Disarming offense to facilitate defense’

Danilo Bruschi, Emilia Rosti
Dipartimento di Scienze dellInformazione
Universita degli Studi di Milano
Via Comelico 39, 20135 Milano - Italy

{bruschi, rose}@dsi.unimi.it

ABSTRACT

Computer security has traditionally focused on system de-
fense, concentrating on protection and recovery of victim
machines. Moving from the opposite perspective, we pro-
pose a complementary approach that focuses on limiting
the attacking capabilities of the hosts. Software design and
implementation weaknesses usually are at the basis of com-
puter offensive capacities. Since software redesign or patch-
ing on an extensive basis is not possible, we propose the
adoption of a filtering strategy to block abuse attempts at
the originating machines. As an example, applications of
such an approach are presented at host level, in order to
prevent root compromise attacks, and at network level, in
order to prevent DoS attacks, among others.

The proposed solution is not a silver bullet and could be
bypassed by sophisticated users. However, we believe it can
effectively restrain the offensive capabilities of hosts that
could be easily seized by crackers. We discuss the pros and
cons of the proposed solution and present an application to
host and network security.

Keywords
Computer and network security, defense, offense, disarm,
attack, monitor

1. INTRODUCTION

Since its origins in the early ‘60, computer security has fo-
cused on system defense and protection of victim machines.
A variety of tools and methodologies have been proposed,
many of which proved to be quite effective in protecting
systems and networks from intruders. As the computing
paradigm started shifting from the host to the network in
the mid to late ’80 to become a full scale reality in the early
*00, the focus of computer security should have shifted too.
In the networked environment, “pacifist” hosts can suddenly

*This work was partially supported by the Italian
M.UR.S.T. 80% project.

Permission to make digital ar hard gopiaes of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit ar commearcial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistributa to lists, reguires prior specific permission andfor a fee.

New Security Paradigm Workshop 9/00 Bailycotton, Co. Cork, Ireland

® 2001 ACM ISBN 1-58113-260-3/01/0002...45,00

69

and, sometimes, involuntarily become attackers, that is, a
threat for the entire community. Million powerful computers
that are just used to exchange emails or chat are connected
on the network 24 hours a day, 7 days a week via cable
modems or ASDL lines. Even worse is the scenario that will
gsee embedded systems as powerful as fully equipped com-
puters, e.g., playstations, will be constantly connected on
the network for game updates and downloads. All these
systems tend to be unatiended as computer security is still
an esoteric discipline for the average user, thus making such
hosts easy target of attacks. Furthermore, a large number of
hosts is and will keep probing other hosts on the network in
order to find unattended ones that can be easily seized and
used to attack yet other hosts. The network as an entity
should be protected and made less dangerous.

Another consequence of the computer paradigm shift is the
exacerbation of two security related problems:

o liability issues: there are countries, like Italy, where
computer owners are liable for all the actions exe-
cuted by their systems. This implies that they can
be legally prosecuted when attacks to another system
are launched from their computers, although intruders
who had previously geined access to their computers,
are responsible for the attack;

s sophisticated intrusion tools: a clever exploitation of
the network centered computing paradigm with the
realization that the “network is the computer” has
lead to the development of distributed intrusion tools,
which recently showed to be quite effective in launch-
ing DoS attacks at high profile Web sites.

Computer security does not seem tn have an answer to these
problems other than “improve your protections.” Ou the
other hand, it is becoming harder and harder for nowadays
typical protections, such as firewalls and IDS’s, to keep up
with the ever increasing speed of network components, as
processors cannot pracess packets fast enough. Furthermore
the diffusion of encryption products that operate either at
transport or network layer increases the complexity of the
controls firewalls and IDS must apply. While networked
computers are a mass market off the shelf commodity, or at
least they tend to be used as such, computer security is not,
not yet, neither technically nor economically.

In this paper we propose a new approach to address security



problems. We move from the observation that a computer
may as well be a victim and an attacker. Thus, f we want
to irnprove security, we should not ouly protect onr systems
but also reduce threats, ie., prevent systems from doing
any harm. In a network where no, or just a few, hosts are a
threat, global security results from individual harmlessness.

This paper is organized as follows. The new paradigm we
propose is illustrated in Section 2. An application against
network attacks is cutlined in Section 3. In Section 4 the
proposed approach is illustrated with the application to a
host attack. Related work is presented in Section 5. The
proposed approach is discussed in Section 8. Section 7 con-
cludes the paper and outlines directions of future research.

2. DISARMING COMPUTERS

Based on the observation that reducing threats is another
way to improve security, we propose a new research direc-
tion for computer security whose main goal is the defini-
tion of new techniques and methodologies for building non-
offending, or disarmed computers. We define a disarmed
host as the following:

o disarmed host is & host equipped with tools that
turn off the host attecking capabilities and that
Jorce the host to be re-instelled for it to be sub-
verted.

Offending capabilities may be turned off by tools that op-
erate as filters that monitor the hest activity and block it
when it does not conform to a “good” behavior or, vice-
versa, when it matches an “anomalous” behavior, depend-
ing on the approach followed. Such filters can be thought
of as attack inhibitors that behavc like intrusion detection
systems but they are placed on the attacking host to block
hostile activities. Qur approach can be thought of as ”extru-
sion” detection, where for extrusion we mean the attempt to
attack, i.e., accomplish an intrusion. Although it is almost
impossible to tell attacks from legitimate behavior in gen-
eral, there are cases where a certain behavior can be clearly
identificd as offensive. We would like to block the latter, at
least. Qur mechanism cannot address DoS purely based on
the quantity of honest packets.

With the introduction of our approach, attacks can be di-
vided into two classes: attacks that can (easier and most
successfully) be prevented at the source and attacks that
can be blocked at the destination. The latter are well known
to the security community siece they have been among the
major subjects of computer security studies. Their charac-
terization has lead to the definition of signatures databases
for intrusion detection systems. On the contrary, little if
any interest has been shown for attack characterization at
the source in order to block offending activities as they are
being performed at the source. Although the two classes of
attacks have a large intersection, they are different. As an
example, IP spoofing is easier to detect at the source but can
hardly ever be detected at the destination, even if heuristics
such as DNS reverse lookup may be adopted to discover the
spoofing in most cases.

70

We believe that, at the current state of the art, the disarm-
ing technology can he easily adopted in local environments,
where operating systems can be installed and monitored cen-
trally. In this case, its deployment can provide an effective
solution to problems such as;

o liability: from a legal point of view, a disarmed com-
puter could be considered adequately configured to
comply with the law imposing that hosts not be at-
tack sources, thus relieving the owner from liability
issues;

intranet security: disarming filters can protect an in-
tranet from insiders’ attacks and can help preventing
insiders from using the internal hosts to attack com-
puters outside the intranet perimeter. ‘I'hey are trans-
parent to final users and applications, thus they do
not require application customization, as it is the case
with well known access control systems such as Ker-
beros [20].

The large scale deployment of a disarming technology would
contribute to relieve the following problems:

« distributed tools for intrusion: with our approach, the
network remains the “new computer” but not for in-
truders, who would have difficulties in finding hosts
where their agents for distributed attacks could be in-
stalled;

firewalls and IDS’s: they can be easily circomvented by
encrypted traffic, which prevents them from detecting
attacks performed using it. The only way to block
such attacks is to intercept the packets before they are
encrypted, i.e., at the source;

s security tools performance: because a good part of
the hosts on the Internet would operate honestly and
fairly, thus never attacking other hosts, new and faster
schemes can be investigated to identify packets origi-
nated from fair hosts. The spare time remaining could
be actively used by firewalls and IDS’s to deal with
increased network speed [16].

Impaosing such an approach, however, on a geographic scale
and have it work is not an immediate task to realize but
we believe it to be a reasonable one. Although this kind of
disarming filters could be bypassed by sophisticated users
like any software protection, they could be an effective pro-
tection against abuses by unexperienced uscrs (the so called
“seript kiddies”) that use ready made exploit programs down
loaded from well known Internet sites. The cases considered
in Section 3 provide an example of similar cases. Since we
will implement them as kernel modules, an intruder who
wants to bypass them would have to install a stripped ver-
sion of the operating system, which may not be so imme-
diate to do for uncxperienced users. Furthermore, in order
to be able to use successfully compromised victim comput-
ers to launch attacks, the OS should be reinstalled, which
is quitc conspicuous a task to perform to go unnoticed. On
the other hand, a hardware implementation based on ASIC
technology would overcome all these objections and will be



investigated as encouraging results will be obtained and the
approach further refined.

As an example, in this paper we design two tools that can be
used te block several well known attacks at the source, ie.,
disarm the hosts with respect to the considered attacks. In
particular, we propose a filter for blocking popular Denial of
Service attacks. The solutions we present requires that a set
of functionalities be added to a kernel device driver in or-
der to detect harmful packets characterizing an attack in the
outgoing flow. We also discuss a solution to avoid some cases
of buffer overflows thus preventing intruders from exploiting
such a vulnerability in order to get unauthorized access to a
machine or possibly increase their privileges. Note that the
iatter represent an indirect form of disarming a computer, as
in the first place it protects the local host from root compro-
mises. Since root compromise is often the initial step of an
attack launched from a victim host, preventing it represents
a form of disarming the computer.

3. BLOCKING NETWORK ATTACKS

In this section we describe the design of a disarming fil-
ter against network attacks. Filtering components could be
added as middleware between the device drivers and the ker-
nel, so that they can monitor all the cutgoing traffic, without
changing the existing applications. They can be executed
on host computers as well as network components such ag
routers. The packet flow is checked against attack signatures
and blocked when an attack attempt is detected, similarly
t0 what an [DS would do at the target host on the incom-
ing traffic. The filters apply packet control rules based on a
signatures that represent the attack characterizations, i.e.,
the behavioral patterns typical of the various attacks. The
more unique the attack pattern behavior, the more precise
the action of the filters, i.e., the less false negative and false
positive signals the filters will send. A separate module that
handles critical situations, e.g., by raising alarm, suspending
the allegedly offending program, or sending messages to the
superuser according to a defined policy, is signaled by the
filter whenever a tentative attack is detected.

Among the most (in)famous and disruptive network attacks
are Denial of Service attacks such as SYN flood [8], Smurf
[14}, Ping of Death [9], Land [10], Teardrop {10]. Blocking
this type of attacks at the target is expensive and resource
consuming, both in terms of network bandwidth and CPU
time.

The common feature of all these attacks is the lack of stzong
authentication of the source address in IP packets that al-
lows forged source addresses to be used. It allows the erack-
ers to protect their identity and often also damage an un-
aware mndirect victim. Additionally, each of these attacks
has a distinctive behavior. At the basis of the SYN flood
attack is the limited backlog of uncompleted connections al-
lowed during the establishment of a TCP connection when
the three way handshake protocol is executed. The unre-
strained use of the broadcast address is at the basis of the
Smurf attack. The possibility to send oversized control pack-
ets is at the basis of the Ping of Death attack. The possihil-
ity of spoofing, the < host,port > source address and setting
it equal to the < fost, port > destination address thus lead-
ing the victim host to a possibly lethal loop is at the basis

71

of the Land attack. The need to fragment and re-assembly
packets exceeding the minimum MTU of the intermediate
networks traversed along the route from scurce to destina-
tion is at the basis of the Teardrop attack. We illustrate
here how the middleware approach we propose can be em-
ployed to prevent a machine from launching some of these
attacks or at least to mitigate their severity and impact vn
the target machine.

3.1 Source Address Spoofing

While verifying the authenticity of a packet source address
ab the destination is quite difficult, it is very easy to do it
at the source itself. The filter we propose can apply the
simple filtering rule {12} that prevents packets with a source
address different from the one of the local machine to be
passed to the network. Only packets carrying the proper
source address, i.e., the one of the machine actually sending
the packets, are allowed to the network card'.

This simple rule is very strict and could limit network man-
agement activities, although it is sufficient to turn off most
denial of service attacks as they usually forge packets with
spoofed IP source addresses. Ad hoc less strict filtering rules
can be adopted that verify the simultaneous presence of a
spoofed IP source address and other attack specific condi-
tions.

The simple but dangerous attack known as Land can crash
or hang the victim machine by sending it packets with the
same < host,port > pair in the source and destination ad-
dress fields. 'The ad hoc rule in this case would check for
packets with the same destination and source address pairs.

The Smurf attack also could not be performed if spoofed ad-
dresses were not allowed, or the atbacker world hang his/her
network. In this case, spoofing is combined with the abuse
of the broadcast address of a network, ie., address 255,
in order to flood two networks. A conspicuous traffic of
ICMP ECHO REQUEST packets is sent to the 1P broad-
cast address of a large network (the amplifier) with spoofed
source addresses of another network (the victim). If the
ECHO_REQUEST packets are delivered, most receiving hosts
will reply to the victim, thus flooding the alleged source net-
work with ICMP ECHO _REPLY messages. The specific rula
against the smurf attack would check for a spoofed scurce
acldress associated with a broadcast destination address.

3.2 Uncompleted Connections

For a detailed analysis of the TCP/IP SYN Hood attack, we
refer the interested reader to previous works appeared in the
literature (e.g., [24]). Critical factors for the suceess of this
attack are the following:

1. the initiator of the bogus TCP/IP connections sends
only the SYN of the SYN and ACK messages that it
must send in order to complete the three-way hand-
shake protocol. The initiator never replies with the
expected ACK to the victim’s SYN+ACK reply;

A statistical approach of the observed source addresses can
be adopted to defeat possible changes of the computer [P
address that aim at hiding the forged network traffic with
spoofed source address.



2. new bogus connections must be initiated by the attack-
ing machine at a faster rate than the target machine’s
TCP timeocut.

Because connection requests usually have spoofed source ad-
dresses of hosts that are not reachable from the victim, the
traffic originated by a SYN flood atterpt could be blocked
by the simple filter against spoofing the source addresses.
However, since this is a mere implementation technicality
that is usually performed in order to disguise the attacker’s
real identity, someone might try a SYN flood using the au-
thentic source address. In this case, the attack should be
blocked based on the conditions that characterize it.

In order to detect an excessive number of half-open TCP /1P
connections, the middleware mouitors all the TCP connec-
tions requests sent to each machine and keeps a counter,
on a per user basis or on a system basis. If the number
of half-open TCP/IP connections to a single machine and
the rate at which they are initiated exceed given thresholds,
the middleware completes all the pending requests with an
RST packet and blocks further connections to that destina-
tion for a period of time. The duration of such a period
can be computed to be larger or equal to the number of
half-open connections times the largest timeout defined in
the TCP/IP specifications. Because in case of legitimate
connections the ACK packet would be sent timely, we be-
lieve that the chances to hurt regular users are minimum,
although false positives are still possible.

3.3 Oversize Packets

Although the IP specifications indicate a maximum packet
size of 65535 bytes, dimension checks are not enforced either
at the source or at the destination t¢ prevent the destination
to overflow its buffer when it reassembles fragmented pack-
ats. Teardrop and Ping of Death are examples of attacks
exploiting the oversize packet vulnerability. It is very easy
for the filter to check the packet size and block packets that
exceed the maximum packet size.

34 Implementation

A prototype, HOstile Traffic Interceptor (HOT-1} [6], imple-
menting the proposed filtering strategy has been developed
on a Linux based system, kernel version 2.2.14, in order to
demonstrate its feasibility and effectiveness. 11OT-I oper-
ates at the IP layer as a static kernel module in order to
prevent its easy removal. It applies packet filtering rules to
the outgoing packets when they are ready to be passed on to
the data link layer. The packet flow is checked against attack
signatures of known attacks and blocked when an attack at-
tempt is detected. In the current version, in case a hostile
packet is detected, it is dropped by default. However, alter-
native and/or additional actions could be considered, such
as logging all the intercepted traffic or letting the packet out
anyway but signaling the superuser for further actions to be
taken. A separate module handles such a signaling part,
¢.g., by raising alarms, suspending the allegedly offending
program, or logging the detected hostile activity.

In order to take advantage of the in-depth security architec-
ture provided by the firewalling extension of the Linux kernel
[4], we register our module at level 1. Therefore, the routine

72

that calls the registered firewalls, call out _firewall, calls
it before the system level firewall, if defined. Our module
returns FW.SKIP if a packet is Packets accepted by HOT-1
would still have te go through the system level firewall, if
defined. Note that the controls acceptable packets for our
module may not be acceptable by the system firewall if this
one is used to implement a corporate defined policy, e.z., no
ftp or telnet ont of the perimeter defined hy the firewall.

HOT-I is currently programmed to block a set of attacks
comprising SYN flood, Smurf, Ping of Death, Land, and
port scan. Preliminary performance results have been col-
lected by instrumenting the [P level routines where HO'T-I
is called. The impact of the module on the time a packet
spends in the LP stack is a function of the number of rules
that mmust be checked before being able to make the right
decision about the packet under examination. In case of le-
gitimate traflic, the impact of the module is in the range
of 5% of the processing time in the absence of the module.
In case of hostile traffic, the delay introduced increases up
to 50%. Optimization are under investigation in order to
mintmize performance degradation.

4. BLOCKING HOST ATTACKS

In this section we show how the disarming approach can be
applied to protect a host from buffer overflow based root
compromise, as this is a popular way to gain superuser priv-
ileges on a host and then start an attack from there. The
filter we design requires minor kernel modifications in erder
to implement simple checks on some variables. The filter
compares the behavior of the currently executing program
as characterized by the value of a small set of parameters
against the conditions we identify as characterizing a buffer
overflow attempt. In this case, the disarming filters we pro-
pose are implemented as a set of kernel maodifications.

Buffer overflows are still onc of the most popular ways to
perform a root compromise, i.e., the illegal acquisition of
superuser privileges by an ordinary user. By overflowing a
buffer of a setuid to root program [7] with a properly crafted
content, the user executing that program may launch the ex-
ecution of any command with superuser privileges. For the
details about the “art” of writing buffer overflow exploits,
we refer the interested reader to the wealth of publications
on the issue (e.g., [I, 19]). Various pro-active and reactive
solutions have been proposed that are characterized by dif-
ferent targets, i.e., source or executable code (e.g., (26, 11,
25, 5]). Unlike these, our suggestion is not a general solution
to the problem but rather a point solution for some specific
well known cases. We believe that with further research ef-
forts it may be turned into a general solution to the buffer
overflow problem.

In order to devise a filtering scheme that will protect the sys-
tem from root compromise via buffer overrun, we character-
ize the necessary conditions for a buffer overrun to succeed.
The critical components of such an attack are the setuid
to root program and the possibility of passing adequately
crafted inputs that will force the program to execute some
piece of code while the program effective user id is 0 (i.e.,
TOOb).

Exploiting the setuid feature is critical to privilege acquisi-



tion. Buffer overflow exploits usually have a process spawn
a new process by forcing the execution of the exec system
call, with the shell command interpreter /bin/sh as argu-
ment. An exec system call changes the code of the executing
process to the code received as argument. The new process
replaces the one that cxecuted the exec and inhcrits from
the latter its PID and real and effective uid’s (RUID and
SUID). When a root compromise accurs via buffer overflow,
the process created by the exec has SUID = 0, ie., is a
SUperuser process.

In order to block this kind of attack, the exec system call
can be modified so that it controls the EUID of the calling
process. In case it is 0, the code of the object program to be
executed is examined before loading it looking for a signa-
ture of the /bin/sh command, i.e., a characteristic sequence
of bits in the executable code that identifies it. If the pattern
matching is successful and the signature is found, an alarm
is raised and the allegedly malicious program executing the
exec is suspended. Provisions to handle the su root com-
mand and the login program should be made. As a matter
of fact, executing such a command leads to a configuration
where all the conditions above are satisfied but the program
is legitimate.

The presented strategy can also be applied to prevent the
exploitation of setgid programs, i.e., programs that change
their group id during execution. Although naot as critical as
root compromise, buffer overflows on setgid programs can
be a first step towards it or cause other problems [13].

5. RELATED WORK

In this section we compare the proposed filters with exist-
ing solutions that exhibit a certain degree of similarity and
discuss the differences.

The first tool, from a chronological point of view, that was
proposed to control actions performed by the system on a
set of objects is the refercnce monitor [2, 17]. The refer-
ence monitor is the part of a security kernel that controls
accesses to objects. It comprises access controls for devices,
files, inferprocess communication, memory, and all objects
that may require access control. It is the single point of ac-
cess to the objects it controls and cennot be modified nor
circumvented. In order to enforce security it must function
correctly, therefore it is usually small encugh to be analyzed
and tested thoroughly. The characteristics of the reference
monitor are the following: it is always invoked whenever an
operation on an object is performed, it is tamperproof, and
it is small enough to be proved correct, secure, and complete.

A network filter like the one we described in Section 3 re-
sembles a reference monitor for the network. It is always
invoked whenever a packet 1s to be sent out. It is tamper-
proof or impossible to circumvent by a rogue process, as
the only way it could be removed from the system is to in-
stall a different version of the operating system. However,
because it is based on heuristics for attacks identification,
it is impossible to prove it always work correctly. Thus it
is not exactly a reference monitor, although it behaves as
such. The filter against buffer overflows too shares some of
the properties of the reference monitor, but like in the net-
work case, it is prone to false positives, therefore cannot be

73

proved to always work correctly.

Another approach to system security management similar
to the one proposed here is the one adopted in CORBA
[21]. Access control in CORBA environments is enforced
by a system object called AccessDecisionObject. Access-
DecisionObject consults two other objects when making a
decision: the user’s Credentials object (containing the priv-
ilege attributes of the user who is trying to access a re-
source) and the AccessPolicy object which applies to the
resource being accessed (this AccessPolicy object is an at-
tribute of a security policy domain which the resource he-
longs to). The AccessDecisionObject compares the privilege
attributes in the user’s credentials against those required for
aceess to the object as specified in the AccessPolicy object,
and makes a yes/nc decision. Both the sending machine
{the one from which the user’s request originates) and the
receiving machine have AccessDecisionObjects. The ORB
{Object Request Broker — basically the object-oriented Net-
work Operating System) on the client system can retrieve
the same AccessPolicy object as the target system, and it
can make an access decision based on the same information.
Of course, the client’s system may not be trusted by the tar-
get system, so the target will go ahead and make an access
decision regardless of what the client system has decided.
But in the case in which the client’s system is trustworthy,
and makes a valid decision to deny access, the request will
be aborted inside the client system and will never be sent
over the network, thus saving both network bandwidth and
SErver processing.

In this case, the main difference is that, rather than checking
for credentials and access permissions, our filters check for
some predefined behavioral patterns or set of information
in the packets or in the code to be executed. The policy
enforced in this case may lead to false positive.

A recent family of tools, so called “personal firewalls,” have
been gaining larger popularity in the PC world, see eg.,
[28, 22, 18, 27, 29], both as commercial products marketed
by various vendors and as free software in various configu-
rations. Besides the traditional protection from intrusions
offered by all firewalls and the associated logging facilities,
this kind of tools usually provide a varied set of additional
functionalities. Among these functionalities are private in-
formation protection, by alerting the user every time one
piece of such information is about to be sent across an in-
secure channel or by preventing web servers from retriev-
ing personal information, e.g., email address, in background
while browsing the network. Protection from mobile code
such as Java applets and ActiveX controls, and from state
related information, such as cookies, may also be offered.
Some of them also integrate their firewall capabilities with
antivirus functionalities. When installing such tocls, the
user is usually required to edit configuration settings to var-
icus extents, ranging from the choice of security level (low,
medium, high) to the specification of ports and/or proto-
cols allowed or denied on the machine. In the Linux world,
packet filtering firewalling functionalities are provided by
IPCHAINS, a kernel extension that is now part of the main-
stream kernel distribution. In this case too, if not more, the
user is required to specify various configuration settings and
the firewall rules.



What we suggest with our approach is a patch ta the kernel
that cannot be removed uniess the system is rebooted and
a “clean” version of the S is installed, and that the user
does not need to be aware of in terms of configuration set-
tings. Although installing a different version of the OS is
not an unnoticeable operation, it is possible for hackers to
develop scripts that will launch a “clean” install after the
first spontaneous reboot of the machine, so as not to attract
the user’'s attention. Nothing but preventing code down-
leads can be done to block such a hacker countermeasure to
our approach.

6. DISCUSSION

In this section we discuss possible criticisins to our approach.
Some of them have been briefly mentioned in the text al-
ready. We recall and collect them all here.

Becanse it is hard, if not impossible at all, to tell attacks
from legitimate uses of a host, it seems impossible to prevent
harmful behaviors. Although this is true in general, there
are cases where it is easier to foresee possible danger in a
certain stream of traffic, e.g., sending out spoofed packets, or
in a certain set of actions. In such cases, blocking the action
under execution is a sale reaction. It is true, however, that
there are apparently legitimate behaviors that may result in
an attack. Nothing can be done to prevent them, since they
cannot be told apart from actually legitimate traffic.

Deploying a system like the one proposed in this paper may
not be economically feasible or viable. Marketing problems
due to what may he perceived as “reduced” functionalities
may make it even harder. Liability suits may on the other
hand make it economically viable if such a protection is val-
ues as sufficient by the legislation. Different countries have
different. legislations, this makes it difficult to claim abso-
lute utility from the legal point of view of a tool like the one
proposed here.

The use of a tool like the one proposed here would prevent
the use of mobile IP as this protocol is based on the possibil-
ity of sending out spoofed IP packets from the base station.
While this is true, we advocate the adoption of the proposed
approach to protect home computers from easy exploitation.
In case of mobile IP, we would expect the base station to be
a reasonably administered server properly configured with
other forms of protection. In case the proposed protcction
were in place, a customized version could be adopted that
is antomatically updated by the hand-off procedure so as to
allow spoofed packets with the IP address of the mobile sta-
tion. Such a list of temporarily spoofed connections would
be updated upon a mobile station leaving/entering the cell
under the base station control.

The protection against buffer overflows briefly outlined in
Section 4 is not meant to be a general solution against the
problem per se. Therefore, we do not expect this approach
to be as effective as general solutions like Stackguard [11].

The system is aimed at proteciing innocent and unexperi-
enced users from being exploited by skilled ones that suc-
cessfully attack the formers’ hosts in order to lannder their
connections or start real attacks fromw there. It could also be
very effective in protecting intranets from insiders launching

74

attacks. Depending upon the jurisdiction and the legal sys-
tem, our system may be a suflicient protection measure in
both cases from the liability associated with being a source
of attack.

An aspect that might be worth investigating is the kind of
feedback a hacker receives indirectly from the presence of
a module like the one we propose. It would be interesting
to study the hackers’ reaction, whether they would persist
more or would be discouraged faster if they realized {hat a
local protection like the one we propose.

A more radical approach to preventing some anomalous and
malicious behaviors could be to patch the OS rather than
distribute pieces of code that try to do the same. Although
this would be the optimal strategy, we note that it does not
affect the paradigm we propose.

7. FUTURE DEVELOPMENTS

In this paper we have proposed a new strategy to deal with
computer security problems based on limiting attacking ca-
pabilities of systems. Its applicability to the specific cases of
some network DoS attacks and buffer overflow attacks has
been illustrated. An implementation of the kernel patch for
a network filter for the various attacks considered has been
briefly described together with the results of preliminary
performance analysis. The implementation of the proposed
strategy to prevent root compromise via buffer overflow is
about to start at our laboratory.

Various issues remain open and are subject of current inves-
tigation:

¢ analysis and the characterization of other types of at-
tacks;

* unique specification and description of attacks so as to
eliminate false positives;

mechanism to extend the set of rules that handle new
attacks;

¢ preventing the module from being easily circumvented;

porting to other platforms, i.e., Microsoft systems.

Ackowledgements

The authors are grateful to all the participants in the New
Security Paradigms 200, whose comments and discussion
during the workshop have significantly improved the quality
of this paper. A special thank goes to Bob Biakley, for
providing excellent notes of the discussion and the references
about CORBA.

8. REFERENCES

[1] Aleph One, “Smashing the stack for fun and profit,”
Phrack Megnzine 49, Fall 1997.

{2] Andersen J., “Computer security technology plannng
study,” U.S5. A#r Force Electronic Sysiem Division
Technical Report 73-51, October 1972,

{3] Bach M.J]., The design of the Unix operating
system, Prentice-Hall Int. Serics, 1987,



[4] Bandel D. “Linux Security Toolkit,” IDG Books,
2000.

[6] Banfi R., Bruschi D., Rosti E., “A tool for pro-active
defense against the buffer overrun attack,” Proc. of
LSORICS '98, LNCS 1485, pp. 17-31, 1998.

6

-

Bruschi D.; Cavallaro L., Rosti E., “Less harm, less
worry or hot to improve network security by hounding
system offensiveness,” AOSAC 00, 16th Annual
Computer Security Application Conference, New
Orleans, Dec. 2600,

[7} S. Bunck, “The setuid feature in Unix and security,”
Proceedings of the 10th National Securily Conference,
1987.

CERT-CC, “IT'CP 3YN flooding attacks and IP
Spoofing attacks,” CERT Advisory CA-96.21,
http://www.cert.org, 1996-98.

I8

—

[9

CERT-CC, “Denial of service attack via ping,” CERT
Advisory CA-96.26,

http:/ /www.cert.org, 1996-97.

[10] CERT-CC, “IP Denial of service attacks,” CERT
Advisory CA-97.28,

hitp:/ /www.cert.org, 1997-98.

[11] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P.
Bakke, S. Beattie, A. Grier, P. Wagle, Q. Ziang,
“StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks,” Proc. of the 7th
USENIX Security Symposium, 1998,

_.
-
)

Ferguson P., Senie D., “Network ingress filtering:
defeating denial of service attacks which employ IP
source address spoofing,” Network Working Group
RFC 2267, http:/ /www.rfc-editor.org/rfc/rfc2267 txt,
January 1998,

[13] S. Garfinkel, E. Spafferd, Practical UNIX and
Internet Security, O'Reilly, 1996.

j14] Huegen C., “The latest in denial of service attacks:
smurfing. Description and information to minimize
effects,”

http:/ /users.quadrunner.com/chuegen/smurf.cgi, last

update Feb. 2000.

[15] R. Jones, P. Kelly, “Bounds checking for C,"
http:/ /www-
ala.doc.ic.ac.uk/phjk/BoundsChecking.html, July
1995.

[16] J. Kleinwaechter, “The limitations of intrusion
detcction systems on high speed networks,” presented
at the “IPirst International Workshep on Recent
Advances in Inirusion Detection (RAID),

http:/ /www.zurich.ibm.com/~dac/RAID98, Louvain
La Neuve, Belgium, Sept. 1998.

[17] Lampson B., “Protection,” republished in Proc. of the
5th Princeton Symposium, Opereting System Review,

Vol §, No 1, pp 18-24, Jan. 1974.

[18] McAfes, “McAfee com Personal Firewall,”

http:/ /www.mecafee.com/, 2000.

[19] Mudge, “How to write buffer overflow,”
http://www.l0pht.com/advisories /buferc. html 1997.

[20] B.C. Neuman, T. Ts’o, “Kerberos: an anthentication
service for compuber networks,” IEEE
Communications, Vol 32, No 9, pp 33-38, 1994,

[21] Object Management Group, “CORBAsecurity Service
version 1.5 OMG, 2000.

[22] Open Door Networks, “Door Stop Personal Firewall,”
http:/ /www2.opendoor.com/doorstop/, 2000.

[23] Russel P.R., “Linux IPCHAINS-HOWTO,”
http:/ fwww linuxdoc.org, 2000.

[24] Schuba C.L., Krsul LV., Kuhn M.G., Spafford E.H.,
Sundaram A., Zamboni D., “Analysis of a denial of
sarvice attack on TCP,” Proc. of the 1997 IEEE
Symipesium on Security end Privacy, pp 208-223,
Oakland, May 1997.

[25] A. Snarskii, “FreeBSD Stack integrity patch,”
ftp:/ /ftp . lucky.net/pub funix /local/libc-letter, 1997,

[26] Solar Designer, “Non-Executable user stack,”
http:/ /www false com/security /linux-stack/.

[27] Sygate, “Sygate Personal Firewall,”
htpp:/ /www sygate.com, 2000.

[28] Symantec, “Norton Personal Firewall 2001,
http:/ /www.symantec.com/, 2000.

[29] TinySoftware, “Tiny Personal Firewall,”
http:/ /www.tinysoftware.com, 2000.



