
On the Functional Relation Between
Security and Dependability Impairments

Erland Jonsson, Lars Str6mberg, and Stefan Lindskog
Department of Computer Engineering
Chalmers University of Technology

SE-412 96 G6teborg
SWEDEN

email: erland.jonsson/larst/stefanl @ ce.chalmers.se

ABSTRACT
Problems related to security and dependability/
reliability are still treated separately in many
contexts. It has been shown that there is a con-
siderable conceptual overlap, however, and an
integrated framework to the two disciplines has
already been suggested. This paper shows that
there is also a conceptual overlap of impair-
ments from these areas and suggests an inte-
grated approach that clarifies the functional
relation between these, both from dependabil-
ity and security viewpoints. The overall objec-
tive is to arrive at a general and clear-cut
framework that would describe how trustable
(dependable, secure) a system is, regardless of
the reason for its not being totally trustable. For
example, it should be possible to treat a system
failure caused by an intentional intrusion or a
hardware fault using the same methodology. A
few examples from real-world situations are
given to support the suggested approach.

Keywords: Security, Dependability, Impairment, Threat, Intrusion,
Vulnerability, Modelling, Terminology.

lower hierarchical levels and suggests a way towards a unification
of conceptual and terminological discrepancies at these levels.

An illustration of such discrepancies is that, in the dependability
discipline, reasons for failures are called faults and errors, whereas
security people traditionally talk about attacks that cause breaches
and vulnerabilities. The extent to which these terms correspond is
not immediately clear, even if there seems to be similarities. Other
questions of this type can be posed. What are the relations between
e.g. fault, attack, flaw, error, bug, vulnerability, defect and viola-
tion? Do some of these terms represent identical concepts? Should
we in that case look for a unified terminology, or is it justifiable to
maintain separate terminologies for each discipline? These are
questions that must be answered as integration work proceeds.
While a full answer is not given in this paper, we make a first
attempt towards a unified approach that we hope will facilitate fur-
ther work in this direction.

Finally, it must be stressed that the work presented in this paper is
about new concepts and that it also uses old concepts in a new way.
In general, new concepts call for the invention of new terms or re-
definition of old terms, since it is essential that the concepts can be
properly addressed and understood. It would be expected that the
person who suggests new concepts would also suggest a corre-
sponding terminology and that he clarifies the relations with the
established usage of the terms. Although we have tried to do this,
we realize that re-defining words or changing the usage of words is
quite a delicate task with little prospect of being successful. There-
fore, we do not wish to strongly defend any part of the terminology
in this paper. The underlying concepts have our full support, on the
other hand, and we believe that, once these concepts become com-
monly accepted, the issue of proper terminology will find its solu-
tion.

1. INTRODUCTION
It has been shown that there is a considerable conceptual overlap
between the two disciplines of security and dependability and that
it may be fruitful to view them as different aspects of a single
"meta-concept", as detailed in [20] and summarized in Section 2.
The present paper demonstrates that a similar problem exists at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies ere not made or distributed for profit or commercial edvant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
1999 New Security Paradigm Workshop 9•99 Ontario, Canada
© 2000 ACM "1-58113-149-6100/0004.-$5.00

In the following, Section 2 summarizes the integrated conceptual
framework for security and dependability. In Section 3, the same
exercise is carried out for security and dependability impairments.
Some illustrative examples are given in Section 4. Section 5 con-
cludes the paper and discusses possible future directions of work.

2. DEPENDABILITY AND SECURITY
2.1 Traditional dependability and security con-
cepts
Dependability is defined as an "umbrella concept" with four
attributes: reliability, availability, safety and security [22]. The rela-
tion between these attributes, in particular the three first ones, and
fault-tolerance has been discussed at some length in the literature
[2], [4], [10], [14], [15], [16], [24], [25], [26], [27], [28]. There is a
high degree of consensus on their meaning. Reliability is a charac-
teristic that reflects the probability that the system will deliver its

104

SECURITY/DEPENDABILITY

PROTECTIVE

ATTRIBUTE:
BEHAVIOURAL

ATTRIBUTES:

environmental influence:

l ,

THREAT

fault
introduction

integrity

y

OBJECT
SYSTEM

system behaviour:

delivery-of-service

reliability/availability -I
(safety)

denial-of-service [

//
confidentiality/exclusivity I
(safety)

USER

NON-USER

INTEGRITY CORRECTNESS TRUSTABILITY

Figure 1. The system model

service under specified conditions for a stated period of time,
whereas availability reflects the probability that the system will be
available, or ready for use, at a certain moment in time. Safety
denotes the system's ability to fail in such a way that catastrophic
consequences are avoided. Thus, safety is reliability with respect to
catastrophic failures. Security refers to the system's ability to pre-
vent unauthorized access or handling of information and to its abil-
ity to withstand illegal interaction or attacks against such system
assets as data, hardware or software. The notion of security nor-
mally assumes a hostile action by a person, the attacker.

Among security people, security is further decomposed into three
different aspects: confidentialiO; integrity and availability [13],
[29]. Please note that availability comes in twice, first as an attribute
of dependability and then as a sub-attribute of security. However,
the definitions agree in these two cases. Confidentiality is the ability
of the computing system to prevent disclosure of information to
unauthorized parties. Integrity is the ability of the computer system
to prevent unauthorized modification or deletion.

2.2 An integrated framework for dependability
and security concepts
To clarify the conceptual overlap above, an integrated approach to
security and dependability was suggested in [20]. This paper makes
an interpretation of security and dependability concepts in such a
way that they can be treated simultaneously. According to this inter-
pretation, the object system interacts with the environment in two,
basically different ways. The object system either takes an input
from the environment or delivers an output or service to the envi-
ronment, see Figure 1.

The environmental influence may consist of many different types of
interactions. The type of interaction we are interested in here is that
which involves an introduction of faults into the system. From a

security viewpoint, intentional and often malicious faults, i.e. secu-
rity breaches, are particularly interesting. Since faults are detrimen-
tal to the system, we seek to design the system such that the intro-
duction of faults is prevented. We denote this ability integrity. It

encompasses the protective t aspect of security/dependability. This
definition agrees well with a common understanding of the word in
the security community, although somewhat generalized. However,
there exist several different meanings of the word integrity in vari-
ous other contexts [29].

The output from the system includes the service delivered by the
system to the users. We call this the system behaviour. There are
two different types of users: the authorized user, denoted User, and
the unauthorized user, denoted Non-user. The desired (and prefera-
bly specified) delivery-of-service to the User can be described by
the behavioural attributes of reliability and availability. Less often
specified, but still desired, is that the system shall have an ability to
deny service to the Non-user, denial-of-service. Note that this is a
generalization of an existing concept. Normally, and taking the
viewpoint of the system owner, the term represents an unwanted
behaviour of the system with respect to the User, and thus a viola-
tion of the specification. In our model it can also be referred to the
Non-user, but in this case the denial-of-service is a specified and
desirable behaviour.

Denial-of-service with respect to the Non-user is described by the
behavioural attributes of confidentiality (for information) and
exclusivity (for use). In both these cases, safety denotes a disruption
of the denial-of-service, i.e. a delivery-of-service, that would lead
to catastrophic consequences. We suggest the use of the word trust.
ability for the aggregate of behavioural attributes. A trustable sys-
tem should be reliable, available, safe etc. Although the word trust-

1 In the paper referred to, we used the term "preventive", but
"protective" seems to be a more adequate word.

105

RELATION TO

ENVIRONMENT:

IMPAIRMENTS:

STAGE

E

N

V

I
R
O

N

M

E

N

T

PROTECTIVE

ATTRIBUTES

environmental influence
e.g. fault introduction

_ [OB ECTSYS M
(sws) 0

VUlexternal nerability error

fault

Q @ @

BEHAVIOURAL

A'Iq'RIBUTES:
system behaviour
denial-of-service
delivery-of-service

reliability E

failure N

User I

R
0

Non-user N

M

E
failure N

T

Q Q
Figure 2. The stages of security/dependability impairments

ability might indicate that the model aims at some kind of subjective
belief, this is not our intention. The model is intended to be objec-
tive and "technical". As was pointed out in the introduction, termi-
nology is a difficult issue, and the reader is invited to suggest alter-
nate terms.

The third attribute that may apply to a system is correctness, which
would denote that the system is free from unwanted internal states,
errors, and free from vulnerabilities. Thus, the meta-concept of
security/dependabil i ty--we refrain from suggesting a name h e r e - -
can be split up into the attributes of integrity, correctness and trust-
ability, referring to system input, internal state and output, respec-
tively.

3. INTEGRATING SECURITY AND DE-
PENDABILITY IMPAIRMENTS
3.1 A refined system model
A model of a dependable system contains at least two components,
the object system (SYS) and the environment. Consider a specific
system as depicted in the block diagram in Figure 2. Here, a circle
denotes a state, an arrow an event and a square a (sub)system. Cir-
cled numbers refer to Table 1 in paragraph 3.10.

The block diagram describes the dependability impairments we
shall discuss. The environment interacts with the SYS by generat-
ing inputs to it and by receiving outputs from it.

The discussion in this section starts from the observation that a fail-
ure is normally preceded by a chain of events that leads to that fail-
ure. These events and their intermediate effects on the system are
called impairments. We suggest definitions of impairments that are
adapted to both the traditional dependability and traditional security
domains.

3.2 Existing definitions of impairments
There exists a number of various usages of the terms for dependa-
bility impairments: faults, errors and failures. For example, the
fault-tolerance community and the software community have dif-
ferent opinions of causal direction between faults and errors, as
pointed out in [12]. Thus, the software community claims a fault is
the result of a programmer 's error, whereas a fault is the reason for
an error in the fault-tolerance community. This is discussed in some
detail in [17]. A third alternative for the definition of fault is found
in [27] and, in that document, the terms error and failure are not
covered at all. Other relevant suggestions and discussions are found
in e.g. [4], [5], [6], [7], [9] and [10].

A similar approach to that of the software community is found in a
work on classification of software vulnerabilities [21]. Here, an
error is defined as a mistake by the programmer and a fault as the
resulting incorrect code.

In the security community the term vulnerability is often related to
the notion of security policy [21]. A vulnerability is something that
makes it possible to break the security policy. A specific system can
have different vulnerabilities depending on the security policy con-
text. Thus, Bishop defines a vulnerable state as "an authorized state
from which an unauthorized state can be reached using authorized
state transitions" [8], and a vulnerability is the direct reason that the
system is in a vulnerable state.

3.3 System states
The term system is used here in a very general way. A system can
be composed of a set of interacting components, each in itself a
(sub)system. The aggregate of components with which the system
directly interacts is called the environment of the system. A special
part of a system is the system documentation. A system is created as
soon as the first document referring to the system is made. This
means that the early phases of system development are also
included in the system life. Faults can enter the system at any time,
causing the system to be in an erroneous state.

106

We use the term state (e.g. error state) to denote a class of states in
which a system can be. Membership in a state class is determined
by a function mapping a system state to a boolean value. If the state
function is only a fimction of the internal variables of the system,
the state is internal; otherwise, i.e. if it is also a function of the envi-
ronment influence, it is external.

An error state is internal. A transition into an error state can be trig-
gered by a cause that is internal or external to the system. If the sys-
tem allows a transition to an error state by an external cause, there
exists a vulnerability in the system, i.e. the system is in a vulnerable
state. A vulnerable state is a subset of a correct state, the other alter-
native being correct and non-vulnerable. An error state can propa-
gate into another error state---once or several times. The propaga-
tion may (or may not) proceed until it reaches the system boundary,
where it manifests as a failure. A failure is a state that is defined
with respect to the system environment. The system is in a failed
state when it does not behave according to its specification.

3.4 Threat
In theory, all subsystems in the environment may interact with the
SYS. This interaction may be intentional in the sense that the sub-
system is functionally connected to the SYS. The interaction may
also be unintentional, reflecting no functional relationship. The
interaction, whether intentional or unintentional, may result in
undesired effects to system correctness and/or trustability. Thus,
from this viewpoint, the environmental subsystem represents a
threat to both the dependability and the security of the SYS.

Definition: A th rea t is an environmental subsystem that can possi-
bly introduce a fault in the system.

The notion of threat has normally been linked to intentional faults
and the security attribute. The above definition is much broader.
Any subsystem in the environment may constitute a threat to the
system.

3.5 Vulnerability
The critical points in a system are the places where faults are intro-
duced, which for external faults are at the boundary between the
environment and the SYS. The environment contains the threats,
whose behaviour represent a risk for fault introduction. This risk
can never be completely eliminated, and there will always be a
remaining probability for external fault introduction into the sys-
tem. Thus, it is always worthwhile to improve the system in such a
way that it can better withstand the threats. We define the term vul-
nerability:

Definition: A vulnerabi l i ty is a place where it is possible to intro-
duce a fault.

A vulnerability can be located in e.g. the code, the configuration or
the design of the system. The presence of a vulnerability means that
the system is in a vulnerable state.

In principle, all systems are vulnerable to some extent. Therefore, it
should be possible to define the "degree of vulnerability" for a spe-
cific system. This can probably be done in terms of probability of
exploitation of the breach, under the assumption of a certain envi-
ronment, or as some kind of "threshold" that must be exceeded in
order to successfully attack the system [19] or by some other
method.

The vulnerability (deficiency, weakness, flaw) concept is well
known from the security domain. A security attack may aim at
planting a vulnerability in the system, a vulnerability that can later
be exploited by further attacks to cause loss or harm. The term vul-
nerability is also applicable for non-intentional interaction. For
example, a hardware vulnerability can typically be an unshielded
cable, which is inclined to pick up external noise.

A significant property of a vulnerability is that it will not propagate
during normal operating conditions but will function only as a chan-
nel for external fault introduction.

3.6 Fault
A fault that can be related to a threat is called an external fault, since
the source of the fault is found outside the system. Internal faults
are faults that arise (apparently) spontaneously somewhere in the
system, i.e. with no direct relation to a threat. The following defini-
tion of fault covers both cases:

Definition: A fault is an event leading to an error or a vulnerability
in the system.

A fault is an event or system state change and is regarded as an
atomic phenomenon. Thus, a fault is an inherently transient phe-
nomenon and is not permanent. Neither is a fault intermittent. An
."intermittent fault" is regarded as a number of repeated transient
incidents. The fault is the direct reason for the error occurrence ifi
the system and will lead to an error by definition.

3.7 Attack and breach
An attack is an intentional activity conducted or initiated by a
human. If the system is in a vulnerable state an attack may be suc-
cessful and cause a type of fault called a breach. A breach results in
an error or a vulnerable state in which the system security policy is
violated.

Definition: A b r e a c h is an external, intentional fault. Thus, a
breach causes an error or vulnerability in the system.

Thus, loosely, a breach can be regarded as a "security fault",
whereas, in analogy, "normal" faults, that are not the result of some
intentional human interaction, could be regarded as "reliability
faults". However, we are not convinced that there is a need for such
a distinction.

The breach is a result of an attack, leading to the following defini-
tion:

Definition: An a t tack is an attempt to cause a breach in the system.

3.8 Error
Definition: An e r r o r is a system state that may lead to a system fail-
ure during normal system operation.

Since this definition is very general and is intended to be applicable
to many different types of systems, the word state must be under-
stood in a broad sense. Thus we will avoid giving an exact definition
or interpretation of the word that would be valid for all cases. Once
an error has occurred in the system, the system is erroneous. The
error may propagate to the system boundary and lead to a failure.
An error is the result of either a breach or a reliability fault. We refer
to the former as a security error and to the latter as a reliability error.

107

Environment Threat External

subsystem

Internal

states

System

states

attack

@ f a u l t (~cl b r e a c h) ~ ' ~ ' - @

Subsystem

failure ~ System

Figure 3. Summary of terminology

It must be noted that the difference between error and vulnerability
is sometimes quite subtle, which is illustrated by the examples in
Section 4. This is due to the fact that it is not always evident what
constitutes "normal behaviour". This, in turn, is dependent on the
security policy, which may not be very explicit or perhaps not doc-
umented at all. However, the same problem exists for the definition
of failure, which is very much dependent on the system specifica-
tion.

3.9 Failure and failed s ta te
A failure or failure transition is an event that represents a state
change of the total system with respect to the environment and the
service it delivers. Before the failure occurs, the service delivered
by the system is in accordance with the specification. After the fail-
ure, the service deviates from what is specified. Thus the following
definition applies:

Definition: A failure is the event at which a deviation first occurs
between the service delivered by the system and the expected serv-
ice, as defined in the system specification.

A failure is the result of an error--whether a "security error" or a
"reliability error"--that has propagated to the system boundary.
There are two classes of failures. The first refers to a disruption of
the delivery-of-service to the authorized user, informally called
"reliability failure", and the second to a disruption of the denial-of-
service to unauthorized users, informally called "confidentiality
failure". We get the definition:

Definition: A failure that violates the confidentiality property of an
object system is a confidentiality failure, and a failure that violates
the reliability or the availability property of an object system is a re-
liability failure.

Here, a very significant observation is that there is n o o n e - t o - o n e

correspondence between the error classes and the failure classes.
Thus, a "security error" can lead to a "reliability failure" or a "con-
fidentiality failure". In the same way, a "reliability error" can lead

to either type of failure. Section 4 gives a few examples of this. A
system that has made a failure transition is in a failed state:

Definition: A system that exhibits a deviation between the delivered
service and the specified service is said to be in a failed state.

Note that there is a remarkable hierarchical symmetry between the
state changes of fault-error and failure-failed state. A fault is an
event that transforms the state of a system component (subsystem),
i.e. the internal state of the system, from correct to incorrect (erro-
neous). Similarly, a failure transforms the system state from correct
to incorrect (failed). We thus have the same type of state change in
both cases but at different hierarchical levels. A natural extension of
this would be to apply the same idea further down in the hierarchy,
to sub-subsystems, or further up in the hierarchy, if appropriate.

One problem is that the two different failed states are probably quite
different. In particular, the notion of "state" in the confidentiality
context is a little tricky, and it is not evident how this can be char-
acterized. A confidentiality failure can normally not be "repaired",
nor is there an "undo" function, at least not easily. There are also
some open issues that refer to the duration of a confidentiality failed
state. Once a piece of information has been released inappropri-
ately, the system may work normally and the "hole" may have dis-
appeared. Does this mean that all confidentiality failures are tran-
sient? We feel that there is some work to be done here.

Figure 3 summarizes the terminology. If the object system is in a
vulnerable state, an attack originating from an external threat can
cause a transition to an error state. The error state can in turn cause
a transition of the total system from a correct state, i.e. the system
delivers service, to a failure state, i.e. the system does not deliver
service as specified. It should be noted that the figure is simplified
in that it does not show the propagation of error states within, the
system

108

stage

SYS-ENV
interaction

impairment
propagation

1

environmental
influence

fault
generation

2

system
protection

fault
introduction

3

system
operation

error
propagation

4

system
behaviour

failure
occurrence

5

impact on environ-
ment

failure
consequence

Table 1. Types of impairments

3.10 .The relation of impairments to the system
and its environment
The development and propagation of impairments and their relation
to the system and its environment are summarized in Table 1. The
stage numbers refer to Figure 2.

The source of the external fault is the threat in the environment. The
threat represents a potential environmental influence with respect to
the system, performing an act of fault generation. The threat may
attempt to introduce the external fault into the system, fault intro-
duction. The system tries to counter this attempt by means of vari-
ous methods for system protection.

By definition, a fault will lead to an error. The error may or may not
start propagating, depending on the operational circumstances,
error propagation. Therefore, an error may not necessarily lead to
a failure and, even if it does, the failure may manifest itself only
after a considerable delay. The fundamental observation here is that
it is not until a failure has occurred that any harm is done, as expe-
rienced by the user As a consequence, a fault or an error will not
affect the trustability of the system if it never leads to a failure. Thus
a system may be subjected to faults and contain errors and still
never exhibit a failure. As a matter of fact, all systems that contain
software of any significant size do contain errors. Despite this fact,
many of these errors may never propagate to cause a failure. There
are investigations that show that many errors will show up as fail-
ures only after a delay that is indeed considerable: thousands of
years [1].

It should be noted that the error propagation model is not always
applicable. This is especially so in some collapsed cases, where the
failure emerges virtually directly with no significant delay from the
fault event. It may even be difficult to define or distinguish the cor-
responding fault and error(s). Typical examples are failures that are
the result of violent action towards hardware, e.g. crashing the
screen, but also include many confidentiality failures, such as the
overhearing of a message, whether acoustic, visual or electronic.

4. EXAMPLES
This section gives a few examples of functional relations between
different impairments, impairment propagation and impact on the
environment. We also show how faults can lead to reliability and to
confidentiality failures.

4.1 UNIX kbd_mode command
This example shows how a breach ("security fault") or a "reliability
fault" could cause a reliability failure."

The kbdmode command is intended to reset the keyboard of a
SunOS system to a well-defined state. However, it has turned out
that it is possible to execute the command remotely on another

machine, in which case the keyboard of that machine becomes
locked, i.e. it becomes unavailable to the User.

The fact that the execution of the command leads to something not
intended by the designer means there is an error in the software,
since it could be expected that executing a command remotely
should lead to the same result as executing it locally, or should at
least be disregarded by the system. The programmer thus made a
fault in the design process, which led to this error. The error is acti-
vated by the attacker, who makes it propagate to cause a reliability
failure, so that the User can no longer use his machine.

It is also quite clear that a hardware (component) fault may lead to
exactly the same result, i.e. a disabling of the keyboard.

4.2 IP stack and buffer overrun problems
This example shows how a "reliability fault" leads to a vulnerabil-
ity, which is then exploited by an attacker, who performs a breach
("security fault") that leads to a reliability failure.

It has recently become evident that many operating systems, includ-
ing Windows NT, Windows 95 and many versions of UNIX, do not
handle packet header information properly in the IP stack. This has
been demonstrated in a number of exploit scripts. Teardrop, bonk,
boink, Land and LaTierra are examples of such scripts. Detailed
information on these is given in [11]. When executing one of those,
the victim machine will typically crash completely.

In this particular case, the problem is that many operating systems
blindly trust the information stored in the IP header of receiving
packets. This is the result of a programmer having made a fault that
resulted in a vulnerable operating system software. The vulnerabil-
ity is exploited by the scripts described above, which leads to an
error that propagates and causes the machine to crash or degrade.
Thus, the failure is a typical reliability failure caused by a security
error,

A similar situation exists for buffer overflow attacks. Here, the vul-
nerability lies in the (code that specifies the) insufficient control of
parameters. The NTCrash program demonstrates how such a vul-
nerability can be used for an intentional crash of a Windows NT
system [10].

4.3 Hardware faults
T h i s example shows how a "reliability fault" can cause either a
"reliability failure" or a "confidentiality failure".

Ionizing radiation is a threat. An ion passing a sensitive depletion
layer introduces a fault that is manifested as an inverted bit in a
memory, which is the error. In this case the error is "soft" in the
sense that recovery can be made using logical means. Thus, if we
are lucky, the program will soon clear this bit position and thereby
delete the error: the error will not propagate. If we are unlucky, the

109

bit flip error will propagate and cause a failure. Suppose that the
flipped bit was a control signal that enabled encryption of an outgo-
ing message and that the flip made the message go out in clear text
(unencrypted). In that case, the failure may result in exposure of
secret information to an unauthorized user, i.e. a confidentiality fail-
ure.

It is also easy to imagine cases where hardware bit flips would lead
to a program crash, i.e. a reliability failure.

4.4 Trojan Horses
This example shows how a breach ("security fault") may cause
either a "reliability failure" or a "confidentiality failure".

A User has left his login file world readable and writeable. This vul-
nerability can be exploited by an attacker to plant a Trojan Horse.
This is a breach. The Trojan Horse is activated for a certain set of
conditions that may e.g. involve time, certain actions by the User
etc. The planted Trojan Horse is an error in the system since it will
be activated and perform its task as a result of normal operation,
provided certain conditions are fulfilled. This task may be deleting
all the User's files on the hard disk, which is a reliability failure.

Another example would be if the Trojan Horse were activated when
the User sent email to a certain receiver. The action in this case
could be copying the email to the Non-user, which is a confidenti-
ality failure.

4.5 Back door
This example shows how a breach ("security fault") can cause
either a "reliability failure" or an "exclusivity failure".

In [3] Andersson describes a back door for an ATM system. The
back door was a 14-digit number that forced ten banknotes to be
paid out. The introduction of such a number, or rather the fact that
it was not taken away during initial installation, constitutes a vul-
nerability. As a matter of fact, this number was documented in the
maintenance manual (!), which was an error manifested in the doc-
umentation. The error propagated when a former maintenance engi-
neer, in desperate need of money, recalled the number and started to
make withdrawals from various ATM machines. This was the attack
on the system. The fact that he could withdraw money is an exclu-
sivity failure.

This example also clearly shows that faults may be introduced at
very early stages in the system's life and may have a considerable
latency period.

5. CONCLUSIONS AND FUTURE W O R K
This paper makes a first attempt towards a unified terminology and
understanding of security and dependability impairments. It has
also been put into the context of an earlier work that addressed the
same problem for concepts at a higher hierarchical level. The over-
all objective of this work is to arrive at a situation that would permit
a unified and formal treatment of all aspects of the security/depend-
ability meta-concept at the same time. This would pave the way for
a holistic understanding of the problem area, which we think is nec-
essary for the successful treatment of the existing problems.

It should be noted that this work simply represents another step
towards a unified security/dependability framework and that it cre-
ates further questions. Obviously, reality is more complicated than
is proposed in this simple binary model of intrusions and failures.

We look forward to continuing the work towards a more compre-
hensive model that can also reflect that an intrusion may be a grad-
ual penetration rather than an event-type phenomenon. See [23].
Similarly, real failures are better described as gradual degradations
than as state changes [18]. Another interesting direction of this
work is towards large distributed systems. We feel that finding a
model for the definition and usage of impairments in these is defi-
nitely a non-trivial task.

6. REFERENCES
[1] E .N. Adams. Optimizing preventive service of software

products. IBM Journal of Research and Development,
28(1): 2-14, 1984.

[2] P. Ammann, S. Jajodia. Computer Security, fault tolerance,
and software assurance. IEEE Concurrency, Vol. 7, No. 1,
January-March 1999.

[3] R. Andersson. Why cryptosystems fail. Communications of
the ACM, 37(11), 1994.

[41 T. Anderson and P. A. Lee. Fault tolerance terminology
proposals. In P. A. Lee and D. E. Morgan, editors, Proceed-
ings of the 12th IEEE International Symposium on Fault
Tolerant Computing, FTCS-12, pages 29-33, Santa Monica,
CA, USA, June 1982.

[5] A. Avizienis. Fault tolerance, the survival attribute of digital
systems. In Proceedings of the 1EEE, 66(10):1109-1125,
October 1978.

[6] A. Avizienis. The four-universe information system model
for the study of fault-tolerance. In P. A. Lee and D. E. Mor-
gan, editors, Proceedings of the 12th 1EEE International
Symposium on Fault Tolerant Computing, FTCS-12, pages
29-33, Santa Monica, CA, USA, June 1982.

[7] R. H. Baker. Computer Security Handbook, 2nd edition.
TAB Professional and Reference Books, McGraw-Hill,
1991.

[8] M. Bishop and D. Bailey. A Critical Analysis of Vulnerabil-
ity Taxonomies. Technical Report CSE-96-11, Department
of Computer Science, University of California at Davis,
CA, USA, September 1996.

[9l B. K. Daniels. Errors, faults and failures: A model. In T.
Anderson, editor, Safe and Secure Computing Systems,
Blackwell Scientific Publications 1989.

[101 D. E. Denning. Secure Databases and Safety: Some unex-
pected conflicts. In T. Anderson, editor, Safe and Secure
Computing Systems, Blackwell Scientific Publications,
1989.

[l l] H. Hedbom, S. Lindskog, E. Jonsson, " A n Analysis of the
Security of Windows NT", Tech. Rep. 99-16, Dept. of
Computer Engineering, Chalmers University of Technolo-
gy, G0teborg, Sweden, 1999.

[12] Institute of Electrical and Electronic Engineers. A Glossary
of Software Engineering Terminology, Chapter 5, IEEE
610.12-1990.

110

[131

[141

[I5]

[161

[171

[181

[19]

[201

[211

[22]

[231

[241

[251

[261

Information Technology Security Evaluation Criteria (IT-
SEC): Provisional Harmonized Criteria, December 1993.

International Standards Organization. Data Processing:
Open Systems Interconnection, Basic Reference Model,
ISO/IS 7498, Geneva 1983.

International Standards Organization. Information process-
ing systems: Open Systems Interconnection, Basic Refer-
ence Model, part 2: Security Architecture 7498/2.

E. Jonsson and T. Olovsson. On the Integration of Security
and Dependability in Computer Systems. In lASTED Inter-
national Conference on Reliability, Quality Control and
Risk Assessment, Washington, USA, November 4-6, 1992.

E. Jonsson. A Unified Approach to Dependability Impair-
ments in Computer Systems. In lASTED International Con-
ference on Reliability, Quality Control and Risk Assess-
ment, pages 173-178, Cambridge, MA, USA, October 18-
20 1993.

E. Jonsson, M. Andersson, S. Asmussen, "A Practical De-
pendability Measure for Degradable Computer Systems
with Non-exponential Degradation", In Proceedings of the
IFA C Symposium on Fault Detection, Supervision and Safe-
ty for Technical Processes, SAFEPROCESS'94, Espoo,
Finland, June 13-15, 1994, vol. 2, pp. 227-233.

E. Jonsson, T. Olovsson, "A Quantitative Model of the Se-
curity Intrusion Process Based on Attacker Behavior",
IEEE Transactions on Software Engineering, Vol. 23, No.
4, April 1997.

E. Jonsson. An Integrated Framework for Security and De-
pendability. In Proceedings of the New Security Paradigms
Workshop 1998, Charlottesville, VA, USA, September 22-
25, 1998.

I. V. Krsul. Software Vulnerability Analysis. PhD thesis,
Purdue University, May 1998.

J. C. Laprie et al. Dependability: Basic Concepts and Ter-
minology. Springer-Verlag, 1992.

U. Lindqvist, U. Gustafson, E. Jonsson, "Analysis of Select-
ed Computer Security Intrusions: In Search of the Vulnera-
bility", NORDSEC'96 - Nordic Workshop on Secure Com-
puter Systems, GOteborg, Sweden, November 7-8, 1996.

C. Meadows, Applying the Dependability Paradigm to
Computer Security. In Proceedings of the New Security
Paradigms Workshop 1995, La Jolla, CA, August 22-25
1995.

C. Meadows, J. McLean, Security and Depandability: Then
and Now. Presented at the Workshops on Computer Securi-
ty, Fault Tolerance, and Software Assurance." From Needs
to Solutions, Williamsburg, VA, November 11-13, 1998.

D. M. Nessett. Factors Affecting Distributed System Secu-
rity. In Proceedings of the 1986 IEEE Symposium on Secu-
rity and Privacy, pages 204-222, Oakland, CA, USA.

[271

[281

[291

[301

National Institute of Standards and Technology. Glossary of
computer security terms, NSC-TG-004 version. 1, ("Aqua
Book"), October 21, 1988.

S. M. Ornstein. Safety issues for computer controlled sys-
tems. In Proceedings of the 16th IEEE International Sympo-
sium on Fault-Tolerant Computing, FTCS-16, Vienna, Aus-
triia, 1986.

C. P. Pfleeger. Security in Computing. Prentice-Hall 1997.
ISBN 0-13-185794-0.

Department of Defence. Trusted Computer System Evalua-
tion Criteria ("orange book"), CSC-STD-001-83.

111

