

3.2 Physical Security 
Physical security speaks to the problem the world has been trying to solve since the beginning of  
civilization: how to enforce the notion of ownership. Fences, locks, and guards are all tools of  physical 
security. Today's organizations have considerable expertise implementing physical security measures 
commensurate with the physical threat; they know their adversaries and what countermeasures are sufficient 
to protect their assets. 

In the physical world, layered security solutions reinforce each other. Behind the fence, guards patrol the 
perimeter of  a locked building. A $5 lock on the door may be sufficient given the guard and the fence. A 
$10 lock may be wasteful given the open window nearby. 

In the physical world, an adversary who wishes to masquerade as a trusted member of  a community takes 
the personal risk of being found out and apprehended. In the virtual world, a spy can cross the border and 
impersonate a trusted member of the organization with less risk of being detected or physically 
apprehended. From anywhere in the world, the spy can eavesdrop on electronic conversations or break into 
private networks and steal information without fear of apprehension. Installing a firewall is analogous to 
building walls and locking doors. Encryption creates a private room in cyberspace for a confidential 
conversation or an electronic safe for stored information. 

3.3 The Trust Model 
The trust model represents how an organization determines whom to trust with its assets. For example, 
before becoming trusted employees, applicants might have their r6sum6s verified, their references 
interviewed, and their criminal records checked. Once employed, picture identification badges and parking 
stickers might be issued. In the physical world, it is easy to identify those individuals who are trusted and 
those who are not. 

The problem is how to extend the trust in individuals from the real world to the virtual world. Traditional 
biometrics, such as voice and face recognition or handwriting, do not work without the physical presence of 
the individual to draw upon. Presently, automatic systems only rely on passwords and digital certificates. 

Trust relationships describe how different parties in the system trust each other. Some systems require a 
trusted party to operate the system (the Kerberos login protocol [KN93], for example), while others only 
require trusted parties for the initial design, manufacture, and installation of the system. Some systems 



require a great deal of trustmthe trusted party holds a copy of  the eneryption keys--while other systems 
only require a trusted party for authentication, or validation, or a tirnestamp. All systems have many levels 
of trust in many different areas. Any one of these trust relationships is a potential vulnerability. 

3.4 A Rational Response to the Vulnerability Landscape 
Protective countermeasures should be applied evenly across the landscape to prevent the attacks that pose 
the greatest threat. Blocking just one of the steps necessary for a successful attack sufficiently deters an 
adversary. A system engineer should choose the most cost-effective countermeasures: i.e., it doesn't make 
sense to spend more money improving the locks on the front door when the adversary is apt to break 
through the glass window. It also doesn't make sense to spend $I00 on protective countermeasures to 
protect $10 worth of assets, Simple countermeasures, including education, policy, and procedures, are 
rational, cost-effective means of mitigating the risks posed by a vulnerability. These non-technical 
countermeasures can significantly raise the risk and sophistication needed by the adversary to execute a 
successful attack. 

4.0 Methodology Overview 

This section provides a methodology for characterizing attacks and choosing rational countermeasures. 
This methodology is based on an "attack tree" model. An attack tree is a visualization tool to enumerate and 
weigh different attacks against a system. 

Our methodology has five broad steps. 

1. Create attack trees for the system. 
2. Apply weights to the leaves. 
3. Prune the tree so that only exploitable leaves remain. 
4. Generate corresponding countermeasures. 
5. Optimize countermeasure options. 

Step 1) The system engineer systematically creates an attack tree by replicating the work of an adversary to 
find the weak points in a system. The root node of our tree is the component that prompted the analysis. 
(Note that the root node could be different, e.g., the root node could be the objective of the adversary.) To 
form the child nodes, the system engineer decomposes the node into its life cycle. Each phase in the life 
cycle breaks down into the two access categories, physical security and trust model. If appropriate, each 
node is again decomposed in this manner. The analysis terminates in a series of vulnerability leaves. 

Step 2) For each leaf in the attack tree, the system engineer assigns qualitative values for risk, access, and 
cost to the adversary. For example, a possible node for encrypted messages would be passive collection 
and brute force decryption of  the ciphertext. The risk of  the attack is low since it is done safely at a distance, 
the access required is low, and the cost depends upon the strength of the cryptographic algorithm. 

Step 3) The system engineer then prunes the trees. Countermeasures are needed only for those attacks that 
meet an adversary's objectives, matches his capabilities, and offer a sufficient return. For example, if a 
particular attack requires 2256 bytes of computer memory, it could safely be pruned as being beyond the 
resources of any adversary. If another attack requires access to a closed communications system, such as a 
stand-alone network, it might be beyond the reach of some adversaries but within the capability of others. 

Step 4) The system engineer determines countermeasures for the most exploitable nodes. 

Step 5) The system engineer ranks the countermeasures with respect to its five attributes: 

(1) cost to purchase and run, 
(2) ease of use, 
(3) compatibility with in-place technology and ability to interoperate with other communities of interest, 
(4) its overhead on system resources and, finally, 
(5) time to market or availability. 
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Then, he attempts to deploy the most cost-effective set of countermeasures to defend against the 
vulnerabilities identified in step (3). Achieving optimal coverage is hard. Given the coarse granularity of 
the weights, it is futile to develop the algorithm that transforms numbers into the optimal countermeasure 
set. Still, the model allows the analyst to make an informed choice. A good model depends upon smarter 
analysts, not smarter software. A software tool that implements this methodology can only enhance the 
creativity of the system engineer in finding vulnerabilities and finding countermeasures. 

4.1 Example: Sensitive Phone Calls 
To better explain our methodology, we include this example. We make several simplifying assumptions, 
and don't analyze some aspects of the system. The point of this example is to demonstrate how to think 
about the problem, not to be complete. 

A large organization (either a national defense organization, or a multinational corporation) needs to make 
sensitive phone calls. Its adversaries would like to have the information in these calls. In this case, the 
foremost adversary is a foreign intelligence agency [Fia97,Win97]. This adversary takes moderate risks and 
has the resources and access to carry out highly sophisticated attacks. 

The attack tree for a public phone system can be quickly trimmed to one attack node. To exploit the 
sensitive phone call, the adversary has to intercept and collect the telephone signal, either by tapping wires, 
intercepting microwave links, or collecting cellular traffic. In the modem telephone network, the risk 
associated with this passive intercept is low, since the collection can often be done at a distance and leaves 
no footprint. However, producing timely intelligence reports from bulk intercepts is expensive. Still, 
intelligence that comes directly from the source is usually highly accurate and very valuable. Thus national 
intelligence will make the large investment in these attacks, requiring defenders to find countermeasures. 

To respond to the threat of bulk intercept, the system engineer has three alternatives: 

1. Do nothing. Allow users to make sensitive calls on the public phones. 
2. Place encryption in the telephones used for sensitive phone calls. 
3. Use dedicated encrypted transmission lines between physically secure enclaves. 

• ~ost to Implement EtTectivenes~ 

The price (to the organization's security) of allowing the adversary to intercept unencrypted, sensitive calls 
is too high, and the price (to the organization's budget) of installing dedicated communications lines for the 
entire organization is exorbitant. Therefore, the secure phone with encryption is the most cost-effective 
solution. 

The introduction of a secure phone into the communications system creates new vulnerabilities that must 
now be evaluated. The system engineer follows the five steps of the methodology above to evaluate the 
new vulnerabilities in the system. 

Step 1) Construct the at tack tree.  One possible attack is to modify the secure telephones. To gain access 
to a shipment of phones on the loading dock, the adversary can jump a fence or bribe a guard. He can then 
modify the phone so that when the sensitive call is made, he can listen to the conversation. For example, he 
can alter the randomizer so that the encryption key will be guessable so he can then decrypt the ciphertexts 
[KSWH98]. Alternatively, he could install a transmitter in the handset to broadcast the unencrypted 
conversation. 



Variations of these two attacks can be executed in all phases of the secure phone's life cycle. For example, 
during the design phase, an insider could subvert how the phone generates keys [KSWH98] or could 
introduce a subliminal channel that leaks the key. 

Another attack that is effective against secure telephones is to deny the use of the encryption algorithm, e.g., 
by jamming the public key exchange during the preamble. If the secure mode does not work, the typical 
user will fall back to the insecure mode [Nee93], and have a sensitive phone call in the clear. 

Another attack that is not effective is a brute-force search of the key space (unless the size of the key has 
been artificially restricted). 

Step 2) Apply weights to the leaves. The following table summarizes the relative risk, access, cost, and 
effectiveness of these attacks. 

Design L H H H 
Produce L H H H 
Distribute L M H L 
Use L H H M 
Design M H M H 
Produce M H M H 
Distribute M M M L 
Use M H M M 
Use L M H L 

Note that attacking a phone with encryption drives up the cost and risk of an attacker when compared to 
attacking phones without encryption. 

Step 3) Prune the tree so that only exploitable leaves remain. The system engineer identifies the 
affordable attacks with respect to cost, access, and risk. As the chart indicates, all the residual 
vulnerabilities can be exploited by an intelligence agency. Further countermeasures are necessary. 

Step 4) Generate corresponding countermeasures. The system engineer determines countermeasures. 
Domestic design and production of equipment increases an adversary's risk of being caught. Building to 
industry standards for encryption and randomization makes the product more analyzable during the entire 
life cycle [YY96]. Tamper-evident hardware and packaging increases the adversary's risk of detection, as 
does digitally signing and verifying any software that can be altered. Random installed units should be 
broken down and analyzed. Blind buys make it harder for the adversary to identify an opportunity. Sweep 
teams can detect extraneous signals, and filters can block subliminal channels. Encrypting all phone calls at 
the switches (not just the sensitive ones) adds another layer of protection; it obscures valuable traffic, 
driving up the cost of collection and processing. The countermeasure list goes on and on. 

Step 5) Optimize countermeasure options. The system engineer assesses these countermeasures for their 
cost, ease of use, interoperability, compatibility, performance, overhead, time to market, and availability. 
The following is a preliminary list of countermeasures. 

Exhibit caution in choosing the manufacturers. By buying security products from a company, you are 
trusting their design ability, their manufacturing integrity, and their internal security practices. Be 
especially wary of those companies that the adversary can influence. 

Use good standards for encryption and randomization. This might be the most cost-effective approach, 
since it is easier to analyze standard components. Standards allow the widest design and evaluation; they 
also increase confidence and drive down the cost of innovation. 



Employ sweep teams to detect extraneous signals from the phone. (These teams detect many extraneous 
signals, and are effective against a wider range of attacks.) Provide filters that narrow the signal for 
subliminal channels. These two countermeasures can be quite cost-effective in combination with the proper 
physical security. 

The adversary will attack the weakest point in the information's life cycle. Therefore, the system engineer 
must analyze the entire life cycle of the information, not just the life cycle of a secure telephone. To 
complete our analysis of a secure phone, we would construct vulnerability trees for insider threats, physical 
space, and key management: i.e., for who handles the information, where the information resides and 
conversations take place, and how the telephone will be keyed. 

4.2 Another Brief Example: Secure E-mail 
Encrypting e-mail is significantly different from encrypting phone calls. For phones, the information is at 
risk only for the duration of the call. For e-mail, which may be stored for considerable lengths of time, the 
information is at risk also while at rest. Moreover, the adversary can subvert the operating system of the 
underlying computers to attack the information. The adversary can introduce the attack at a distance, with 
little physical risk, and can possibly obtain all of the target's information, not just a single message. Finally, 
the attack can be automated to rapidly exploit a wide range of targets. Any "key escrow" or "corporate 
message recovery" creates yet another lucrative opportunity for an adversary [AAB+97]. 

What's worse, the availability of computer networks has become critical for the world to do its work. Back 
doors into computer networks used by intelligence agents to read mail can also be used by terrorists to 
destroy the network. Unfortunately, stopping a terrorist from destroying the network is far more difficult 
than stopping an eavesdropper from reading electronic mail. 

5.0 Conclusions 

The modern computer network emerged from a partnership between the corporate world and the military, 
and the resulting technology provides significant advantages to society, both economic and military. To 
ensure that these networks will be secure enough for business, personal, and military purposes, industry, 
academia, and government must work together. 

Our model tries to capture the commonality between the corporate and military worlds. By characterizing 
well the actual adversaries and all possible attacks, the system engineer can build systems that are secure 
against the real-world threats without over-engineering against one particular threat. By understanding what 
an adversary is most likely to do, the system engineer can invest effectively in countermeasures. 

Four distinct communities can benefit from this model. The system engineer can construct the most cost- 
effective set of countermeasures. The evaluator can systematically find residual vulnerabilities and 
rationally assess their residual risk. The vendor can invest in improvements that genuinely benefit 
customers, and thus will help sell products to customers who can make informed buying decisions that 
minimize their risk and maximize their investment. 

Of course, a theoretical model can only go so far. The problems of network security not only require the 
combined expertise of industry, academia, and government to solve, but also require hands-on experience 
with actual systems. We should learn from the hacker community and use the power of  the information 
technology to propagate expertise. Those who design, build, evaluate, and use security products must share 
their experiences with actual threats and vulnerabilities along with their successful countermeasures. 
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