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A b s t r a c t  

Synchronizing Personal Digital Assistants with host 
systems can result in indirect accesses that bypass 
security requirements. In this paper we propose a 
framework for analyzing the security vulnerabilities 
that can arise from synchronization. This framework 
provides us with the basis of a paradigm for analyz- 
ing the access-control vulnerabilities of systems com- 
prised of secure and non-secure components. 

1 I n t r o d u c t i o n  

Personal Digital Assistants (PDAs) such as the Palm 
handheld are small hand-held computing devices that 
support a variety of applications, ranging from con- 
ventional electronic organizer programs to spread- 
sheets, electronic mail and web browser clients. A 
PDA is commonly viewed as an extension of a User's 
workstation (or server); carrying data and programs 
that often mirror data and programs from the work- 
station. Synchronization between the workstation 
and the PDA is performed on a regular basis, en- 
suring that changes made to data stored on the PDA 
are reflected on the workstation, and vice-versa. 

Little consideration has been given to the security 
policy implications of using these devices as part of 
an application system. While PDAs are typically 
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single-user systems supporting little or no access- 
control, they are expected to synchronize with multi- 
user host systems that do have access-control require- 
ments. This synchronization may be used to bypass 
host system access-controls. 

For example, an employee working in sales and 
engineering departments is subject to the security 
requirement that sales data may not be written to 
engineering datasets. If we are not confident about 
the employee's PDA upholding this requirement then 
synchronization must ensure that at any one time, 
either sales or engineering information is carried on 
the employee's PDA, but not both. Other scenarios 
are possible, for example, the PDA carries both engi- 
neering and sales datasets for information purposes. 
However, only sales data can be two-way synchro- 
nized with the host system. 

In this paper we consider the analysis of access- 
control vulnerabilities that can arise from synchroniz- 
ing host systems with PDAs. The approach first con- 
siders our confidence in the access constraints of the 
individual components and then analyzes whether 
that confidence can be maintained when the com- 
ponents synchronize. While a component such as a 
Palm does not have an access-control mechanism, we 
can still specify, albeit with low confidence, the ac- 
cess limitations that we believe the installed software 
implicitly provides. Our framework provides us with 
the basis of a paradigm for analyzing the security vul- 
nerabilities of systems comprised of secure and non- 
secure components. 

Arbitrary access policies can be abstractly repre- 
sented in terms of directed graphs [7] or as reflexive 
orderings [5]. We use reflexive orderings to represent 
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these policies and Section 2 provides some notation 
from [5] that is useful for specifying and reasoning 
about such policies. Section 3 extends these policies 
to include ratings that represent the degree of confi- 
dence in the policy being upheld. Sections 4 and 5 
consider the additional accesses that can arise as a re- 
sult of synchronization. A cascading effect can arise 
with multiple synchronization which we show to be 
a generalization of the network cascade vulnerability 
problem [10, 12]. 

The Z notation [14] is used to provide a consis- 
tent syntax for structuring and presenting the defini- 
tions and examples in this paper. We use only those 
parts of Z that can be intuitively understood and Ap- 
pendix A gives a brief overview of the notation used. 

2 Security Policies 

Every system entity (principal, subject, object, etc.) 
is assumed to have an associated security label that 
encodes its security relevant characteristics. Labels 
may simply represent sensitivity levels such as unclass 
and secret, but they may also represent any security- 
relevant attribute, for example, a label representing 
sales information. Given a set of labels L then a 
security policy is defined as a reflexive relation P : 
L e+ L. If a ~ b ~ P then information of type a 
may flow/interfere with information of type b. For 
example, sales information may flow (be read by) the 
program labeled budgets. In this paper we are not 
concerned with what is meant by information flow 
or interference: we use the flow relation as a simple 
abstraction of the security policy upheld by a system. 
It has been shown elsewhere [5] that this abstraction 
is expressive and can be used to characterize a wide 
variety of security policies, including Chinese Walls, 
Clark-Wilson access triples and user-group polices. 

A standard Palm handheld does not have an ac- 
cess control mechanism. However, we can use a flow 
policy to represent the access limitations that we be- 
lieve the installed software provides. For example, on 
a standard Palm, we are reasonably confident that 
the Giraffe game does not interfere with the mail 
database. Naturally, our confidence that the Palm 
will maintain this policy is far less than our confi- 

dence that a multilevel secure system can uphold a 
comparable policy. 

2 .1  S p e c i f y i n g  F l o w  P o l i c i e s  

The set of all flow policies between labels of (generic) 
type L is defined by ~[L], the set of all reflexive re- 
lations. 

T~[L] = =  {R : L ~ L I id(dom R U ran R) C R} 

Let the alphabet aR of policy R denote the set of 
labels that it is defined in terms of (dom R). 

A flow policy may be specified using the ~.~ opera- 
tor: A -,~ B defines a policy such that all elements of 
A may flow to all elements of B. Relations .LA and 
TA define the least and most restrictive flow policies 
with alphabet A, that is, _LA permits all flows, while 
TA does not permit any flows (other than reflexiv- 
ity). 

=[L] 
_ - , ~ _  : ((PL) x (EL)) -+ T~[L] 

_k, T :  (IP L) --+ 7~[L] 

A-,-* B = i d A U i d B  U (A x B) 

_ k A = A x A  
TA = i d a  

EXAMPLE 1 We are reasonably confident that  the 
standard software installation on our Palm upholds 
the policy GPALM. 

GPALM = =  

PALM = =  

MLS = =  

T{girafFe, email} 

{emai l}  ~,~ {abacus} 

{unclass, secret} --~ {secret, topsecret} 

Policy PALM specifies that email information may 
flow to the (Abacus) spreadsheet database (but not 
vice-versa); MLS specifies the usual multilevel secu- 
rity policy. /k 

2 .2  A P o l i c y  A l g e b r a  

Reflexive policies may be constructed using the usual 
set and relation operators (set comprehension, union, 
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and so forth). In this section an algebra is described 
that  is useful for the specification of information flow 
policies. 

The projection operator projects a relation R 
into relation R@A with alphabet aR n A such that  
the relationships of R are preserved, for example, 
mlsQ{secret, topsecret} ---- {secret} ~.* {topsecret}. 
The policy extension operator extends R into a re- 
lation R t A with alphabet aR U A, such that  all re- 
lationships are permitted so long as the restrictions 
on relationships in R are preserved. 

I 
[L] 
- @ _ , -  t - -  7~[L]_ x ~ L  --+ 7~[L] 

RQA = { a, b : (A A aR) I (a ~ b) E R } 

R t A = { a,b : (A U c~R) 
I {a,b}  C ~ R ~  (a ~-+ b) • R }  

EXAMPLE 2 A Palm is owned by a secret user and 
the overall policy can be specified as 

SPALM = =  PALM ~ {secret} 

Note that  the resulting policy is not transitive: while 
abacus may flow to secret which may flow to email, 
abacus may not flow to email, per the original policy. 
This policy reflects our belief that  the secret user is 
trusted (at that  level) and does not copy abacus data  
to email. That  is, we believe that the user is trusted 
not to violate the flow restrictions of the device by 
creating transitivity where none should exist. /k 

Flow policies may be compared, in a security sense, 
using relation E. 

=ILl 
- E - :  7~[L] ~-~ T~[L] 
_ n _ :  (niL] x niL]) -+ niL] 
n o t  :Ti[L] -+ T~[L] 

R E Q ¢v (c~R c c~Q) A (Q@c~R) c R 

R n  Q = (R'r  aQ) n (Q t a R )  

n o t  R -- ( T ( u a ) )  U ((_L(c~R)) \ R) 

If R ___ Q, then Q is said to be no less restrictive than 
R in that  any flow that  is not allowed by R will also 

not be allowed by Q. We view a R E Q relation as a 
refinement relation: the policy defined by Q is, in a 
security sense, an acceptable replacement for the pol- 
icy R. Intuitively, this means that  a system secure 
by policy Q is also secure by policy R. The set ~[L] 
forms a lattice under partial order E, with a lowest 
upper bound operator defined by M. The lowest up- 
per bound operator is useful for constructing complex 
policies from simpler policies: R [-I Q is a policy that  
enforces the flow restrictions of R and Q. Since R r3 Q 
is a lowest upper bound on R and Q, then it is, in a 
security sense, an acceptable replacement for R and 
Q. The complement of a policy R is given as n o t  R. 

EXAMPLE 3 The policy complement operator is use- 
ful for constructing policies in terms of the flows that  
are not permitted. For example, we might have a 
Palm that  does not allow spreadsheet data  to be 
'beamed'  via the infra-red port  to another. 

NOBE = =  not ( {abacus}-~ { b e a m } )  

BEAMPOL = =  SPALMrq NOBE 

The overall policy, BEAMPOL, depicted in Figure 1, 
upholds the constraints of the individual policies that  
compose it. /X 

abacus : ~ secret 

Figure 1: Possible Flows in policy BEAMPOL 

The inclusion of class secret in policy BEAMPOL in- 
dicates tha t  it is owned/operated by a user cleared 
at secret. For the purposes of this paper we assume 
that  the PDA will not be used by any user cleared to 
a different class. 

3 C o n f i d e n c e  R a t e d  P o l i c i e s  

The policy PALM (Example 1) specifies that  we are 
confident, to some degree, that  it is not possible 
to email Abacus spreadsheet da ta  from a particular 
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Palm handheld. A sophisticated user could bypass 
this by developing and installing a new Palm pro- 
gram that  performs the necessary copying. Policy 
PALM reflects our belief tha t  this compromise is un- 
likely and /or  we are willing to accept the risks. In 
[6] we describe a PalmOS extension tha t  enforces a 
limited type-enforcement security policy. While the 
extension is not protected and can be bypassed by 
determined malicious code, we have more confidence 
in this operat ing system (HanTE) upholding policy 
PALM than s tandard PalmOS. Similarly, we have far 
greater confidence in a multilevel secure system up- 
holding the policy than either PalmOS or HanTE.  

Let the type [RT] represent the set of all possible 
confidence ratings tha t  we might associate with a sys- 
tem and/or  policy. We assume that  this set forms a 
lattice ordering over _ <_ _, where s < t means that  
we have more confidence in a system rated t than a 
system rated s. 

EXAMPLE 4 Figure 2 gives sample confidence order- 
ings. Since the Palm does not support hardware 
memory management  and winCE does, Palm and 
winCE ratings are not comparable. A 

mls 

T 
palm 

mls 

1 
unix 

l winCE 
palm~ / 

0 

Figure 2: Confidence Rating Orderings R1 and R2. 

We include these confidence ratings when speci- 
fying flow policies. A rated policy is a flow policy 
over rating/label pairs, whereby (r, x) ~+ (r, y) ~ P 
means that  one's level of confidence that  x does not 

interfere with y is r. This generalizes to: given 
P : 74[RT x L], ratings r , s  and x , y  E a P ,  then 
(r, x) ~ (s, y) • P means that  we are confident tha t  
x information on an r-rated system cannot interfere 
with y information on a s-rated information. 

EXAMPLE 5 Given policy PALM and rating policy 
R1, then Figure 3 gives palm and mls rated versions 
of this policy. Levels and ratings are abbreviated 

(p ,e)-- - - -~(m,e)  
 i7/i' 
(p,e)------~(m,e) 

Figure 3: Policy PALM rated at mls and palm . 
to  their first character:  abacus is given as a, and so 
forth. The mls rated version of policy PALM does not 
allow any flow from abacus to email under any circum- 
stances. However, while the palm-rated version of the 
policy (right-hand side of Figure 3) does not allow 
palm-rated flow from abacus to email ((p,a)~#(p,e) in 
Figure 3), we lack mls confidence that  abacus does 
not flow to email, tha t  is, ((m,a)~-+(m,e)) in Figure 3. 
A 

If one's level of confidence is r tha t  policy P is 
upheld, then this gives rise to  a rated policy r g P 
where, 

~ [_L! _ :  x T4[L] --+ Ti[RT x R T  n] 

] s < t A  

• (s, ~) ~ (t, y) } 

It follows from this definition that  if my confidence 
is r tha t  P is upheld then the same policy can be 
upheld if I decrease my confidence level to s < r. 

EXAMPLE 6 Figure 3 gives the possible flows in the 
rated policies mls ~ PALM and palm o ~ PALM based on 
the rating ordering R1 fl'om Figure 2. A 
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Note tha t  a policy ra ted  at  '0 '  (from Figure 2) does 
not  represent  complete  uncertainty,  ra ther  it  repre- 
sents uncer ta in ty  at  all levels except the  lowest level 

LEMMA I Given rat ings r,s, and policies P ,  Q : 
T~[L] then it follows from the definitions of ~ and _ 
tha t  

r < s A P E Q ~ r ] P E s $ Q  

Tha t  is, the  ra ted  policy r : P can be replaced (re- 
fined) by the higher ra ted  policy s : Q without  any 
loss of confidence. [] 

4 Secure Synchronization 

The purpose of synchronizat ion is to  ensure d a t a  con- 
sistency between PDA and host  system databases .  
Changes to  da t a  on one platform need to be reflected 
on the other,  and vice-versa. During a Pa lm 'hot-  
sync',  a Synchronizat ion Manager  running on the 
host system calls a series of conduits. Each conduit  
is responsible for checking and upda t ing  the consis- 
tency of certain appl icat ion databases .  For example,  
the Oracle Lite relat ional  DBMS for the Pa lm pro- 
vides a conduit  tha t  runs on the host, synchronizing 
selected hos t / se rver  da tabases  with the (Oracle) ap- 
plication da tabases  on the Palm.  

Thus, conduits  can be designed to  control the  flow 
of information between the handheld  and the host  
system, helping to ensure tha t  the  overall system 
policy is upheld. For example,  a conduit  might be 
designed tha t  allows secret and unclassified informa- 
tion to be down-loaded to a Pa lm (owned by a secret 
user), but  only secret da t a  may be uploaded.  We use 
a ra ted policy to describe the flow controls enforced 
by the conduit .  

EXAMPLE 7 An email  conduit  synchronizes unclassi- 
fied da t a  with the  email da tabase  on the Palm. 

C0 = =  mls : _L{unclass, email} 

A spreadsheet  conduit  synchronizes secret d a t a  with 
spreadsheet  da tabase  on the Palm. 

C1 = =  mls ~ &{secret, abacus} 

Another  email  conduit  allows only one-way synchro- 
nizat ion of unclassified email. 

C2 = =  mls : {unclass} --~ {email}  

These conduits  are all ra ted  as mls since they  are 
assumed to run on an MLS system. Note tha t  our  
confidence is based on the (believed) flow-controls of 
the  condui t  and the behavior  of the Synchronizat ion 
Manager .  /k 

Given ra ted  policies H,  P of a host system and a 
Palm,  respectively, and conduit  ra ted  policy C, then  
when the Pa lm synchronizes with the  host  the follow- 
ing flows are possible: 

• Flows described by H or P.  

Consider  tha t  a Host (with a ~ b, g ~ h E H)  
is connected to a Pa lm (with c ~ f E P)  by 
a conduit  tha t  connects b with c and f with g 
(b ~-~ e , f  ~ g E C) then the synchronizat ion 
results  in an indirect  flow from a via b, c,f,g 
to h on the host. These indirect  flows may  be 
defined by relat ional  composit ion H~ C~P~ C~H. 

Similarly, if Pa lm (with c ~ d , e  ~+ f E P)  
is connected to a Host (with g ~-~ b E H)  by 
a conduit  tha t  connects b with c and f with g 
(b ~-~ c,f ~-~ g E C) then the synchronizat ion 
results  in an indirect  flow from e via f ,  g, b, c 
to  d on the Palm.  These indirect  flows may  be 
defined by relat ional  composit ion Pg CgHg C~P. 

The composi t ion by synchronizat ion of host  policy 
H with Pa lm policy P using conduit  C is thus defined 
by H I[ VII P .  

FILl - I [ - ] 1 - :  T~[RT x L] x T~[RT~xTt[RTL] x n[RTx L] x L] 

| H I [  C]IP= H u PU 
| H~C'~P~C'~Hu 
| P~C~H~C~P 

Note tha t  since policies are reflexive, then a ~-~ b E P 
and b ~-~ c E P does not  necessarily imply tha t  a ~-~ 
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~ , , , ~ - - ~ - . , ~  / k  , ' ' '  I ~ ' x /  $ ", / (p,e) (re,e) 

mls:MLS ( p , u ) ~ ( p , e )  

Figure 4: Indirect Conduit Flows. 

c 6 P and therefore a transitive closure should not be 
computed for H I[ C]I P on a single synchronization. 
Section 5 considers multiple synchronization. 

EXAMPLE 8 Given host policy MLS = {unclass} -,~ 
{secret}, Palm policy PALM and conduit COUCl (Ex- 
ample 7), Figure 4 illustrates an indirect flow from 
secret to unclassified generated as a result of the syn- 
chronization (mls : MLS) [[ CO U CI ]l(palm ~ PALM) Z~ 

Recall that  the policy refinement relation may 
be used to to compare confidence in rated policies, 
whereby R E S means that we are no less confident 
in S than in R. 

EXAMPLE 9 If we disregard flows involving CO in 
Figure 4, then we have 

mls: MLS E (mls: MLS)I[Cl]l(palm : PALM) 

and we are (mls) confident that the policy on the host 
is upheld when we have two-way synchronization of 
secret abacus data. We also have 

palm : PALM _ (mls ~ MLS) I[C1]l(palm ~ PALM) 

that is, that  the policy on the Palm is also upheld. 
However, because of the indirect synchronization 

flow depicted in Figure 4, our confidence drops to an 

overall Palm rating if there is two-way synchroniza- 
tion of secret abacus data and unclassified emaih 

mls ~ MLS 17: (mls ~ MLS)I[C0U C1]l(palm o ° PALM) 

palm X MLS E (mls ~ MLS) I[ CO U C1 ]1 (palm ; PALM) 

To uphold confidence in the host policy, only one- 
way synchronization (down-load) of email data should 
be supported. We have 

mls ~ PALM IE (mls : MLS) I[ C1 U C2]1 (palm ~ PALM) 

ZX 

During synchronization, a number of conduits may 
be invoked, each one checking the consistency of their 
respective application database(s). In flow policy 
terms, these conduits may be modeled as individual 
flow policies, or as one overall conduit policy. 

LEMMA 2 Given rated policies H,P,  Co and C1 then 

HI[C0 U C1]I P = H I[ Co ]I P U H I[ C1]I P 

This follows since since relational composition dis- 
tributes over union. 
COROLLARY Given a rated policy S then it follows 
that  

(S E H ][ Co ]l P) A (S E H [[ C~ ][ P) 
~ S E HI[ OoU Q ]IP 
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This means that  we can reason about  conduits inde- 
pendently. [] 

EXAMPLE 10 Example 9 models two conduits tha t  
two-way synchronizes secret with abacus data (C1) 
and one-way down-load synchronizes unclass with 
email (C2) in terms of one flow policy. Using Lemma 2 
the same result may be achieved as 

rnls: MLS E: (rnls: MLS)l[C1]l(palm : PALM) 

mls~ MLS _ (mls : MLS)I[C3]ICpalm:PALM) 

A 

In practice, it may be appropriate to run conduits 
separately on the host system. In Example 10, sepa- 
rate conduits C1 and C3 can run as untrusted single 
level processes Cat secret and unclass, respectively). 
To have mls-rated confidence in the flows modeled 
by C4, synchronization would have to be regarded as 
trusted since it can, in principle, simultaneously read 
and write secret and unclass data. Existing research 
on secure transaction processing is applicable to the 
development a trusted/multilevel secure synchroniza- 
tion manager. 

5 C a s c a d i n g  C o n d u i t s  

Thus far we have considered flows resulting from a 
single synchronization. In practice, a Palm is repeat- 
edly synchronized with one or more hosts. Additional 
flows may emerge as a result of a cascading effect 
brought about by the repeated synchronization. 

Consider a Palm with rated policy P that  synchro- 
nizes with a host Crated policy H) via conduit C. The 
resulting flow policy on the Palm can be defined as 
the projection 

P '  = (H I[ C]I P)@aP 

that  is, the resulting flows defined over the alphabet 
of P.  A similar policy can be constructed for the host 
policy. 

H '  = (H I[ C]I P)@aH 

A second synchronization may result in additional 
flows, tha t  is, the resulting policy H '  [[ C ][ P '  is not 

necessarily equal to the original policy H[[C][P. 
This is illustrated in the following example. 

EXAMPLE 11 A Palm P synchronizes with host H 
via conduit C. 

P = =  T { k , l , m } ;  

H ---= H ~ U H y ;  

c = =  c~uc~; 
H~ ----= {a}  ~ {b}  U T { c } ;  
C~ --------- {k}- ,~{a}U{b}-,~{/}U{m}-,a  {c} 

Hy --= { y } ~  { z } U T { x } ;  
G = =  {:~} ~ { k }  u { t }  ~ { y }  u { z }  ~ { ,n }  

The flows resulting from synchronization are depicted 
in Figure 5. The additional flows k ~+ l, l ~-~ m are in- 
dicated by dashed arcs labeled with a '1'. The dashed 
arcs labeled '2 '  are due to a cascading effect tha t  the 
additional flows from the first synchronization gener- 
ate during a second synchronization. The policy sta- 
bilizes after two synchronizations, when the overall 
policy is (H I[ C]l P)@aP)I[ c ] l ( (  H l[ C]l P)@aH). 
A 

Cx 

7- \ 

Hx 

~_ cy 

7 \ 

P 
1 

Hy 

Figure 5: Multiple Synchronizations and Cascading 
Flows. 

In general, the overall flow policy can be computed 
by repeated calculation of the synchronized policies, 
as defined in Figure 6. This algorithm terminates 
and may be viewed as a variation of computing a 
transitive closure using iterative squaring [3]. We are 
currently implementing rated policies using Binary 
Decision Diagrams [2]. 
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Sola = T ( a H  U aP); 
S,~e,o = H I[ C]l P; 
while (So,d # S~e~){ 

P = S,~e,.@aP; 
H = S,~e,.@aH; 

Snevo = g I[ C]I P; 
} 

Figure 6: Computing Cascading Conduit  Flows. 

Cascading flows emerge when one or more Palms 
synchronize with one or more systems. Reconsider 
Example 11; Palm P alternatively synchronizes with 
two hosts (upholding policies) H~ and Hy via con- 
duits C~ and Cy, respectively. The first synchroniza- 
tion with Hx reveals flow k ~ l; this is followed by 
synchronization with Hy which reveals x ~-+ y, l ~-~ m. 
This stabilizes after an additional synchronization 
with H~, revealing flow b ~-~ c. 

EXAMPLE 12 The problem of cascading flows during 
multiple synchronizations can be viewed as a gener- 
alization of the network cascade problem [4, 10, 12]. 
Assurance levels can be represented as confidence rat- 
ings, and conduits correspond to connections between 
systems. Flow cascades may be determined by com- 
puting the transitive closure of all system policies. 
For example, given ratings B1 < A1, host policies H~ 
and Hb connected directly, where 

H ~  = A1 o ° ( { u n c l a s s }  ---* { s e c r e t } )  

Hb = B1 : ( { s e c r e t }  . ,z  { t o p s e c r e t } )  

Since multilevel policies are transitive, then the over- 
all rated policy is computed as the transitive clo- 
sure NET = (Ha U Hb)*. This network can be eval- 
uated as B1, but not A1 since we can show tha t  
A1 ~ MLS {Z NET. Our approach is more general than 
the solution to the network cascade problem since we 
can reason about  networks of components support ing 
different and possibly non-transitive flow policies. /X 

6 D i s c u s s i o n  and  C o n c l u s i o n  

In this paper we considered security policy issues tha t  
arise when synchronizing handhelds with host sys- 
tems. A framework was developed that  allows us 
state our confidence in the security of the individual 
components and test whether tha t  confidence can be 
maintained when the components synchronize. While 
the examples were straightforward and were limited 
to multilevel-style policies, we have shown elsewhere 
[5] tha t  reflexive flow policies can be used to express a 
wide variety of security policies. Thus, for example, 
it is possible to analyze the security vulnerabilities 
tha t  arise when synchronizing a Palm with a system 
that  enforces Clark-Wilson style policies. 

We believe that  the framework is applicable to the 
more general problem of security in networks of het- 
erogenous components.  These components represent 
systems, or alternatively, COTS components whose 
potential accesses are articulated as a flow policy. It  
is not  necessary for these components to have an ex- 
plicit access control mechanism; the flow policy repre- 
sents the access limitations tha t  we believe the soft- 
ware effectively upholds. Thus, in the sense of [1], 
every component in the system can be regarded as 
contributing to the overall Trusted Comput ing Base. 
In our framework we can distinguish the merit of 
each component ' s  contribution. This gives rise to a 
paradigm for analyzing security of secure/non-secure 
components:  

1. 

2. 

Identify suitable confidence ordering. 

Develop rated flow policies for components.  En- 
suring that  every relevant entity is modeled, in- 
cluding users, files, databases, devices, and so 
forth. 

. 

4. 

If  a component incorporates an access control 
mechanism then the security policy upheld cor- 
responds to the flow policy. In the case of dis- 
cretionary access, the policy will be based on 
our confidence of whether access is likely to be 
granted. 

If  a component has no access control mechanism 
then the policy represents the access limitations 
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that we believe the component implicitly pro- 
vides. 

5. Analyze synchronizations. 

We use an ordering relation to provide a meaning 
for confidence. This allows us to compare our con- 
fidence in different policies. Alternative confidence 
metrics may be possible. For example, the probabil- 
ity of a particular access constraint being upheld, or 
costs related to the insurance value of of the indi- 
vidual systems. The probabilistic approach taken in 
[11] examines how insecurity may propagate through 
a protection schemes. Probabilistic and other mea- 
sures of confidence or trust have also been studied 
in the context of authentication metrics [13] and it 
would be worth investigating their applicability to 
security policies in general. 

If  a particular composition does not achieve our 
desired level of confidence there are two alternatives. 
One is to determine what is the highest level of con- 
fidence that can be achieved by the composition; this 
is a straightforward search over the relation. The 
other alternative is to limit the accesses possible by 
the conduits. We expect that an at tempt to do this 
in an optimal way would lead to hard complexity re- 
sults similar to those for the cascade problem [8, 9] 
and access-control in heterogenous networks [7]. De- 
vising practical approaches to addressing this in the 
context of our framework is a topic for future study. 
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A T h e  Z N o t a t i o n  

A set may be defined in Z using set specification in 
comprehension. This is of the form { D I P * E }, 
where D represents declarations, P is a predicate and 
E an expression. The components of { D I P • E } 
are the values taken by expression E when the vari- 
ables introduced by D take all possible values tha t  
make the predicate P true. For example, the set 
of squares of all even natural numbers is defined as 
{ n : N [ (nmod2)  = 0 • n ~ }. When there is only one 
variable in the declaration and the expression con- 
sists of just that  variable, then the expression may he 
dropped if desired. For example, the set of all even 
numbers may be written as { n : N I (n rood 2) = 0 }. 
Sets may also be defined in display form such as 
{1,2}. 

In Z, relations and functions are represented as sets 
of pairs. A (binary) relation R, declared as having 
type A e+ B, is a component of ~(A x B). For a E A 
and b E B, then the pair (a, b) is written as a ~-~ b, 
and a ~-~ b E R means that  a is related to b under 
relation R. Functions are treated as special forms of 
relations. We use the generic schema notion to define 
functions giving the function signature followed by its 
definition. 

£A 
A ~ B  
A ~ B  

dom R, ran R 
id A 
R~S 

The power set of A 
Relations between A and B 
Total functions from A to B 

Domain and Range of relation R 
Identity relation over values from A 
Relational composition 

B Just i f i ca t ion  for N S P W 2 0 0 0  

The primary objective of this paper is to propose an 
approach for analyzing the access-control vulnerabil- 
ities tha t  can arise from synchronizing PDAs with 
application systems. We are unaware of any existing 
results tha t  considers the security of these devices. 
Meaningful security analysis can be done on applica- 
tion systems even when the PDA provides little or 
no access control. Achieving this security analysis 
requires a paradigm-shift on what  an access-control 
policy represents. 

Conventional access-control policies specify the ac- 
cess constraints tha t  are to be enforced by a protec- 
tion mechanism such as a security kernel or security- 
wrapper based architecture. We depart  from this 
view by assuming tha t  an access-control policy de- 
fines the access-limitations tha t  we believe to be re- 
flected by a particular component;  whether upheld 
explicitly by a protection mechanism or implicitly as 
a result of our belief in the way a component  with no 
protection mechanism behaves. Thus, while a PDA 
such as a Palm handheld does not have an access- 
control mechanism, we can still specify, albeit with 
low confidence, the access limitations tha t  we believe 
the installed software implicitly provides. 

Our approach leads to a new paradigm for model- 
ing and analyzing the access-control vulnerabilities of 
systems that  are comprised of components of varying 
security. For each component we specify our degree 
of confidence in the component ' s  ability to uphold 
its security policy; every system component  may be 
regarded as contributing in some way to the trusted 
computing base. The overall security policy can then 
be viewed as a composition of statements,  at  differ- 
ent degrees of confidence, about  access-control. Secu- 
rity analysis determines how the interaction between 
these statements influences our confidence in security 
being upheld. 
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