
Natural Language Processing for Information Assurance and Security: An Overview and Implementations 

Abstract 
This research paper explores a promising interface 
between natural language processing (NLP) and 
information assurance and security (IAS). More 
specificall~ it is devoted to possible applications 
to, and further dedicated development of, the 
accumulated considerable resources in NLP for, 
IAS. The expected and partially accomplished 
result is in harnessing the weird, illogical ways nat- 
ural languages encode meaning, the very ways 
that defy all the usual combinatorial approaches to 
mathematical--and computational--complexity 
and make NLP so hard, to enhance information 
security. The paper is of a mixed theoretical and 
empirical nature. Of the four possible venues of 
applications, (i) memorizing randomly generated 
passwords with the help of automatically gener- 
ated funny jingles, (ii) natural language water- 
marking, (iii) using the available machine 
translation (MT) systems for (additional) encryp- 
tion of text messages, and (iv) downgrading,  or 
sanitizing classified information in networks, two 
venues, (i) and (iv), have been at least partially 
implemented and the remaining two (ii) and (iii) 
are being implemented to the proof-of-concept 
level. We must make it very clear, however, that we 
have done very little experimentation or evalua- 
tion at this point, though we are moving quickly in 
that direction. The merits of the paper, if any, are in 
its venture to make considerable progress achieved 
recently in NLE especially in knowledge represen- 
tation and meaning analysis, useful for IAS needs. 
The NLP approach adopted here, ontological 
semantics, has been developed by two of the coau- 
thors; watermarking is based on the pioneering 
research by another coauthor and his associates; 
most of the implementation of the password mem- 
orization software has been done by the fourth 
coauthor. All the four of us have agonized whether 
we should report this research now or wait till we 
have fully implemented all or at least some of the 
systems we are developing. At the end of the day, 
we have reached a consensus that it is important, 
even at this early stage, to review for the informa- 
tion security community what  NLP can do for it 
and to invite feedback and further efforts and ideas 
on what seems likely to become a new paradigm in 
information security. To the body of the paper, we 
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have added two self-contained deliberately refer- 
ence-free appendices on NLP and ontological 
semantics, respectively, primarily for the benefit of 
those IAS readers, who are interested in expanding 
their understanding of those fields and further 
exploring their possible fruitful interactions with 
IAS. 

1. Introduction: Natural Language and Code- 
Breaking 
Perhaps the most dramatic instance of the use of 
natural language in communication security 
occurred during the World War II, in which both 
sides were very successful in breaking each other 's  
codes and increasingly aware of it as well as 
gravely apprehensive about it. At a late critical 
point, on the advice of a prominent American lin- 
guist Edward Sapir, two Navajo speakers, each 
assigned to the US and British General Headquar- 
ters, respectively, transmitted top-secret messages 
to each other in their native tongue without  any 
encryption. The German famed code-breaking unit 
could not break the "code." This success was due 
to the fact that the enemy did not even realize that 
the Allies were using a natural language, let alone 
the almost-extinct Navajo language (and even if 
they had realized it they simply had no one who 
knew that language). The German code-breaking 
team was rumored then to have paid with their 
lives for their failure to breach the security of this 
particular natural-language-based communication 
scheme. 

Obviously, many people in IAS are aware of that 
episode, as probably is the other side. The element 
of surprise is gone, and even if a special effort is 
needed to recognize the natural language as one of 
the 5,600 or so extant languages, if such an episode 
recurred, the decoders would be more successful 
this time around, perhaps after trying Navajo first! 
The approach may still be good for shock value, in 
the short run, possibly just as a one-time trial. Also, 
it is hard and expensive to organize. 

This episode is perhaps ancient history (and/or  
folklore: other versions mention different Amerin- 
dian languages--Shawnee, Choctaw-- and other 
war theaters) in the rapidly developing field of 
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IAS, but  it served as a kind of inspirat ion and a 
source of intuit ion for us at the start  of our joint 
effort. Our  combined experience in NLP and IAS 
made  us believe that natural  language could still 
contribute an impor tant  level to information secu- 
rity, perhaps  as dramatic as the classic--and, very 
likely, largely apocryphal--example described 
above. Accordingly,  we describe below some lines 
of investigation that we are following, for br inging 
powerful  NLP techniques to bear  on some impor-  
tant problems in information security. 

We are currently exploring four specific venues of 
app ly ing  NLP to IAS: 

Natura l  Language and H u m o r  Generat ion for 
Memoriz ing Random Strings (e.g., Passwords,  
PINs, etc.). Let E be a r andom string 
represent ing something that a human  is 
supposed  to remember,  e.g., a password ,  a 
PIN, etc. H o w  does one construct a mnemonic  
that helps the human  remember  E? The "'Sing- 
a-Password" software tool buil t  by  Meunier  
(1998) is a successful first step in this direction, 
and uses popula r  melodies and tunes (suitably 
modified) to help a human  remember  
r andomly  generated E's. The Meunier  
software focuses s imply on meshing the lyrics 
wi th  music; it does not  worry  about where  the 
lyrics come from. It other words,  it totally 
lacks the NLP component ,  and we have pu t  it 
in. As a result, we have extended "Sing-a- 
Password"  by  making it capable of generat ing 
sentences with meaning (eventually, 
humorous  meaning) to help the user to 
memorize  randomly  generated and otherwise 
meaningless passwords.  This immedia te ly  
gets into such NLP issues as automatic  humor  
generation, but  with the added  constraint  that 
the humor  generated must  help in 
remember ing the passwords.  To convince the 
reader  of the importance of this effort, we  
recall that the COPS software tool (Farmer and 
Spafford 1990) has revealed a distressing 
pat tern of poor  password  choices by  users 
who  followed the above process in the wrong  
direction: they chose a password  X because it 
was easy to remember,  instead of generat ing a 
r andom X and then trying to come up with  
ways  of remember ing it. The success of the 
research we have al ready par t ia l ly  
implemented  (see Section 2) could therefore 
have a substantial  impact  on the practice of 
information security. Two impor tant  
disclaimers seem to be in order  here. First, this 
part icular  direction in our NLP-IAS research 
is, of course, premised in a claim that having a 
randomly  generated password  is much 
preferable to using a meaningful ,  memorable  
and, therefore, more easily predictable  user- 

selected password.  We are under  no i l lusion 
that randomly  generated passwords  solve the 
problem of IAS. We do, however ,  believe, as 
many  but  by  no means all IAS experts  do, that 
it is a good first line of defense against  
intrusion. It is reasonable to assume also that, 
for a large number  of ordinary  private  users, 
such as the 70,000 or so s tudents  at our  
universities, this will remain  for a long t ime 
their only contribution to the safety of their 
computer  accounts. It is also a good  educat ion  
al step towards  enhancing publ ic  awareness  
about  IAS. Second, we are fully aware  that  our  
implementa t ion  of the software only for 8- 
character single-case alphabet ic-only 
passwords  is just the first step: l imit ing 
r andomly  generated passwords  to this formal 
would  actually narrow the combinatorial  
possibili t ies so seriously as to actually damage  
rather than increase IAS. 
NLP for Watermarking.  We are deve lop ing  
software capable of embedd ing  a h idden  
textual watermark  in a textual message 
wi thout  changing the meaning of the text at all 
and the word ing  only slightly if necessary. To 
bui ld  this application, we are researching the 
interface of the theory of quadrat ic  res idues  
and of specially constrained natural  language  
generation. Let T be a natural  language text, 
and  let W be a string that is much shorter  than 
T. We wish to generate natural  language  text 
T' such that: 

- T' has essentially the same meaning as T; 

- T' contains W as a secret watermark,  and 
the presence of W would  hold up  in 
court  if revealed (e.g., W could say, 
"'This is the Property of X, and was li- 
censed to Y on date Z"); 

- the watermark  W is not  readable  from T' 
wi thout  knowledge  of the secret key  that 
was used to introduce W; 

- for someone who knows the secret key, 
W can be obtained from T' wi thout  
knowledge  of T (so there is no need  to 
permanent ly  store the original,  non-wa-  
termarked copy of copyr ighted  materi-  
al); 

- unless someone knows the secret key, W 
is difficult to remove from T'  wi thout  
drastically changing the meaning  of T',  
and we are working  on ways  to make  it 
even more difficult; 

- the process by which W is in t roduced 
into T to obtain T' is not secret, rather, it 
is the secret key that gives the scheme its 
security; 

- there is buil t- in resistance to collusion by  
two people  who have differently water-  
marked  versions of the same text. that is. 
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suppose  wate rmarked  versions of T are 
sold to A and to B: if buyer  A has T_A', 
where W_A' is h idden using a key that is 
not known to A, and buyer  B has T_B' 
where W_B' is h idden  using a key that is 
not  known to B, then even if A and B 
were to share all the information they 
have they would  not  be able to either 
read or delete the wa te rmark  (from ei- 
ther T A '  or T B'). 

The solutions we sketch in Section 3 will  typical ly 
satisfy all but  the last of the above requirements,  
but  we are optimistic we can modify  our ideas to 
also satisfy it; in fact we can al ready satisfy it if we 
assume W_A' = W_B' (i.e., if the wate rmark  makes 
no mention of the buyers  A or B, and just mentions 
the seller). 

• MT Techniques for Information Security. The 
method of encoding information in each 
natural  language is highly idiosyncratic,  and 
only customized language resources, such as 
ontologies, lexicons, analyzers,  and generators 
allow to access the layer of meaning 
under lying text. We would  like to explore 
how text in a natural  language,  possibly 
encoding a secret message (such as the T' 
ment ioned above) can be automatical ly 
translated, in a way  controlled by  a secret key, 
into another natural  language (resulting in 
T"), and it is this translated message T"  that is 
actually transmitted or made  public. This 
technique can be thought of as either the main 
security mechanism (e.g., in case T'  was 
generated without  using a secret key), or as an 
extra layer of security "on top" of the other 
methods used. In either case, the recipient will 
not  be able to get T' wi thout  having the secret 
key that governs the behavior  of the MT 
software used to create T"  from T'. We see a 
way  to do this start ing from English, and 
automatical ly translate into another language, 
as well as the other way  around.  

• Downgrading,  or Sanitizing Information. 
Increasingly, in interagency exchanges in the 
government,  international coalition 
communication,  and exchanges among 
business partners, there has been a need to 
develop an intricate architecture for 
combining a "high" network and a "low" 
network. Author ized users, with access to the 
high network, where sensitive data  are s tored 
and exchanged, must  have access to the low 
network,  but  not the other way  around.  If this 
is all there is to it, the communicat ion between 
the two networks is assured with the help of a 
variety of switches and one-way filters: the 
low-network information can propagate  up 
but  the high-network information must  not 
leak down. There are enough technical and  

conceptual  problems with such one-way 
filters, but  they are mul t ip l ied  manifold  if 
there is also a need to share some high- 
ne twork  information with  the low-network  
users but  in a way  that removes  all the 
sensitive data. In this context already,  the 
essentially semantic abil i ty to recognize a 
sensitive message comes into p lay  (see, for 
instance, Nelson 1997). In this paper ,  we are 
focusing only on sanit izing textual 
information. In other words,  for each classified 
text T there must  be generated a sanitized, 
downgraded  text T', from which all sensitive 
data  are removed according to a certain list of 
criteria. We are doing this by  uti l izing the NLP 
resources deve loped  by the ontological- 
semantic approach (Nirenburg and Raskin 
2001), which allows deep-meaning  penetra t ion 
and, as a result, much enhanced sensitive 
information detection and removal.  

In Append ix  1, we formulate briefly, for the benefit  
of the IAS community,  what  exactly is meant  by  
natural  language and NLP. The terms are wide ly  
used and equally widely  abused,  both  inside and 
outside of the fields of theoretical and computa-  
tional linguistics, but  especially so on the outside, 
where, for instance, the myth  of non-feasibil i ty of 
NLP as something which is "10-20 years down  the 
road" can still be encountered. A tight descr ipt ion 
of the terms will help us to avoid any further mis- 
unders tanding.  The Append ix  can be sk ipped  by  
those who are familiar wi th  elements of formal lin- 
guistics a n d / o r  NLP. 

2. Natural Language and Humor Generation for 
Memorizing Random Strings 

2.1 Necessity for Mnemonics for Strong 
Passwords and PINs 

Many computer  breakins can be traced back to a 
poor ly  chosen password  (one that is easy to guess, 
to derive, to find in a dictionary, etc.). Breaking 
such a weak password,  then, al lows an int ruder  
access to one account, from which the in t ruder  
exploits system flaws and weaknesses to further 
compromise the system. The extent of this problem 
is truly frightening, and some innovative 
approaches have been designed for deal ing with  it. 
One approach (Farmer and Spafford 1990, Spafford 
1991, 1992a,b) consists of detecting weak  pass- 
words  and alerting system adminis t ra tors  and 
users about them. That is, the system adminis t ra tor  
can run a software tool like COPS and alert  the 
users whose passwords  are found to be vulnerable.  
One problem with software tools that p inpoint  
weak passwords  is that, while  they are useful to 
system administrators,  they can also be used to 
attack a system (in the obvious way). More 
recently, Meunier  (1998) explored an approach for 
generat ing a quali ty password  (a long enough ran- 
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dom string, p roduced  using quali ty pseudo-ran-  
dom number  generation), and then provid ing  a 
software tool to help the user in remember ing the 
password.  While Meunier ' s  approach focused 
more on mixing music with lyrics and contained 
only some tentative suggestions on text generation, 
we have made  natural  language text generation 
the main point  of the effort. 

There is a powerful  incentive for users to choose 
weak passwords  (or, in other contexts, weak PIN 
numbers):  they have to remember  i t - - i n  fact they 
are instructed not to write  their choice on a piece of 
paper  or in a file. So they end up choosing a weak 
password  because it is easy for them to remember. 
A tool that helps users remember  random strings 
therefore considerably weakens (or even removes) 
the incentive to choose weak passwords.  If users 
had a handy  and attractive software tool that helps 
them remember  a r andom string, then they wou ld  
be more likely to choose secure passwords.  More 
widespread  use of secure passwords  would  go a 
long way towards  making it harder  to i l l ega l ly - -  
and eas i ly - -break  into computer  systems. The soft- 
ware tool we are working  on helps br ing this goal 
closer. 

2.2 NLP Generat ion  of  Meaningfu l  H u m o r o u s  
Texts as M n e m o n i c  Devices  

The approach we are using can be summar ized  as 
this: for any random string Z, to generate a mean-  
ingful natural  language text T that is a good mne- 
monic for Z. The requirements for T are: 

• it should be easy to extract Y~ from T: there are 
many ways  of achieving this, including the 
naive way  we have adopted  for the first 
release of using the first letter of every word  in 
T; 

• T itself should be easy to remember:  we 
achieve this by  automatical ly constructing 
from G a T that has meaning,  eventual ly  of the 
humorous  kind, because funny things are 
part icular ly easy to remember,  and we are 
using the results of pioneering research in 
computat ional  humor  to achieve this goal (see 
Raskin 1985, 1996; Raskin and At tardo  1994). 

As far as generating humor  is concerned, our 
approach here differs from existing humor-genera-  
tion efforts and software (both the original LIBJOG 
system in Raskin and At tardo 1994 and its spin-offs 
in Binstead and Ritchie 1997, Hulsti jn and Nijholt  
1996) in at least four ways: 

• a factor that tends to make our problem more 
difficult is the requirement  that T, in addi t ion 
to being "memorable ,"  also corresponds to E. 

• another complicat ing factor is that our 
generation has to use a little more  intelligence 

than, for instance, wha t  extremely little of it is 
necessary to generate a light bulb  joke (Raskin 
and At tardo  1994) or a cross joke (Binstead 
and Ritchie 1997) from a s tandard  template.  

• a factor that tends to make our problem easier 
is that the humor  generated does not  have to 
be par t icular ly  good; a part icular ly bad  joke 
can be easy to remember  precisely because it 
is so bad  (not that the cited toy systems could 
generate par t icular ly  good jokes either!); 

• speaking of toy systems, this part icular  system 
has a grat ifyingly meaningful,  non-toy goal. 

Below humor  generation, there lies a specific natu-  
ral language generat ion task, for which we have 
deve loped  abundant  resources in NLP, ready for 
use or for well-defined tweaking if necessary (see 
Section 4 be low on the NLP resources available for 
IAS). 

2.3 Implementat ion  so Far  

For the initial stage of the implementat ion,  we lim- 
ited the problem and the ou tpu t  in the fol lowing 
helpful ways: 

• the accepted input  is a random-genera ted  
password  which is only alphabetical  (not 
numerical  and consisting of exactly eight  Latin 
characters, e.g., shbvwwlo; 

• the generated ou tput  corresponds to one 
pr imit ive jingle tune only; 

• the generated text follows the same meter; 
• the generated text follows the same 

grammatical  template;  and,  of course, 
• the generated text consists of 8 words  

beginning,  respectively,  with the letters in the 
r andom string. 

The tune goes TA-ta-TA-ta-TA-ta-TA/TA-ta-TA-ta- 
TA-ta-TA. Accordingly,  the meter  in each of the 
two identical lines is 4-foot trochaic, with the 4th 
foot incomplete.  The grammatical  template in each 
identical line is Name,  Verb+Past, Name+Poss,  
Noun.  In other words,  with W n, where 1 < n < 8, 
corresponding,  obviously, to the nth word  in the 
text, W 1 = W 3 -- W 5 = W 7 = Name  (= 
Noun+Proper) ,  W 2 = W 6 = V+Past, W 4 = W 8 = 
N+Common.  WI_ 3 and W5_ 7 are all bisyllabic and 
trochaic, i.e., stressed on the first syllable; W4, 8 are 
monosyllabic.  Thus, the jingle for the r andom 
string above will  be, for instance: 

Sandra handled Byron's vault. 

William wasted Lana 's ore. 

For all the words,  the fol lowing constraint  is 
important:  their initial sound  should be immedi-  
ately associated with its first letter, i.e., the non- 
trivial spell ings should  be excluded,  such as, for 
instance, ph, which can be confused wi thf .  Specifi- 
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cally for the names, the two addi t ional  constraints 
are that the names should be well-known,  wher-  
ever possible and not  ending in a sibilant (s, z, sh, 
zh,  ch or j) because those require an extra syllable in 
the possessive form, e.g., judges .  Specifically for the 
verbs,  the constraints require that they be uni t ran-  
sitive, i.e., taking one and only one object, that they 
take both [+Human] subjects and objects, and  that 
they have a regular  Past form. Finally, for the 
monosyllabic nouns, we prefer them concrete, not  
abstract. 

All  the three categories are determined by  the 
appropr ia te  word  lists with under  10 options for 
each letter. The lists are also organized in sublists 
in some cases for the second phase, which we  have 
also part ial ly implemented.  At this stage, we want  
the verbs to be somewhat  opposi te  to each other, 
e.g., the first one being "posit ive" and the second 
one "negative," so that the whole jingle have the 
effect of somebody doing something good  for 
somebody  else in the first line while in the second 
line something bad is done. This is taken care of by  
d iv id ing  the verb list into two: the good ones and 
the bad  ones, or the first-line verbs and the second- 
line verbs. We also want  the final nouns of the lines 
to rhyme, and this requires, for each noun on the 
main word  list, 26 rhyming nouns, each beginning 
with a different letter. Neither of these two tasks 
has proven to be daunting,  and the second-phase 
version has been easily implemented on a Win- 
dows machine in Visual Basic, resulting in 750 
lines of code. 

The most  challenging part  of the research is to 
make the jingle humorous.  This part  is an imple-  
mentat ion of a popular  script-based semantic the- 
ory of humor  (Raskin 1985) which stipulates,  
basically, that a short  verbal joke is ambiguous ly  
compatible  with two different scripts and  that  
those scripts are opposed to each other in one of 
the 20 or so prescribed way, e.g., s ex /no  sex. g o o d /  
bad,  r ich/poor ,  etc. This part  of the research is also 
coordinated with a humorous human-compute r  
interface project, both for enter tainment  and diver-  
sion purposes  and for the security-oriented goal of 
user humor  profiling (see Raskin et al. 2000, 
At tardo et al. 2000). The verb opposi t ion at the sec- 
ond phase of implementat ion goes a long way  
towards  the desired humor  opposit ion.  We are 
now working  on a method to make the jingles fun- 
nier, and par t  of it is involving the common nouns 
in the humorous  scripts. 

We have also conducted a small series of pure ly  
i l lustrative experiments testing the acceptance of 
the generated lines by  users and the extent of the 
recall. 12 subjects were asked to rate 50 automati-  
cally generated lines for acceptance from 1 (unac- 
ceptable) to 5 (perfectly acceptable), and  the 

average rank was 3.26. In a different experiment ,  7 
uninvolved subjects were asked to remember  two 
lines each, and the recall was 100% after 1, 2, and  3 
weeks,  and  it fell down  to 93% (one subject forgot 
one of his two lines) 6 weeks later (and 3 weeks 
after the subjects had  been told that there was no 
need to remember  the lines any longer). 

3. NLP for Watermarking 
Many techniques have been proposed  for water-  
marking  mul t imedia  documents.  Many are defec- 
tive in that they fall prey to attacks that erase the 
watermark.  The most  successful operate  in the fre- 
quency domain,  i.e., on the Fourier  or Discrete 
Cosine transform of an image or audio  document  
(see Cox et al. 1996, Cox and Miller 1996, and the 
papers  they reference). Of course, such methods  do 
not  work  on text unless the text is represented as a 
b i tmap image (with, for instance del iberately 
manipu la ted  kerning a n d / o r  spacing to hide the 
watermark),  but  in that case the wate rmark  can 
easily be erased by  using OCR (optical character 
recognition) to change the representat ion of the 
text from a bi tmap to ASCII or EBCDIC. We would  
like to come up with  a method of wate rmark ing  
natural  language text that is at least as successful 
as the f requency-domain methods (such as Cox et 
al. 1996 and related work) have been for image and 
audio. 

In one variant  of the problem, where the main 
interest is in hiding a secret message W in text T 
that looks innocuous and unrelated to the message, 
T' does not  even have to be in the same language 
as T (see Section 4 below). In the example that fol- 
lows we assume, however,  for the sake of simplic- 
ity, that T' is in the same natural  language as T. 

One idea we want  to explore is the use of the the- 
ory of quadrat ic  residues (Atallah and Wagstaff 
1996). We explain below an adapta t ion  of this 
method to the problem at hand. We give a simpli-  
fied (and weaker) version of the scheme we have in 
mind,  to illustrate the main ideas involved. 

First we introduce some notat ion and terminology 
and review basic facts that will be used later. 

Let p be a secret pr ime at least 20 decimal digits 
long. The pr ime p will be used to obtain T', and 
only by  having the pr ime p can one extract W from 
Z'. 

An integer n is a quadrat ic  residue modulo  p if p 
does not  d ivide  n and there exists an integer x for 
which XA2 = n rood p. An integer n is a quadrat ic  
nonres idue modulo  p if p does not d iv ide  n and 
there does not exist an integer x for which x ^ 2  = n 
rood p. Whether  n is a quadrat ic  residue or nonresi- 
due modulo  p is called the quadrat ic  character of n 
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modulo  p. Half  of the nonzero (modulo p) integers 
are quadrat ic  residues modulo  p, and half are qua- 
dratic nonresidues modulo  p. 

Using Gauss'  quadratic reciprocity law, it is easy to 
determine the quadratic character of n modulo  p in 
t ime O((log n)(log p)). The problem is just about  as 
hard  as comput ing the greatest common divisor  of 
two numbers  as large as n and p by  using the 
Euclidean algorithm. 

Let the watermark  message be the bi t  string w_O, 
w_l . . . . .  w_{k-1}. Let n_O , n_l . . . . .  n_{m-1}, be the 
integers corresponding to the, e.g., ASCII represen- 
tations of the words  in T, i.e., n_i corresponds to the 
(i-1)th word  in T. (Assume for now that m is much 
larger than k.) 

We use a pseudo- random number  generator  wi th  p 
as seed to generate random numbers  r_0,  r_l . . . . .  
r_{k-1} (i.e., as many as there are bits in the water-  
mark  message). We repeat  the following for i = 0 ,  
1 , . . . ,  m-l:  If n_i + r{ i  rood k} is a quadrat ic  resi- 
due (resp., nonresidue) modulo  p and w_{i rnod k} is 
1 (resp., 0), then the (i-1)th word  in T' is the same 
as in T. Otherwise we keep modifying the remain- 
ing (yet unprocessed) port ion of T until the (i-1)th 
word  satisfies the above requirement.  This modifi-  
cation is s imple if the (i-1)th word  has many  syn- 
onymous  words,  but  otherwise it could be quite 
elaborate because we must  not  change the mean-  
ing of the text. That not too many  modifications are 
needed  follows from the observation, made  earlier, 
that half of the nonzero (modulo p) numbers  are 
quadrat ic  residues modulo  p and half are quadrat ic  
nonresidues:  this implies that there is a 2^{-t} prob- 
abili ty that t modifications will  be needed.  

The above is necessarily an oversimplif ication of 
what  we have in mind, but  it nevertheless gives the 
flavor of the ideas involved. Its main d rawback  is 
that the watermark  can be damaged  by  an attack 
that consists of repeatedly performing on T' a large 
number  of meaning-preserving modifications like 
those used to obtain T' from T, in the first place 
(such as replacing a word  by  a synonym); of course 
the attacker does not know p and so each such 
modification has a 50% probabil i ty  of actually not  
damaging  the watermark  bit  h idden at that posi-  
tion. There is no easy way  around this: any mean-  
ing-preserving modifications we do to obtain T' 
from T can be "undone '"  by an attacker who is ran- 
domly  apply ing  many  such transformations to T'. 

The idea we propose for foiling this k ind of attack 
is the following. Instead of doing many  meaning-  
preserving transformations to pu t  the wa te rmark  
in the text, we make more substantial  local changes 
at far fewer positions, randomly  de termined by 
using p. While these modifications are not  quite 

meaning-preserving,  there are few enough of them 
that the overall  meaning of the original T should  be 
essentially preserved.  The key idea is that an 
attacker who wants  to remove the wate rmark  must  
make  such changes everywhere  (because he does 
not know where we made  them), and by doing  so 
he would  essentially destroy T'. This is precisely 
our  goal: to make it impossible--or at least as hard  
and as prohibi t ively expensive as possible--to 
remove the watermark  from T' wi thout  essentially 
destroying the meaning of T'. At  this time, we do 
not know how to implement  this idea wi thout  
making use of the original (non-watermarked)  text 
T for retrieving W from T', and  we are not sure that 
it is even feasible--or necessary. 

The whole  idea is still vulnerable,  however:  as long 
as the quadrat ic  characters of words  are used to 
encode the watermark,  it can still be removed by  
an attacker doing systematic synonym-subst i tu-  
t ions--unlikely and costly as this k ind of attack 
may  be to stage, it is still not enough of a deterrent.  
Somewhat  more resilient would  be an encoding 
that ties the wate rmark  to a h idden  element  of the 
text, such as the tree that represents the sentence 
structure, rather than to the actual words  in the 
sentence: for example,  if the wate rmark  is in the 
quadrat ic  characters of the items in a pos torder  
listing of the preorder  numbers  (+ p, the secret 
large pr ime number,  to make these numbers  large 
for statistical purposes)  of the above-ment ioned 
tree, it wou ld  resist word-subst i tut ions  and any 
transformation that preserves the structure of the 
tree - even if it changes the labels of the tree nodes.  

Even more resilient would  be a scheme that, 
instead of using the above-ment ioned tree, uses 
some graphical  representat ion of meaning  (this is 
paral lel  to Palsberg 's  2000 approach to watermark-  
ing the data  structure and not  the actual code in 
software watermarking) .  The text-meaning repre- 
sentat ion (TMR) of the text (see Section 4 and 
Append ix  2) is, of course, the obvious candidate.  
The possibi l i ty  of represent ing the entire text to be 
wa te rmarked  as its TMR and wate rmark ing  the 
TMR instead seems to have a promis ing venue that 
needs to be explored.  The TMR of a sentence is a 
much longer string of words  containing an implici t  
tree (actually, tree of trees); it is completely invisi- 
ble to the attacker; a larger variety of watermark-  
ing techniques may  hence be deployed.  It is, 
however,  more difficult to make replacements  in 
the TMR. 

We are also interested in how to get rid of storing 
the original (non-watermarked)  text. Extending 
our  overall  approach so that it does not  require the 
original text is certainly an attractive venue of 
research. What  it means  is that we will then need 
the wa te rmarked  text to "self-synchronize" by 
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indicating the posit ions at which the watermark  is 
placed (assuming we place the watermark  in rela- 
tively few places). This can be done by using a 
peculiar ly shaped  tree (that is secret just like the 
pr ime p) to effectively say, "Here starts another 
watermark."  

A number  of problems we are aware of and some, 
we suppose,  we are not yet  will arise here. One is 
that of "false positives": if the proper ty  of a sen- 
tence signalling that the next sentence contributes 
to the watermark  may  recur elsewhere in the text 
the process of prosucing the watermark,  for 
instance, in court, will  be compromised.  Generally, 
speaking, linguistic entities at and above the level 
of words  (e.g., sentences) have an extremely low 
probabilities, so the occurrence of a false posit ive 
there is highly unlikely. The possibili ty should be 
somewhat  more alarming, however, with regard to 
syntactic trees because their inventory, while still 
technically infinite, consists of a small number  (< 
20) of s tandard  node junctures that recur throught  
the trees. The semantic trees in the TMRs (see also 
Appendix  2) do regain their uniqueness and 
extremely low probabil i t ies of recurring, especially 
in the same text. 

Yet another problem is excerpting: will the water- 
mark hold if a part  of the text is excerpted? We 
address  this problem by inserting the watermark  
in a very small  number  of sentences throughout  
the text and repeating it as many times as the 
length of the sentence allows, making sure that the 
probabil i ty of a hostile action removing all the 
mult iple  occurrences of every bit of the watermark  
string be extremely low. 

From the NLP perspective, these watermarking 
techniques will involve mostly rather a simple nat- 
ural- language generator  of pretty short  utterances 
based either on a substi tution of a word by  its syn- 
onym or, in rare cases, of a phrase by a synony-  
mous phrase.  One unusual  and almost completely 
unexplored aspect of it is this partial  generation of 
a substi tute word  or phrase not on the semantic 
basis but  rather on the basis of the necessary qua- 
dratic residue or non-residue value. Here, the sys- 
tem will general ly have several choices to make 
among words  which will contribute the same way  
to the code, and  this makes the problem very feasi- 
ble (again, see Section 4 on the NLP resources). A 
desirable side effect is that partial  natural  language 
generation, in which we are making rapid progress 
within this research will contribute to many non- 
IAS-related NLP tasks. 

4. Machine Translation (MT) Techniques for 
Information Security 
To capture the difficulty of breaking a natural lan- 
guage based scheme, we would  like to take advan-  

tage of the serious progress in meaning-based 
machine translation achieved by  the ontological-  
semantic approach,  where a powerful  system of 
language resources has been created by  two of the 
coauthors and their associates to enable Level 3 
(top level, wi th  full meaning access) MT for a 
growing number  of natural  languages (Nirenburg 
and Raskin 1987, 1996, 1998; Onyshkevych and 
Nirenburg  1995; Mahesh 1996, Viegas and Raskin 
1998). These resources include: 

• semi-automatical ly acquired ontology, both 
general  and domain-specific,  for over  60,000 
nodes and properties;  

• semi-automatical ly  acquired lexicons for a 
growing number  of natural  languages  
(already over a dozen at this writing) for over  
40,000 word  senses; 

• an analyzer  which translates a text in a natural  
language into an text-meaning representat ion 
(TMR, a language- independent  interl ingua 
which represents the meaning of the text); 

• a generator  which translates a s tatement  in 
TMR into a text in a given natural  language.  

In MT, the analyzer  goes first and the generator  fol- 
lows. In IAS, the order  is reversed. Otherwise,  the 
processes are identical, and the same resources are 
usable for both  purposes.  

To combine an addit ional  MT layer with another  
scheme (perhaps the one described in the previous  
section), we are developing a compact  package Of 
the above resources, t r immed and simplif ied for 
the purpose,  to be distr ibuted to the system users. 
In a new and original twist from normal  NLP anal- 
ysis and generation, we are exploring a specially 
b iased MT, distorted by a secret key, which adds  
another protective layer. The MT layer will  be 
impenetrable  wi thout  an exact copy of the key 
(and, of course, MT software), due  to the idiosyn-  
cratic rules of each of the part ic ipat ing languages.  

At  present,  we have the following capabilities: 

we have Level 2 MT systems for a number  of 
uncommonly  known languages along with a 
semi-automatic  system for rap id  
developments  of such systems for other low- 
densi ty  (i.e., not  widely  used) natural  
languages,  and we can ensure Web access to 
such systems; 
we can automatical ly translate the text T of a 
message in English that needs to be 
t ransmit ted into text T' in a low-densi ty 
language before encrypting it in any other 
way; we can complicate it further by  
translat ing T' into T" in yet  another low- 
densi ty  language,  and so on; and we can vary  
those languages within our  inventory from 
one transmission to another; 
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• we can automatical ly translate messages in a 
deliberately distorted way  while still 
preserving the appearance of a meaningful  
text; the distort ion may  range from the 
primit ive substi tution of (selected) words  wi th  
antonyms to much more sophist icated 
manipula t ions  on the lexicon; 

• we can cause even more complex distort ions 
of texts, still keeping them meaningful  and 
cohesive, by  manipula t ing  the ontological 
nodes evoked by  the words  in T, and only 
access to the specific ontology will  help figure 
out  wha t  T is; 

• we can also manipula te  the analyzer  and 
generator  for the same purpose.  

The main thrust of this venue in our  research is to 
evaluate the effectiveness, economy, and reliability 
of these capabilit ies for IAS, in other words,  how 
simple the system will be for the author ized users 
to deploy  and how hard it will be for the adversar-  
ies to break the code. This approach comes the 
closest to the Navajo antecedent  but  it takes that 
ancient method to the contemporary  computa-  
tional-linguistic level by  using combinat ions of the 
best  NLP resources available. 

5. Downgrading, or Sanitizing Information 

5.1 Downgrading vs. Declassification 

We are applying state-of-the-art methods  of onto- 
logical semantics to the problem of sanitizing clas- 
sified and sensitive documents  as per  pre-defined 
specifications, ranging from banning the use of a 
specific term to more complex, contextual restric- 
tions. The problem is essentially the same as that of 
declassification of classified government  docu- 
ments, a task required by the Executive Order  
12958, Classified National  Security Information, 
and pretty much swept  under  the rug so far by  the 
government  agency because of the p resumed non- 
implementabili ty.  The rules of downgrad ing  are 
complex and the human  implementa t ion  of the 
procedure  prohibit ively costly and slow. The need 
to automate the procedure  is obvious bu t  simple, 
keyword-plus-Boolean-logic-based approaches  
result in an unacceptable level of accuracy. 

We are developing a much more accurate method 
of automatic downgrad ing  based on the ontologi-  
cal semantic resources accumulated at the Purdue  
NLP Lab and at CRL for a number  of DoD-funded 
projects in machine translation, information extrac- 
tion and retrieval, summarizat ion,  and  other 
related tasks. The method allows the system to 
accommodate  complex contextual rules of down-  
grading (or declassification) from the human  man-  
uals and to model  the activity of a competent  
human declassifier at many times the speed and 
with no compromise in accuracy. 

EO12958, s igned by  President  Clinton on Apr i l  17, 
1995, and obligat ing all government  agencies to 
declassify documents  older  than 1976 by  Apri l  
2000, requires that all government  documents  be 
declassified and made  available to the public 
unless they continue to contain sensitive informa- 
tion, in which case par ts  of the documents  should  
be deleted or blanched or the entire documents  
bar red  from declassification. The var ious  affected 
depar tments ,  facing the necessity to declassify vir- 
tually bil l ions of pages,  have deve loped  pret ty  
complex sets of rules for h u m a n  declassifiers (the 
DOE book of rules, for instance, is r epor ted  to con- 
tain over 700 different, often over lapp ing  instruc- 
tions). The work  has been going very  slowly, wi th  
each document  requir ing weeks  of processing, 
checking, and double  checking, and  the depar t -  
ments  are agencies are falling behind  in the imple-  
mentat ion of the Act. 

A computat ional  solut ion of the backlog is s imple 
in those rare cases when  the declassification rule 
states that no document  wi th  a certain word  occur- 
r ing in it (or two words  occurring together) can be 
declassified at this stage. Ingenious techniques 
have been p roposed  for pre t ty  complex Boolean 
algebra formulae of keywords  to capture the "con- 
textual" use of the significant words.  The level of 
accuracy reached in such systems (see, for instance, 
ULTRASTRUCTURE deve loped  by  George Wash- 
ington Univers i ty 's  Declassification Product ivi ty  
Research Center or SRI Internat ional 's  Keyword  
Spott ing methodology)  remains unacceptably and 
apparent ly  un improvab ly  low. 

It is clear, at this point, that the Executive Order  
will  not be implemented  on time or at all. The 
problem of downgrad ing ,  while  essentially the 
same, is seen by  the government  agencies and 
industr ial  entities as not  an act of coercion but  
rather an absolute necessity, which it is. The pur-  
pose is not  to serve the anonymous  public out  of 
some good  intentions bu t  rather  to get very impor-  
tant work  done. It is downgrad ing ,  therefore, and 
not  declassification, that our research specifically 
addresses and targets. We do hope, however,  that 
our success in downgrad ing  will  change the agen- 
cies' a t t i tude to declassification as well. 

5.2 The Ontological Approach: An Example 

We assume that  the example  in this section is rea- 
sonably self-explanatory. We do, however,  provide  
a short  sketch of ontological semantics,  with fur- 
ther references, in Append ix  2. 

Let us consider  then a hypothet ical  example,  
whose purpose  is to i l lustrate a typical  downgrad-  
ing instruction and how the p roposed  system will 
handle  it. Let us assume that the system is 
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instructed to allow mentions of nuclear subma- 
rines but not their specific deployment, reactor 
capacit~ or mode of refuelling. 

Focusing just on the first of these for the moment, 
instructing the computer to look for nuclear subma- 
rine and deploy in the text will fail the instruction in 
many different situations, e.g., when both occur in 
the text but not in the same sentence or adjacent 
sentences, and deploy does not pertain to the vessel. 
At the same time, the classified information may 
be given without using any form of deploy but 
rather with such words as location, is, or even sim- 
ply at. It is very hard to anticipate all the syn- 
onymic substitutions and paraphrases as well as 
permitted uses with just keyword combinations. 

One would think that simple syntactic parsing will 
solve at least the question of whether deploy per- 
tains to nuclear submarine in a sentence, But, 
besides the fact that syntactic parsing needs then to 
be used globally and rather expensively, it will 
misinterpret such a simple sentence as Nuclear sub- 
marines will be deployed nearby to support ground 
forces in case of military emergencies. 

What we propose is the limited use of meaning- 
based text analysis developed at the CRL for 
machine translation, information retrieval and 
extraction, summarization, intelligent Web 
searches, and other related NLP tasks (see Section 
4 above). In our experience, information retrieval 
requires only a partial use of these resources and 
processes for two different reasons: first, the sys- 
tem is only interested in a few expression or con- 
cepts; second, no generation is necessary 

In our hypothetical example involving the occur- 
rence of nuclear submarine in three narrowly 
defined context, this is how the system utilizes the 
resources. When the analyzer spots nuclear subma- 
rine or just submarine in a sentence, it immediately 
evokes the appropriate lexical entry, which, in 
turn, produces the corresponding ontological con- 
cept, which will look, in much simplified form, as 
follows: 

submarine 
(isa 
(theme-of 

(instrument-of 

(manned-by 
(propel-mode 
(engine-type 
(range 
(speed 
(current-location 

warship) 
build, commission, 
decommission, deploy, 
destroy, attack) 
attack, support, transport, 
threaten) 
naval crew) 
surface, sub-surface) 
nuclear-engine) 
N < x < M )  
K < y < L )  
body-of-water and /o r  

(prior-location 

(next-location 

(current-mission 

geographic point and /o r  
coordinates and /o r  rela 
tive, time-range) 
body-of-water and /o r  
geographic point and /o r  
coordinates and /o r  rela 
tive, time-range) 
body-of-water and /o r  
geographic point a n d / o r  
coordinates and /o r  rela 
tive, time-range) 
Z) 

Most of the slot fillers (as well as some of the slot 
names) are ontological concepts as well. In MT, the 
analyzer attempts to utilize the syntactic structure 
of the sentence and the lexical items in it to fill all 
the slots it can. In the proposed system, it is inter- 
ested only in the filler for the location slots and 
perhaps, more narrowly, only the current location 
(as well in the TYPE-OF-ENGINE slot if its filler is 
NUCLEAR-ENGINE - this will be established immedi- 
ately if the triggering string is nuclear submarine; if 
it is just submarine the analyzer will look around 
for nuclear or equivalents). If the slot is empty, the 
red flag will not come up and the text will be 
passed down unmodified--unless any one of the 
other two restricting contexts is present. 

The system cannot access the other two contexts 
from the SUBMARINE concept alone but it can from 
the concept of NUCLEAR-ENGINE used as the filler 
for TYPE-OF-ENGINE property slot. The property 
slots for NUCLEAR-ENGINE will include reactor- 
capacity and refuel-mode, and the analyzer suc- 
ceeds in filling either of these slots, the sentence 
(or, depending on the downgrading instructions, 
the entire document) will be barred from the 
downgraded  version. 

This general approach is then further refined in 
conjunction with the exact nature of each set of the 
current and future human-to-human instructions 
for downgrading,  or sanitizing sensitive informa- 
tion in a mixed network. This adjustment is imple- 
mented for each system with the help of a Web- 
accessed semi-automatic system for knowledge 
engineering, similar to the environment we have 
developed for the rapid deployment of MT sys- 
tems for low-density natural languages (see Sec- 
tion 4 above and Nirenburg and Raskin 1998). 

This approach has turned out to be highly effective 
in accurate knowledge representation of even the 
most  arcane simulated human-to-human instruc- 
tions on declassification, resulting in high accuracy 
in automatic declassification and downgrading in 
our preliminary runs. It is clear, however, that the 
real efficacy of the ontological semantic approach 
to automatic sanitizing of text will have to be mea- 
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sured more carefully in full-fledged testing and 
evaluation procedures, and we are working on 
subjecting the system to several such procedures, 
common to IAS, at the earliest stage of completion. 

It is noteworthy here also that other, non-NLP- 
related emerging paradigms in IAS are beginning 
to develop a need for ontologies, for instance, for a 
consistent and meaningful formal representation 
and classification of attacks and responses (see 
Templeton and Levitt, this volume). Such para- 
digms can gain from the substantial body of 
knowledge on the acquisition, mathematical prop- 
erties, and effective interchange of ontologies (see, 
for instance, Nirenburg and Raskin 2001, Ch. 3.3). 

6. Conclusion 
We have discussed just four possible venues for 
utilizing the available NLP expertise and resources 
for IAS. While all these directions were addressed 
in the exploratory mode, the techniques of simpli- 
fied NLP text generation have already been 
adapted for and implemented for the development 
of mnemonic devices for strong, random-gener- 
ated system-access passwords; the innovative and 
promising techniques of severely constrained NLP 
text generation are being developed for water- 
marking; and the techniques of ontological seman- 
tics are being applied to and modified for 
downgrading sensitive textual information in 
mixed networks. We fully expect other applica- 
tions of NLP for IAS to develop in the process of 
cooperation between these two areas and to con- 
tribute to innovative twists in enhancing computer 
information assurance and security. 
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Appendix 1: Natural Language and NLP 
'Natural language' is the term used to denote all 
human languages that have evolved in the course 
of human history and been used monolingually to 
serve fully the needs of the communities that 
employ them. There are around 5,600 extant natu- 
ral languages, e.g., live languages and dead lan- 
guages, for which there are records and/or  
descriptions 

Natural language is the basis of all human activity 
and, therefore, an important component of many 
fields of study. The main discipline, however, 
which studies natural language as a universal 
human faculty and the most observable function of 
the human mind is linguistics. One of the most 
ancient academic disciplines, dating back several 
millennia and associated closely, in antiquity, with 
the study of foreign languages and preservation of 
dying languages and sacred texts in them, linguis- 
tics finally won its independence from such related 
fields as philosophy, theology, and philology early 
in the 19th century by developing a particular his- 
torical domain that was of little interest to other 
fields, viz., the study of language families and, 
later in the century, reconstruction of ancestor lan- 
guages, such as proto-Indo-European, with the 
help of a well-defined methodology based on a 
systematic comparison of germane words in 
descendant languages. 

This emphasis on precise methodologies served 
linguistics well in the 20th century when a momen- 
tum for an algorithmic, mathematicalized study of 
language developed in the 1920s, with the advent 
of structuralism and the subsequent emphasis on 
synchronic description of language, largely at the 
expense of its historical exploration. The American 
branch of structural linguistics, Leonard Bloom- 
field's descriptive linguistics, became most influen- 
tial in the 1940-1950s after introducing a near- 
algorithmic procedure for a field description of an 
unknown language, starting with the collection of 
a corpus and continuing with the recursive appli- 
cation of the segmentation and distribution proce- 
dures from the lower to higher levels of language 
structure. 

These levels define the central subdisciplines of 
linguistics. Phonetics and phonology study the 
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sound of language: the former empirically so and 
the latter theoretically. Morphology studies such 
parts of the words as the root, prefix, suffix, and 
infix, as well as the words themselves and their 
groupings into parts of speech, such as nouns, 
verbs, prepositions, etc. Syntax is concerned with 
the complex organization of words into phrases, 
clauses, and sentences. Semantics deals with the 
meaning in natural language; pragmatics with 
meaning in context. 

The mathematicalization, or more accurately, for- 
malization of linguistics was institutionalized by 
Noam Chomsky in the late 1950s, whose twofold 
contribution included the development of the the- 
ory of formal grammars as a branch of mathemati- 
cal logic and of transformational generative 
grammar  as an implementation of a formal gram- 
mar. A finite set of several types of grammatical 
rules is postulated as the syntax of a language, and 
the syntactic structure of each sentence in the lan- 
guage is a formal derivation resulting from a con- 
secutive application of a subset of these rules to the 
initial symbol S (sentence). 

The primary function of natural language is com- 
munication among humans. There are several dif- 
ferent modes of human-human communication. It 
is customary, after Paul Grice's influential work in 
the 1950-70s, to think of the fact-conveying, bona- 
fide mode of communication as primary. In this 
mode, the speaker and hearer are committed to the 
literal truth of what  is said. A slight and necessary 
extension of the mode allows such non-literal 
devices as metaphors and implicatures as long as 
the speaker makes it clear to the hearer how the 
utterance is to be understood. This mode is based 
on complete linguistic cooperat ion--and t rus t - -  
between the speaker and hearer. Other, non-bona- 
fide modes of communication, such as humor, 
play-acting, advertising, propaganda,  and lying, 
have their own principles of cooperation but none 
of the modes implies a commitment to the truth of 
what  is being said. 

All of these modes have to contend with two 
essential characteristics of natural language that 
complicate human-human communication, 
namely, underspecification, sometimes rather mis- 
leadingly referred to as 'vagueness, '  and ambigu- 
ity. Underspecification of reality by language 
means simply that no utterance is capable of con- 
taining all the details of the situation it attends to 
describe. Thus, when the speaker says, "John was 
late for the calculus class this morning," those 
hearers who know who John is and what  calculus 
class is meant will have a feeling of complete 
understanding. The sentence, however, leaves an 
infinite number of questions unanswered, and 
humans intuitively use presuppositions (prior 

knowledge) and inferences (subsequent, derived 
knowledge) to answer these questions in their own 
minds. 

Underspecification is accepted by native speakers 
(and hearers) as a fact of life and is rarely com- 
mented upon or much researched. (It cannot, how- 
ever, be accepted by the computer.) Ambiguity is a 
different matter: much of what  native speakers do 
with language is a pretty sophisticated and almost 
entirely unconscious procedure of disambiguation. 
The fact is that just about every word in a natural 
language has multiple meaning, many syntactic 
structures can be analyzed in two or more ways, 
and as an obvious result of that, sentences, which 
are made up of words put  together by syntactic 
structures, tend to be at least potentially many  
ways ambiguous. Thus, the much-analyzed sen- 
tence The man hit the colorful ball is believed to be 4- 
way  ambiguous; the specially concocted of hack- 
neyed semantic examples The paralyzed bachelor hit 
the colorful ball is 25-way ambiguous. 

Native speakers negotiate this potentially disas- 
trous situation skillfully by using sentences in dis- 
ambiguating contexts and by providing to the 
hearers the extra information needed to under- 
stand each sentence in the intended meaning. Sure 
enough, this sometimes falls through and misun- 
derstandings occur, but  because these are unac- 
ceptable to speakers, every effort is made, in the 
process of Gricean cooperation, to prevent ambigu- 
ity from affecting comprehension. The problem of 
ambiguity, along with the matching problem of 
underspecification looms much more seriously in 
NLP. 

Much, if not already most  human productive activ- 
ity is conducted now with the help of computers. 
Human-computer  interaction and the human-fac- 
tors aspect of computer development and use 
have, therefore, achieved paramount  importance. 
NLP is the application of linguistics to the s tudy of 
these phenomena through its application. NLP 
designs and implements automatic systems that, 
typically, take text in a natural language as input, 
process it according to the predefined tasks, and 
then generate output, which may be in the same or 
another natural language or in some other stipu- 
lated format, such as, for instance, a database 
report or a chart. 

Historically, the first task, for which NLP was used 
in the early 1950s, was machine translation (MT) 
between pairs of such best-known and -described 
languages as English and Russian or English and 
French. While realizing the impossibility of simple 
word-for-word translation and devising an inge- 
nious system of overcoming this difficulty syntacti- 
cally, MT soon ran into the "semantic barrier": it 
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became clear to the MT pioneers that no high-qual- 
ity fully automatic translation was possible with- 
out building the understanding of the text into the 
system, and this was not considered feasible at the 
t ime-- to  some extent, because of ambiguity and 
underspecification. As a result, MT degraded to 
human-assisted post-editor based systems, some 
of which were found to be practically useful 
enough to last for decades, and even to machine- 
aided translation systems, in which humans per- 
formed all the intellectual tasks and computers 
performed simple but time-consuming tasks, such 
as dictionary look-ups. This temporary collapse of 
MT as a naive ambitious goal of replacing a huge 
army of expensive human translators and inter- 
preters with machines gave both MT and NLP a 
bad name in other fields in the 1960-70s, which 
persisted longer than it should have in spite of the 
crucial changes in NLP and crucially contributed 
to the myth of the non-feasibility of NLP that we 
mentioned in Section 1. 

In the mid-1980s, however, MT started making a 
spectacular comeback as a knowledge-based, 
meaning-oriented application. This was due partly 
to progress in general AI and partly to the increas- 
ing role of computational semantics, which has 
moved from the fledgling efforts of its pioneers in 
the 1970s to the breakthrough developments of the 
early 1990s in handling ambiguity and underspeci- 
fication and on to its currently dominant  position 
in NLP. Contrary to the prevalent NLP ideology of 
the late 1960s-late 1980s, when an enormous 
amount  of talent, effort, and funds were invested 
in avoiding computational semantics, usually 
through increasingly detailed syntactic parsing, 
the current state of the art easily assumes the 
necessity for the computer to understand the 
meaning of the text it processes. This makes it pos- 
sible to diversify NLP applications to intelligent 
information retrieval and Web searches, automatic 
abstracting, summarization, etc. In computational 
semantics, input text is converted into its meaning 
representation at the required level of granularity, 
the system manipulates these representations 
according to the prescribed task and then converts 
them into natural language text or any other for- 
mat. It is the meaning-based ontological-semantic 
approach that we apply to AIS in our research. 

NLP can be seen, in security terms, as the effort of 
decoding the meaning of a text from its surface 
form, something that the German team failed to 
achieve with Navajo texts in World War II. What 
the team lacked was the knowledge of the lan- 
guage and not, unlike in "ordinary codes," some 
sophisticated combinatorics of a reasonably high 
order of mathematical complexity. There is, of 
course, a key to this code but it amounts to the 
entire structure of the language from its phonologi- 

cal level up to the pragmatical level of meaning in 
context, and an NLP system can be only successful 
if it is based on all this knowledge, which is rather 
hard to describe and present formally. But these 
difficulties, which NLP has had to contend with for 
decades, become an advantage in AIS if the lan- 
guage structure is used to encode, to encrypt the 
transmitted message. This is the updated and 
upgraded intuition, much expanded from the 
Navajo incident and reinforced with NLP, that 
underlies all of our venues of NLP/AIS  research. 

Appendix 2. A Sketch of Ontological Semantics 
Ontological semantics is an approach to NLP 
which uses a constructed world model, or ontol- 
ogy, as the central resource for extracting and rep- 
resenting meaning of natural language texts as 
well as synthesizing natural language texts based 
on representations of their meaning. The architec- 
ture of a prototypical application of ontological 
semantics comprises, at the most coarse-grain level 
of description, 

• a set of static knowledge sources, namely, a 
single language-independent ontology and a 
lexicon connecting the ontology with a natural 
language (one such lexicon is needed for each 
language in an application), so that each 
lexical entry is explicitly anchored in the 
ontology, pointing to a node in it or a property 
of a node; 

• knowledge representation languages for 
specifying meaning structures, ontologies and 
lexicons; and 

• a set of processing modules, namely, a 
semantic analyzer and a semantic text 
generator. 

In ontological semantics, the module that produces 
specifications of input for a text generator is the 
semantic analyzer. This means that ontological 
semantics directly supports such applications as 
machine translation of natural languages. How- 
ever, the approach in principle supports other 
applications, such as information extraction, text 
summarization, support  of networks of human 
and software agents, etc. An additional reasoning 
module that a) manipulates meaning representa- 
tions produced by the analyzer; and b) uses other 
methods of producing meaning representations fit 
to be inputs to semantic generation can be added 
to the basic architecture. The static knowledge 
sources in ontological semantics are capable of 
serving the knowledge needs of such a module. 

Any large, practical, multilingual computational- 
linguistic application, such as machine translation, 
requires many knowledge and processing modules 
integrated in a single architecture and control envi- 

63 



ronment. For maximum output quality, such com- 
prehensive systems must have knowledge about 
speech situations, goal-directed communicative 
actions, rules of semantic and pragmatic inference 
over symbolic representations of discourse mean- 
ings and knowledge of syntactic, morphological 
and phonological/graphological properties of par- 
ticular languages. Heuristic methods, extensive 
descriptive work on building world models, lexi- 
cons and grammars as well as a sound computa- 
tional architecture are crucial to the success of this 
overall paradigm. Ontological semantics is respon- 
sible for a subset of these capabilities. The 
approach is also based on the important assump- 
tion that it is possible to integrate processing mod- 
ules based on unconnected theories through 
matching their input and output structure formats. 

Historically, ontological semantics has been devel- 
oped by two of the coauthors and their associates 
in several completed NLP projects at Colgate Uni- 
versity, Purdue University, Carnegie Mellon Uni- 
versity, and New Mexico State University in 1982- 
1995. It has also been used in the current Expedi- 
tion/Boas, MINDS, Savona, and TIDES projects at 
CRL (http://crl .nmsu.edu/).  The goals of the prac- 
tical semantic theory for NLP are somewhat com- 
patible with and intersect the claimed goals of 
some other approaches to purely theoretical com- 
positional semantics. There are also important dif- 
ferences along at least the following two 
dimensions: a) the domain of the theory (e.g., lexi- 
cal and compositional semantics, syntax, morphol- 
ogy, pragmatics, reasoning); and b) the degree to 
which the theory has been actually developed 
through language description and computer sys- 
tem construction. Ontological semantics is also 
indebted to the various approaches to processing 
meaning in artificial intelligence, among them con- 
ceptual dependency, preference semantics, proce- 
dural semantics and related approaches. 

Our theoretical work in semantics is devoted to 
developing not so much a general semantic theory 
but rather a semantic theory for natural language 
processing. Therefore, issues of text meaning rep- 
resentation, semantic (and pragmatic) processing 
and the nature of background knowledge required 
for this processing are among the central topics of 
our effort. A number of differences exist between 
the mandates of general semantic theory and 
semantic theory for NLP. In what follows we sug- 
gest a number of points of such difference. 

While it is agreed that both general and NLP- 
related theories must be formal, the nature of the 
formalisms can be quite different because different 
types of reasoning must be supported. A general 
linguistic theory must ensure a complete and equal 
grain-size coverage of every phenomenon in the 

language; an NLP-related theory analyzes only as 
much as is needed for the purposes of a particular 
application. The ultimate criterion of validity for a 
general linguistic theory is explanatory adequacy; 
for an NLP-related theory it is the success of the 
intended application. A general linguistic theory 
can avoid complete descriptions of phenomena 
once a general principle or method has been estab- 
lished. A small number of clarification examples 
will suffice. In NLP the entire set of phenomena 
present in the sublanguage of an application must 
be covered exhaustively. A general linguistic the- 
ory has to be concerned about the boundary 
between linguistic and encyclopedic knowledge. 
This distinction is spurious in NLP-oriented 
semantic theories because in order to make seman- 
tic (and pragmatic) decisions a system must have 
access equally to both types of data. 

While a general linguistic theory can be method- 
driven, that is, seek ways of applying a description 
technique developed for one phenomenon in the 
description of additional phenomena (this reflects 
the predominant view that generalization is the 
main methodology in building linguistic theories), 
an NLP-related theory should be task-driven-- 
which means that adequacy and efficiency of 
description takes precedence over generalization. 

As any semantic theory for natural language pro- 
cessing, ontological semantics must account for the 
processes of generating and manipulating text 
meaning. An accepted general method of doing 
this is to describe the meanings of words and, sep- 
arately, specify the rules for combining word 
meanings into meanings of sentences and, further, 
texts. Hence the division of semantics into lexical 
(word) semantics and compositional (sentence) 
semantics. Semantics for NLP must also address 
issues connected with the meaning-related activi- 
ties in both natural language understanding and 
generation by a computer. While the semantic pro- 
cessing in these two tasks is different in nature--  
for instance, understanding centrally involves res- 
olution of ambiguity while generation deals with 
resolution of synonymy for lexical selection--the 
knowledge bases, knowledge representation 
approaches and the underlying system architec- 
ture and control structures for analysis and genera- 
tion can be, to a realistic degree, shared. 

In ontological semantics, the text-meaning repre- 
sentation (TMR) is derived through: 

• establishing the lexical meanings of individual 
words and phrases comprising the text; 

• disambiguating these meanings; 
• combining these meanings into a semantic 

dependency structure covering 
- the propositional-semantic content, in- 
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cluding causal, temporal and other rela- 
tions among individual statements; 

- the attitudes of the speaker to the propo- 
sitional content; and 

- the parameters of the speech situation; 

filling any gaps in the structure based on the 
knowledge instantiated in the structure as 
well as on ontological knowledge. 

The final result of the process of text understand- 
ing may include some information not overtly 
present in the source text. For instance, it may  
include results of reasoning by the consumer, 
aimed at filling in elements required in the repre- 
sentation but not directly obtainable from the 
source text. It may  also involve reconstructing the 
agenda of rhetorical goals and plans of the pro- 
ducer active at the time of text production and con- 
necting its elements to chunks of meaning 
representation. 

Early AI-related natural language understanding 
approaches were criticized for not paying attention 
to the halting condition of meaning representation. 
They were open to criticism because they did not 
make a very clear distinction between the informa- 
tion relayed in the text and information retrieved 
from the understander 's  background knowledge 
about the entities mentioned in the text. This criti- 
cism is only valid when the program must apply 
all possible inferences to the results of the initial 
representation of text meaning and not when a 
clear objective is present, such as resolution of 
ambiguity relative to a given set of static knowl- 
edge sources, beyond which no more processing is 
required. 

It follows that the meaning is, on this view, a com- 
bination of the information directly conveyed in 
the NL input; the (agent-dependent and context- 
dependent) ellipsis-removing (lacuna filling) infor- 
mation which makes the input self-sufficient for 
the computer program to process; and pointers to 
any background information which the system 
expects might be brought to bear on the under- 
standing of the current discourse, the formation of 
a record (a "memory") of the discourse in the dis- 
course participants' episodic memory or genera- 
tion of further discourse turns. 

Additionally, text understanding in this approach 
includes detecting and representing a text compo- 
nent as an element of a script/plan or determining 
which of the producer goals are furthered by the 
utterance of this text component. We stop the anal- 
ysis process when, relative to a given ontology, we 
can find no more producer goals/plans which can 
be furthered by uttering the sentence. But first we 
extract the propositional meaning of an utterance 

using our knowledge about selectional restrictions 
and collocations among lexical units. If some 
semantic constraints are violated, we turn on 
metonymy, metaphor and other "'unexpected" 
input treatment means. After the propositional 
meaning is obtained, we actually proceed to deter- 
mine the role of this utterance in scr ip t /p lan/goal  
processing. In doing so, we extract speech act 
information, covert attitude meanings, and eventu- 
ally irony, lying, etc. 

There is a tempting belief among applied computa- 
tional semanticists that in a practical application, 
such as MT, the halting condition on representing 
the meaning of an input text can, in many cases, be 
less involved than the general one. The reason for 
this belief is the observation that when a target lan- 
guage text is generated from such a limited repre- 
sentation, one can in many cases expect the 
consumer to understand it by completing the 
understanding process given only partial informa- 
tion. Unfortunately, since without  human involve- 
ment there is no way  of knowing whether the 
complete understanding is, in fact, recoverable by 
humans, it is, in the general case, impossible to 
posit a shallower (and hence more attainable) lev- 
els of understanding. To stretch the point some 
more, humans can indeed correctly guess the 
meaning of many ungrammatical, fragmentary 
and otherwise irregular texts. This, however, does 
not mean that an automatic analyzer, without spe- 
cially designed extensions, will be capable of 
assigning meanings to such fragments--their  
semantic complexity is of the same order as that of 
"regular" text. 
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