
Conduit Cascades and Secure Synchronization

Simon N. Foley,
Department of Computer Science,
University College, Cork, Ireland.

(s . foley©cs, u c c . i e)

A b s t r a c t

Synchronizing Personal Digital Assistants with host
systems can result in indirect accesses that bypass
security requirements. In this paper we propose a
framework for analyzing the security vulnerabilities
that can arise from synchronization. This framework
provides us with the basis of a paradigm for analyz-
ing the access-control vulnerabilities of systems com-
prised of secure and non-secure components.

1 I n t r o d u c t i o n

Personal Digital Assistants (PDAs) such as the Palm
handheld are small hand-held computing devices that
support a variety of applications, ranging from con-
ventional electronic organizer programs to spread-
sheets, electronic mail and web browser clients. A
PDA is commonly viewed as an extension of a User's
workstation (or server); carrying data and programs
that often mirror data and programs from the work-
station. Synchronization between the workstation
and the PDA is performed on a regular basis, en-
suring that changes made to data stored on the PDA
are reflected on the workstation, and vice-versa.

Little consideration has been given to the security
policy implications of using these devices as part of
an application system. While PDAs are typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
New Security Paradigm Workshop 9•00 Ballycotton, Co. Cork, Ireland
© 2001 ACM ISBN 1-58113-260-3/01/0002...$5.00

single-user systems supporting little or no access-
control, they are expected to synchronize with multi-
user host systems that do have access-control require-
ments. This synchronization may be used to bypass
host system access-controls.

For example, an employee working in sales and
engineering departments is subject to the security
requirement that sales data may not be written to
engineering datasets. If we are not confident about
the employee's PDA upholding this requirement then
synchronization must ensure that at any one time,
either sales or engineering information is carried on
the employee's PDA, but not both. Other scenarios
are possible, for example, the PDA carries both engi-
neering and sales datasets for information purposes.
However, only sales data can be two-way synchro-
nized with the host system.

In this paper we consider the analysis of access-
control vulnerabilities that can arise from synchroniz-
ing host systems with PDAs. The approach first con-
siders our confidence in the access constraints of the
individual components and then analyzes whether
that confidence can be maintained when the com-
ponents synchronize. While a component such as a
Palm does not have an access-control mechanism, we
can still specify, albeit with low confidence, the ac-
cess limitations that we believe the installed software
implicitly provides. Our framework provides us with
the basis of a paradigm for analyzing the security vul-
nerabilities of systems comprised of secure and non-
secure components.

Arbitrary access policies can be abstractly repre-
sented in terms of directed graphs [7] or as reflexive
orderings [5]. We use reflexive orderings to represent

141

these policies and Section 2 provides some notation
from [5] that is useful for specifying and reasoning
about such policies. Section 3 extends these policies
to include ratings that represent the degree of confi-
dence in the policy being upheld. Sections 4 and 5
consider the additional accesses that can arise as a re-
sult of synchronization. A cascading effect can arise
with multiple synchronization which we show to be
a generalization of the network cascade vulnerability
problem [10, 12].

The Z notation [14] is used to provide a consis-
tent syntax for structuring and presenting the defini-
tions and examples in this paper. We use only those
parts of Z that can be intuitively understood and Ap-
pendix A gives a brief overview of the notation used.

2 Security Policies

Every system entity (principal, subject, object, etc.)
is assumed to have an associated security label that
encodes its security relevant characteristics. Labels
may simply represent sensitivity levels such as unclass
and secret, but they may also represent any security-
relevant attribute, for example, a label representing
sales information. Given a set of labels L then a
security policy is defined as a reflexive relation P :
L e+ L. If a ~ b ~ P then information of type a
may flow/interfere with information of type b. For
example, sales information may flow (be read by) the
program labeled budgets. In this paper we are not
concerned with what is meant by information flow
or interference: we use the flow relation as a simple
abstraction of the security policy upheld by a system.
It has been shown elsewhere [5] that this abstraction
is expressive and can be used to characterize a wide
variety of security policies, including Chinese Walls,
Clark-Wilson access triples and user-group polices.

A standard Palm handheld does not have an ac-
cess control mechanism. However, we can use a flow
policy to represent the access limitations that we be-
lieve the installed software provides. For example, on
a standard Palm, we are reasonably confident that
the Giraffe game does not interfere with the mail
database. Naturally, our confidence that the Palm
will maintain this policy is far less than our confi-

dence that a multilevel secure system can uphold a
comparable policy.

2 .1 S p e c i f y i n g F l o w P o l i c i e s

The set of all flow policies between labels of (generic)
type L is defined by ~[L], the set of all reflexive re-
lations.

T~[L] = = {R : L ~ L I id(dom R U ran R) C R}

Let the alphabet aR of policy R denote the set of
labels that it is defined in terms of (dom R).

A flow policy may be specified using the ~.~ opera-
tor: A -,~ B defines a policy such that all elements of
A may flow to all elements of B. Relations .LA and
TA define the least and most restrictive flow policies
with alphabet A, that is, _LA permits all flows, while
TA does not permit any flows (other than reflexiv-
ity).

=[L]
_ - , ~ _ : ((PL) x (EL)) -+ T~[L]

_k, T : (IP L) --+ 7~[L]

A-,-* B = i d A U i d B U (A x B)

_ k A = A x A
TA = i d a

EXAMPLE 1 We are reasonably confident that the
standard software installation on our Palm upholds
the policy GPALM.

GPALM = =

PALM = =

MLS = =

T{girafFe, email}

{emai l} ~,~ {abacus}

{unclass, secret} --~ {secret, topsecret}

Policy PALM specifies that email information may
flow to the (Abacus) spreadsheet database (but not
vice-versa); MLS specifies the usual multilevel secu-
rity policy. /k

2 .2 A P o l i c y A l g e b r a

Reflexive policies may be constructed using the usual
set and relation operators (set comprehension, union,

142

and so forth). In this section an algebra is described
that is useful for the specification of information flow
policies.

The projection operator projects a relation R
into relation R@A with alphabet aR n A such that
the relationships of R are preserved, for example,
mlsQ{secret, topsecret} ---- {secret} ~.* {topsecret}.
The policy extension operator extends R into a re-
lation R t A with alphabet aR U A, such that all re-
lationships are permitted so long as the restrictions
on relationships in R are preserved.

I
[L]
- @ _ , - t - - 7~[L]_ x ~ L --+ 7~[L]

RQA = { a, b : (A A aR) I (a ~ b) E R }

R t A = { a,b : (A U c~R)
I {a,b} C ~ R ~ (a ~-+ b) • R }

EXAMPLE 2 A Palm is owned by a secret user and
the overall policy can be specified as

SPALM = = PALM ~ {secret}

Note that the resulting policy is not transitive: while
abacus may flow to secret which may flow to email,
abacus may not flow to email, per the original policy.
This policy reflects our belief that the secret user is
trusted (at that level) and does not copy abacus data
to email. That is, we believe that the user is trusted
not to violate the flow restrictions of the device by
creating transitivity where none should exist. /k

Flow policies may be compared, in a security sense,
using relation E.

=ILl
- E - : 7~[L] ~-~ T~[L]
_ n _ : (niL] x niL]) -+ niL]
n o t :Ti[L] -+ T~[L]

R E Q ¢v (c~R c c~Q) A (Q@c~R) c R

R n Q = (R'r aQ) n (Q t a R)

n o t R -- (T (u a)) U ((_L(c~R)) \ R)

If R ___ Q, then Q is said to be no less restrictive than
R in that any flow that is not allowed by R will also

not be allowed by Q. We view a R E Q relation as a
refinement relation: the policy defined by Q is, in a
security sense, an acceptable replacement for the pol-
icy R. Intuitively, this means that a system secure
by policy Q is also secure by policy R. The set ~[L]
forms a lattice under partial order E, with a lowest
upper bound operator defined by M. The lowest up-
per bound operator is useful for constructing complex
policies from simpler policies: R [-I Q is a policy that
enforces the flow restrictions of R and Q. Since R r3 Q
is a lowest upper bound on R and Q, then it is, in a
security sense, an acceptable replacement for R and
Q. The complement of a policy R is given as n o t R.

EXAMPLE 3 The policy complement operator is use-
ful for constructing policies in terms of the flows that
are not permitted. For example, we might have a
Palm that does not allow spreadsheet data to be
'beamed' via the infra-red port to another.

NOBE = = not ({abacus}-~ { b e a m })

BEAMPOL = = SPALMrq NOBE

The overall policy, BEAMPOL, depicted in Figure 1,
upholds the constraints of the individual policies that
compose it. /X

abacus : ~ secret

Figure 1: Possible Flows in policy BEAMPOL

The inclusion of class secret in policy BEAMPOL in-
dicates tha t it is owned/operated by a user cleared
at secret. For the purposes of this paper we assume
that the PDA will not be used by any user cleared to
a different class.

3 C o n f i d e n c e R a t e d P o l i c i e s

The policy PALM (Example 1) specifies that we are
confident, to some degree, that it is not possible
to email Abacus spreadsheet da ta from a particular

143

Palm handheld. A sophisticated user could bypass
this by developing and installing a new Palm pro-
gram that performs the necessary copying. Policy
PALM reflects our belief tha t this compromise is un-
likely and /or we are willing to accept the risks. In
[6] we describe a PalmOS extension tha t enforces a
limited type-enforcement security policy. While the
extension is not protected and can be bypassed by
determined malicious code, we have more confidence
in this operat ing system (HanTE) upholding policy
PALM than s tandard PalmOS. Similarly, we have far
greater confidence in a multilevel secure system up-
holding the policy than either PalmOS or HanTE.

Let the type [RT] represent the set of all possible
confidence ratings tha t we might associate with a sys-
tem and/or policy. We assume that this set forms a
lattice ordering over _ <_ _, where s < t means that
we have more confidence in a system rated t than a
system rated s.

EXAMPLE 4 Figure 2 gives sample confidence order-
ings. Since the Palm does not support hardware
memory management and winCE does, Palm and
winCE ratings are not comparable. A

mls

T
palm

mls

1
unix

l winCE
palm~ /

0

Figure 2: Confidence Rating Orderings R1 and R2.

We include these confidence ratings when speci-
fying flow policies. A rated policy is a flow policy
over rating/label pairs, whereby (r, x) ~+ (r, y) ~ P
means that one's level of confidence that x does not

interfere with y is r. This generalizes to: given
P : 74[RT x L], ratings r , s and x , y E a P , then
(r, x) ~ (s, y) • P means that we are confident tha t
x information on an r-rated system cannot interfere
with y information on a s-rated information.

EXAMPLE 5 Given policy PALM and rating policy
R1, then Figure 3 gives palm and mls rated versions
of this policy. Levels and ratings are abbreviated

(p ,e)-- - - -~(m,e)
 i7/i'
(p,e)------~(m,e)

Figure 3: Policy PALM rated at mls and palm .
to their first character: abacus is given as a, and so
forth. The mls rated version of policy PALM does not
allow any flow from abacus to email under any circum-
stances. However, while the palm-rated version of the
policy (right-hand side of Figure 3) does not allow
palm-rated flow from abacus to email ((p,a)~#(p,e) in
Figure 3), we lack mls confidence that abacus does
not flow to email, tha t is, ((m,a)~-+(m,e)) in Figure 3.
A

If one's level of confidence is r tha t policy P is
upheld, then this gives rise to a rated policy r g P
where,

~ [_L! _ : x T4[L] --+ Ti[RT x R T n]

] s < t A

• (s, ~) ~ (t, y) }

It follows from this definition that if my confidence
is r tha t P is upheld then the same policy can be
upheld if I decrease my confidence level to s < r.

EXAMPLE 6 Figure 3 gives the possible flows in the
rated policies mls ~ PALM and palm o ~ PALM based on
the rating ordering R1 fl'om Figure 2. A

144

Note tha t a policy ra ted at '0 ' (from Figure 2) does
not represent complete uncertainty, ra ther it repre-
sents uncer ta in ty at all levels except the lowest level

LEMMA I Given rat ings r,s, and policies P , Q :
T~[L] then it follows from the definitions of ~ and _
tha t

r < s A P E Q ~ r] P E s $ Q

Tha t is, the ra ted policy r : P can be replaced (re-
fined) by the higher ra ted policy s : Q without any
loss of confidence. []

4 Secure Synchronization

The purpose of synchronizat ion is to ensure d a t a con-
sistency between PDA and host system databases .
Changes to da t a on one platform need to be reflected
on the other, and vice-versa. During a Pa lm 'hot-
sync', a Synchronizat ion Manager running on the
host system calls a series of conduits. Each conduit
is responsible for checking and upda t ing the consis-
tency of certain appl icat ion databases . For example,
the Oracle Lite relat ional DBMS for the Pa lm pro-
vides a conduit tha t runs on the host, synchronizing
selected hos t / se rver da tabases with the (Oracle) ap-
plication da tabases on the Palm.

Thus, conduits can be designed to control the flow
of information between the handheld and the host
system, helping to ensure tha t the overall system
policy is upheld. For example, a conduit might be
designed tha t allows secret and unclassified informa-
tion to be down-loaded to a Pa lm (owned by a secret
user), but only secret da t a may be uploaded. We use
a ra ted policy to describe the flow controls enforced
by the conduit .

EXAMPLE 7 An email conduit synchronizes unclassi-
fied da t a with the email da tabase on the Palm.

C0 = = mls : _L{unclass, email}

A spreadsheet conduit synchronizes secret d a t a with
spreadsheet da tabase on the Palm.

C1 = = mls ~ &{secret, abacus}

Another email conduit allows only one-way synchro-
nizat ion of unclassified email.

C2 = = mls : {unclass} --~ {email}

These conduits are all ra ted as mls since they are
assumed to run on an MLS system. Note tha t our
confidence is based on the (believed) flow-controls of
the condui t and the behavior of the Synchronizat ion
Manager . /k

Given ra ted policies H, P of a host system and a
Palm, respectively, and conduit ra ted policy C, then
when the Pa lm synchronizes with the host the follow-
ing flows are possible:

• Flows described by H or P.

Consider tha t a Host (with a ~ b, g ~ h E H)
is connected to a Pa lm (with c ~ f E P) by
a conduit tha t connects b with c and f with g
(b ~-~ e , f ~ g E C) then the synchronizat ion
results in an indirect flow from a via b, c,f,g
to h on the host. These indirect flows may be
defined by relat ional composit ion H~ C~P~ C~H.

Similarly, if Pa lm (with c ~ d , e ~+ f E P)
is connected to a Host (with g ~-~ b E H) by
a conduit tha t connects b with c and f with g
(b ~-~ c,f ~-~ g E C) then the synchronizat ion
results in an indirect flow from e via f , g, b, c
to d on the Palm. These indirect flows may be
defined by relat ional composit ion Pg CgHg C~P.

The composi t ion by synchronizat ion of host policy
H with Pa lm policy P using conduit C is thus defined
by H I[VII P .

FILl - I [-] 1 - : T~[RT x L] x T~[RT~xTt[RTL] x n[RTx L] x L]

| H I [C]IP= H u PU
| H~C'~P~C'~Hu
| P~C~H~C~P

Note tha t since policies are reflexive, then a ~-~ b E P
and b ~-~ c E P does not necessarily imply tha t a ~-~

145

~ , , , ~ - - ~ - . , ~ / k , ' ' ' I ~ ' x / $ ", / (p,e) (re,e)

mls:MLS (p , u) ~ (p , e)

Figure 4: Indirect Conduit Flows.

c 6 P and therefore a transitive closure should not be
computed for H I[C]I P on a single synchronization.
Section 5 considers multiple synchronization.

EXAMPLE 8 Given host policy MLS = {unclass} -,~
{secret}, Palm policy PALM and conduit COUCl (Ex-
ample 7), Figure 4 illustrates an indirect flow from
secret to unclassified generated as a result of the syn-
chronization (mls : MLS) [[CO U CI]l(palm ~ PALM) Z~

Recall that the policy refinement relation may
be used to to compare confidence in rated policies,
whereby R E S means that we are no less confident
in S than in R.

EXAMPLE 9 If we disregard flows involving CO in
Figure 4, then we have

mls: MLS E (mls: MLS)I[Cl]l(palm : PALM)

and we are (mls) confident that the policy on the host
is upheld when we have two-way synchronization of
secret abacus data. We also have

palm : PALM _ (mls ~ MLS) I[C1]l(palm ~ PALM)

that is, that the policy on the Palm is also upheld.
However, because of the indirect synchronization

flow depicted in Figure 4, our confidence drops to an

overall Palm rating if there is two-way synchroniza-
tion of secret abacus data and unclassified emaih

mls ~ MLS 17: (mls ~ MLS)I[C0U C1]l(palm o ° PALM)

palm X MLS E (mls ~ MLS) I[CO U C1]1 (palm ; PALM)

To uphold confidence in the host policy, only one-
way synchronization (down-load) of email data should
be supported. We have

mls ~ PALM IE (mls : MLS) I[C1 U C2]1 (palm ~ PALM)

ZX

During synchronization, a number of conduits may
be invoked, each one checking the consistency of their
respective application database(s). In flow policy
terms, these conduits may be modeled as individual
flow policies, or as one overall conduit policy.

LEMMA 2 Given rated policies H,P, Co and C1 then

HI[C0 U C1]I P = H I[Co]I P U H I[C1]I P

This follows since since relational composition dis-
tributes over union.
COROLLARY Given a rated policy S then it follows
that

(S E H][Co]l P) A (S E H [[C~][P)
~ S E HI[OoU Q]IP

146

This means that we can reason about conduits inde-
pendently. []

EXAMPLE 10 Example 9 models two conduits tha t
two-way synchronizes secret with abacus data (C1)
and one-way down-load synchronizes unclass with
email (C2) in terms of one flow policy. Using Lemma 2
the same result may be achieved as

rnls: MLS E: (rnls: MLS)l[C1]l(palm : PALM)

mls~ MLS _ (mls : MLS)I[C3]ICpalm:PALM)

A

In practice, it may be appropriate to run conduits
separately on the host system. In Example 10, sepa-
rate conduits C1 and C3 can run as untrusted single
level processes Cat secret and unclass, respectively).
To have mls-rated confidence in the flows modeled
by C4, synchronization would have to be regarded as
trusted since it can, in principle, simultaneously read
and write secret and unclass data. Existing research
on secure transaction processing is applicable to the
development a trusted/multilevel secure synchroniza-
tion manager.

5 C a s c a d i n g C o n d u i t s

Thus far we have considered flows resulting from a
single synchronization. In practice, a Palm is repeat-
edly synchronized with one or more hosts. Additional
flows may emerge as a result of a cascading effect
brought about by the repeated synchronization.

Consider a Palm with rated policy P that synchro-
nizes with a host Crated policy H) via conduit C. The
resulting flow policy on the Palm can be defined as
the projection

P ' = (H I[C]I P)@aP

that is, the resulting flows defined over the alphabet
of P. A similar policy can be constructed for the host
policy.

H ' = (H I[C]I P)@aH

A second synchronization may result in additional
flows, tha t is, the resulting policy H ' [[C][P ' is not

necessarily equal to the original policy H[[C][P.
This is illustrated in the following example.

EXAMPLE 11 A Palm P synchronizes with host H
via conduit C.

P = = T { k , l , m } ;

H ---= H ~ U H y ;

c = = c~uc~;
H~ ----= {a} ~ {b} U T { c } ;
C~ --------- {k}- ,~{a}U{b}-,~{/}U{m}-,a {c}

Hy --= { y } ~ { z } U T { x } ;
G = = {:~} ~ { k } u { t } ~ { y } u { z } ~ { ,n }

The flows resulting from synchronization are depicted
in Figure 5. The additional flows k ~+ l, l ~-~ m are in-
dicated by dashed arcs labeled with a '1'. The dashed
arcs labeled '2 ' are due to a cascading effect tha t the
additional flows from the first synchronization gener-
ate during a second synchronization. The policy sta-
bilizes after two synchronizations, when the overall
policy is (H I[C]l P)@aP)I[c] l ((H l[C]l P)@aH).
A

Cx

7- \

Hx

~_ cy

7 \

P
1

Hy

Figure 5: Multiple Synchronizations and Cascading
Flows.

In general, the overall flow policy can be computed
by repeated calculation of the synchronized policies,
as defined in Figure 6. This algorithm terminates
and may be viewed as a variation of computing a
transitive closure using iterative squaring [3]. We are
currently implementing rated policies using Binary
Decision Diagrams [2].

147

Sola = T (a H U aP);
S,~e,o = H I[C]l P;
while (So,d # S~e~){

P = S,~e,.@aP;
H = S,~e,.@aH;

Snevo = g I[C]I P;
}

Figure 6: Computing Cascading Conduit Flows.

Cascading flows emerge when one or more Palms
synchronize with one or more systems. Reconsider
Example 11; Palm P alternatively synchronizes with
two hosts (upholding policies) H~ and Hy via con-
duits C~ and Cy, respectively. The first synchroniza-
tion with Hx reveals flow k ~ l; this is followed by
synchronization with Hy which reveals x ~-+ y, l ~-~ m.
This stabilizes after an additional synchronization
with H~, revealing flow b ~-~ c.

EXAMPLE 12 The problem of cascading flows during
multiple synchronizations can be viewed as a gener-
alization of the network cascade problem [4, 10, 12].
Assurance levels can be represented as confidence rat-
ings, and conduits correspond to connections between
systems. Flow cascades may be determined by com-
puting the transitive closure of all system policies.
For example, given ratings B1 < A1, host policies H~
and Hb connected directly, where

H ~ = A1 o ° ({ u n c l a s s } ---* { s e c r e t })

Hb = B1 : ({ s e c r e t } . ,z { t o p s e c r e t })

Since multilevel policies are transitive, then the over-
all rated policy is computed as the transitive clo-
sure NET = (Ha U Hb)*. This network can be eval-
uated as B1, but not A1 since we can show tha t
A1 ~ MLS {Z NET. Our approach is more general than
the solution to the network cascade problem since we
can reason about networks of components support ing
different and possibly non-transitive flow policies. /X

6 D i s c u s s i o n and C o n c l u s i o n

In this paper we considered security policy issues tha t
arise when synchronizing handhelds with host sys-
tems. A framework was developed that allows us
state our confidence in the security of the individual
components and test whether tha t confidence can be
maintained when the components synchronize. While
the examples were straightforward and were limited
to multilevel-style policies, we have shown elsewhere
[5] tha t reflexive flow policies can be used to express a
wide variety of security policies. Thus, for example,
it is possible to analyze the security vulnerabilities
tha t arise when synchronizing a Palm with a system
that enforces Clark-Wilson style policies.

We believe that the framework is applicable to the
more general problem of security in networks of het-
erogenous components. These components represent
systems, or alternatively, COTS components whose
potential accesses are articulated as a flow policy. It
is not necessary for these components to have an ex-
plicit access control mechanism; the flow policy repre-
sents the access limitations tha t we believe the soft-
ware effectively upholds. Thus, in the sense of [1],
every component in the system can be regarded as
contributing to the overall Trusted Comput ing Base.
In our framework we can distinguish the merit of
each component ' s contribution. This gives rise to a
paradigm for analyzing security of secure/non-secure
components:

1.

2.

Identify suitable confidence ordering.

Develop rated flow policies for components. En-
suring that every relevant entity is modeled, in-
cluding users, files, databases, devices, and so
forth.

.

4.

If a component incorporates an access control
mechanism then the security policy upheld cor-
responds to the flow policy. In the case of dis-
cretionary access, the policy will be based on
our confidence of whether access is likely to be
granted.

If a component has no access control mechanism
then the policy represents the access limitations

148

that we believe the component implicitly pro-
vides.

5. Analyze synchronizations.

We use an ordering relation to provide a meaning
for confidence. This allows us to compare our con-
fidence in different policies. Alternative confidence
metrics may be possible. For example, the probabil-
ity of a particular access constraint being upheld, or
costs related to the insurance value of of the indi-
vidual systems. The probabilistic approach taken in
[11] examines how insecurity may propagate through
a protection schemes. Probabilistic and other mea-
sures of confidence or trust have also been studied
in the context of authentication metrics [13] and it
would be worth investigating their applicability to
security policies in general.

If a particular composition does not achieve our
desired level of confidence there are two alternatives.
One is to determine what is the highest level of con-
fidence that can be achieved by the composition; this
is a straightforward search over the relation. The
other alternative is to limit the accesses possible by
the conduits. We expect that an at tempt to do this
in an optimal way would lead to hard complexity re-
sults similar to those for the cascade problem [8, 9]
and access-control in heterogenous networks [7]. De-
vising practical approaches to addressing this in the
context of our framework is a topic for future study.

Acknowledgments
Thanks to the anonymous referees and the Workshop
audience for useful comments on this research.

References

[1] B Blakley and D.M. Kienzle. Some weaknesses
of the TCB model. In IEEE Symposium on Se-
curity and Privacy. IEEE CS Press, May 1997.

[2] R.E. Bryant. Symbolic boolean manipulation
with ordered binary decision diagrams. A CM
Computing Surveys, 1992.

[3] J.R. Burch et al. Symbolic model checking: 1023
states and beyond. Information and Computa-
tion, 98:142-170, 1992.

[4] J.A. Fitch and L.J Hoffman. A shortest path
network security model. Computers and Secu-
rity, 12:169-189, 1993.

[5] S.N. Foley. The specification and implementa-
tion of commercial security requirements includ-
ing dynamic segregation of duties. In 4th A CM
Conference on Computer and Communications
Security. ACM Press, 1997.

[6] S.N. Foley and G. Hayes. PalmTE: Limited type
enforcemented on the Palm handheld. In prepa-
ration, 2000.

[7] L. Gong and X. Qian. The complexity and com-
posability of secure interoperation. In Proceed-
ings of the Symposium on Security and Privacy,
pages 190-200, Oakland, CA, May 1994. IEEE
Computer Society Press.

[8] S. Gritalis and D. Spinellis. The cascade vulner-
ability problem: The detection problem and a
simulated annealing approach to its correction.
Microprocessors and Microsystems, 21(10):621-
628, 1998.

[9] R.J. Horton et al. The cascade vulnerabil-
ity problem. Journal of Computer Security,
2(4):279-290, 1993.

[10] J.K Millen and M.W. Schwartz. The cascad-
ing problem for interconnected networks. In 4th
Aerospace Computer Security Applications Con-
ference, pages 269-273. IEEE CS Press, Decem-
ber 1988.

[11] I.S. Moskowitz and M.H. Kang. An insecurity
flow model. In New Security Paradigms Work-
shop. ACM Press, 1997.

[12] National Computer Security Center, USA.
Trusted Network Interpretation, 1987.

[13] M.K. Reiter and S.G. Stubblebine. Toward ac-
ceptable metrics of authentication. In IEEE

149

Symposium on Security and Privacy, pages 10~
20, May 1997.

[14] J. M. Spivey. The Z Notation: A Reference Man-
ual. Series in Computer Science. Prentice Hall
International, second edition, 1992.

A T h e Z N o t a t i o n

A set may be defined in Z using set specification in
comprehension. This is of the form { D I P * E },
where D represents declarations, P is a predicate and
E an expression. The components of { D I P • E }
are the values taken by expression E when the vari-
ables introduced by D take all possible values tha t
make the predicate P true. For example, the set
of squares of all even natural numbers is defined as
{ n : N [(nmod2) = 0 • n ~ }. When there is only one
variable in the declaration and the expression con-
sists of just that variable, then the expression may he
dropped if desired. For example, the set of all even
numbers may be written as { n : N I (n rood 2) = 0 }.
Sets may also be defined in display form such as
{1,2}.

In Z, relations and functions are represented as sets
of pairs. A (binary) relation R, declared as having
type A e+ B, is a component of ~(A x B). For a E A
and b E B, then the pair (a, b) is written as a ~-~ b,
and a ~-~ b E R means that a is related to b under
relation R. Functions are treated as special forms of
relations. We use the generic schema notion to define
functions giving the function signature followed by its
definition.

£A
A ~ B
A ~ B

dom R, ran R
id A
R~S

The power set of A
Relations between A and B
Total functions from A to B

Domain and Range of relation R
Identity relation over values from A
Relational composition

B Just i f i ca t ion for N S P W 2 0 0 0

The primary objective of this paper is to propose an
approach for analyzing the access-control vulnerabil-
ities tha t can arise from synchronizing PDAs with
application systems. We are unaware of any existing
results tha t considers the security of these devices.
Meaningful security analysis can be done on applica-
tion systems even when the PDA provides little or
no access control. Achieving this security analysis
requires a paradigm-shift on what an access-control
policy represents.

Conventional access-control policies specify the ac-
cess constraints tha t are to be enforced by a protec-
tion mechanism such as a security kernel or security-
wrapper based architecture. We depart from this
view by assuming tha t an access-control policy de-
fines the access-limitations tha t we believe to be re-
flected by a particular component; whether upheld
explicitly by a protection mechanism or implicitly as
a result of our belief in the way a component with no
protection mechanism behaves. Thus, while a PDA
such as a Palm handheld does not have an access-
control mechanism, we can still specify, albeit with
low confidence, the access limitations tha t we believe
the installed software implicitly provides.

Our approach leads to a new paradigm for model-
ing and analyzing the access-control vulnerabilities of
systems that are comprised of components of varying
security. For each component we specify our degree
of confidence in the component ' s ability to uphold
its security policy; every system component may be
regarded as contributing in some way to the trusted
computing base. The overall security policy can then
be viewed as a composition of statements, at differ-
ent degrees of confidence, about access-control. Secu-
rity analysis determines how the interaction between
these statements influences our confidence in security
being upheld.

150

