AngeL: a tool to disarm computer systems

Danilo Bruschi,

Emilia Rosti

Dipartimento di Scienze dell'Informazione
Universita degli Studi di Milano
Via Comelico 39, 20135 Milano — Italy
E-mail: bruschi, rose @dsi.unimi.it

ABSTRACT

In this paper we present a tool designed to intercept attacks
at the host where they are launched so as to block them
before they reach their targets. The tool works both for
attacks targeted on the local host and on hosts connected
to the network. In the current implementation it can detect
and block more than 70 attacks as reported in the literature.

The tool is based on the idea of improving the overall se-
curity of the Internet by connecting disarmed systems, i.e.,
hosts that cannot launch attacks against other hosts. Such
a strategy was presented in [4]. Here we present an extended
version of the tool that has been engineered to consider a
wide variety of attacks and to run on various releases of the
Linux kernel and the experience learned in building such a
tool. A protection mechanism of the tool itself that pre-
vents its removal is also implemented. Experimental results
of the impact of the tool on system performance show that
the overhead introduced by the tool is negligible from the
user's perspective, thus it is not expected to be a hindrance
to the successful deployment of the tool.

Keywords
Computer and network security, defense, offense, disarm,
attack, monitor

1. INTRODUCTION

In [4] a new approach to computer security, and system pro-
tection in particular, was proposed based on the following
remarks. In a networked environment, any host can sud-
denly, possibly involuntarily, become an attacker, that is, a
threat for the entire community (usually as a consequence of
a compromise it was the victim of). This is particularly true
of unattended hosts connected on the network, such as those
of non-professional users. Intruders’ life would be more dif-
ficult if they could not exploit such hosts to attack their
targets. Furthermore, there are attacks, such as IP spoof-
ing, that can be more easily and more successfully blocked at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

NSPW'01, Septemhber 10-13", 2002, Cloudcroft, New Mexico, USA.
Copyright 2002 ACM 1-58113-457-6/01/0009...$5.00.

63

the source than at their target, even if sophisticated heuris-
tics are adopted. By defining an adequate characterization
of such attacks in terms of their signatures, as in signature
based intrusion detection, it could be possible to detect and
block them before they leave their origination point.

Moving from the above observations, the authors suggested
an alternative approach to system security that builds on
"harmless components”, Reducing the threat of virtually
any network host turning into a source of attack should be
a parallel thread to the classical protection oriented one.
Recent DDoS attacks have shown that the mere size of an
attack, i.e., the number of attacking hosts, is a critical fac-
tor in computer security incidents, possibly even more than
the “quality” of the attack itself. In a network where no, or
just a few, hosts are a threat, global security results from in-
dividual harmlessness. Preventing systems from doing any
harm, i.e., disarming the systems by turning off their of-
fending capabilities, is a way to improve security. Offending
capabilities should be turned off both at host level, so as
to prevent local exploitation of the host, i.e., compromising
the host, and at network level, so as to prevent an offensive
use of the host against other machines. Since it reverses the
perspective of intrusion detection, the authors’ approach is
suggested to be called “ex-trusion” detection and response,
as it aims at detecting and acting against outgoing attacks
rather than incoming ones [13].

A tool that intercepts all network packets and drops those
that it recognizes as typical of a set of attacks it “knows”,
as they are generated on the machine where the tool is
installed, would limit the offensive capabilities of the net-
worked computer running such a tool. Attackers that were
to seize that host and use it as a base for their attacks
would be significantly limited. Furthermore, such an ap-
proach would be interesting for organizations such as large
universities or corporations that would not like to see their
reputation damaged by being the source of an attack. Mov-
ing from protection of one's reputation to liability, from a
legal point of view, a tool that disarms & computer could
protect the owner of that computer from liability in case the
machine were subverted and attacks successfully launched
from it'. In fact, the system expected to be running such

!This could be particularly interesting in countries, such as
Italy, where the law holds the owner of a computer liable for
whatever action is taken from that computer, regardless of it
being compromised or not, unless the owner can show that
all “reasonable preventive measures” were taken to protect



a tool is the (personal) computer of non-professional users,
with little if any maintenance, especially for what concerns
security, interested in a transparent solution that allow to
connect a safe machine on the network. Potential limitations
of some system functionalities deriving from the adoption of
the toal, i.e,, the impaossibility to run some network tests,
are expected to have a negligible impact on the average user
who is either not able or not allawed to take any advantage
of them.

A prototype of the tool that was able to detect a small num-
ber of network attacks, based on attack signatures, was im-
plemented to verify the viability of the proposed approach
[3]- Since the prototype implementation was successful, we
describe here the full scale version of the tool, which has
been extended to include also local attacks, not censidered
in [3]. A more extensive and sophisticated knowledge base
of signature attacks, including local ones, is bundled in the
tool that is able to identify more than 70 attacks, both at
network level and at host level. A mechanism to harden the
tool protection itself so as to make its removal more difficult
has been added. A preliminary set of experimental results of
the impact of the tool on system performance show that the
overhead introduced by the tool is negligible from the user’s
perspective. Therefore, the issus of performance is not ex-
pected to be a hindrance to the successful deployment of
the tool. Other factors that may hinder the success of the
tool, such as the economic one both as for the deployment,
maintenance and update of such a tool, or the technical one,
such as the imposeibility of using mobile IP or the difficulty
to tell a harmful behavior from a legitimate one, thus tak-
ing punitive measures against possibly innocent users, were
investigated in [4].

The current implementation of the tool, called AngeL, is
based on the most recent version of the Linux kernel (hence
the capital L in the name). It is implemented as a loadable
kernel module comprising two distinct modules. The host
based module is the new one and handles locel attacks, i.e.,
attacks performed by an authorized account against the host
where the tool has been installed in order to gain higher
privileges. The network based module is a refined version of
the one present in the prototype and handles attacks aimed
at other hosts on the network.

This paper is organized as follows. Section 2 discusses re-
lated work. In Section 3 we describe the module handling at-
tacks targeted on the local host and in Section 4 the module
handling attacks targeted on networked hosts. Techniques
adopted to malke the tool “tamper-resistant” are discussed
in Section 5. Preliminary exper:mental results on the use of
this module by a small community of user are reported in
Section 6. The are very encouraging and indicate that the
current stable version of such tool should be considered as
a basic component in the design of security architectures.

2. RELATED WORK

In this section we compare the proposed tool with existing
solutions that exhibit a certain degree of similarity and dis-
cuss the differences. A wealth of literature existe on Intru-
sion Detection and prevention, nothing exists on “extrusion”

the machine.

64

detection, except for [4] and the present paper. However,
similar approaches as the one adopted in the host module
have been investigated in the literature. In [14], an intru-
sion prevention/detection system based on system call pat-
tern analysis is described. A specification language based -
on regular expressions for events is defined that allows to
characterize a program based on the normal/abnormal se-
quence of system calls it makes, taking into consideration
also their arguments. At run time, an interception mecha-
nism captures each system call and efficiently matches the
current pattern against the one defined, possibly taking ac-
tions against the process if necessary. The system presented
in [14] is more general than AngeL host module, where only
a critical fraction of system calls is considered. Like AngeL,
it shows that system protection by system call interception
and analysis is a viable and efficient way to enforce system
security, as the overall overhead on process execution time is
never greater than 5%. It could be interesting to investigate
how well the pattern matching algorithm proposed in [14]
could perform on the signature analysis in Angel. network
module.

The Generic Software Wrappers is another system based on
system call interception [10] by means of wrappers. It in-
cludes a wrapper definition language that allows to define
generic wrappers for all possible system calls and a wrapper
support subsystern immplemented as a loadable kernel mod-
ule, like AngeL, which is also password protected. Unlike
Angel,, where the host module is activated upon each in-
stance of the selected system calls, a wrapper is activated
when the activation criteria defined by the user for that
wrapper are verified. Although this may gain in terms of ef-
ficiency and lower overhead, it may reduce the effectiveness
of the system itself if the activation criteria are not com-
prehensive enough to consider all relevant cases. Another
key difference is that GSW is meant for systems with a sen-
sible administrator who would be in charge of installing it
and defining the wrappers needed. AngeL is meant to be
installed automatically as part of the operating system with
minimum if any knowledge of its presence by the user.

A different approach to prevent attacks aimed at increasing
privileges by sending a piece of code to be executed on the
victim system is presented in [8]. The source code, be it C
or shell code, is examined and the presence of typical attack
code features are identified. A neural network is trained to
perform the analysis with fairly good results in terms of false
alarm rate. It can then be applied to scan all the download
traffic of a system in order to detect remote attack codes
before they are installed or executed on the system.

The STAT methodology [15] based on defining attack sce-
narios that abstract from the system specific details of attack
signatures could be an interesting alternative to the plain at-
tack signatures used in Angel.. Note that both STAT and
AngeL follow the misuse approach to intrusion detection, al-
though the high level description of attack scenarios in STAT
allows to represent only those step in an intrusion that are
critical for the effectiveness of the attack AngeL: uses, on
the contrary, low level attack signatures for efficiency and
simplicity reasons. However, abstracting away from specific
details allows to identify veriations of attacks that may oth-
erwise go unnoticed, thus reducing the impact of updating



the signature base of the system.

Due to its behavior, i.e., it is always invoked upon certain
conditions, such as specific systemn call execution and net-
work packet transmission, AngeL is often compared to a ref-
erence monitor [1, 12|. However, the similarity is more from
a functional point of view, since Angel, cannot be proved
to work correctly since it relies upon heuristics, it is not
small since it is bundled to the attack signature set, it is
not complete as the signature set needs regular updates, it
is as tamper-proof as possible. Under this respect, AngeL
behavior is closer to that of a personal firewall, although
by being a kernel patch, AngeL offers stronger resistance to
tampering, transparency to the user who is not required to
define any security level or turn on/off any security feature
explicitly, but no protection against incoming attacks since
AngeL’s aim is to prevent outgoing attacks.

3. THE MODULE FOR HOST TARGETED

ATTACKS

Attacks targeted on the local host are performed by autho-
rized internal users in order to augment their privileges on
the system where they have an account, or by external users
that have gained access to a local account by guessing the
password or breaking the authentication procedure in order
to gain root privileges. As reported by the CSI-FBI report
[7], this is the most popular type of attack used to compro-
mise computer systems and more than 50% of the computer
security attacks in the USA were performed by internals.

In order to build the new module to handle local attacks,
which was not present in the original prototype, we ana-
lyzed different kinds of host based attacks (see Appendix 1)
and concluded that they can be classified into twe different
species: attacks aimed at gaining higher privileges, in the
large majority based on the buffer overflow technique, and
attacks whase scope is to consume a resource of the local
host, i.e., the X-server or main mermory, so as to achieve a
denial of service. Attacks such as those aimed at having a
process misbehave by passing it bad data are not consid-
ered as semantic analysis of process arguments is beyond
the scope of this paper. We now illustrate each of the two
species in details.

3.1 Higher Privilege Attacks

The most common attack used to gain higher privileges on a
system is the buffer overflow. Therefore, we examine it here
as the first case we implemented in the host targeted attack
module in Angel.. Furthermore, in the current release, we
only consider the buffer overflow attacks where a program
receives on the command line, as the argument of an option,
a string containing the binary code of a program executing
the execve("/bin/sh") system call, or equivalent ones, in-
stead of a regular input parameter. We will refer to such a
code as shell code in the rest of the paper. Some examples
of shell codes we have considered are given below.

Other types of buffer overflows where the shell code is in-
jected as input data at run-time are not considered in the
current release of the tool and will be included in the future
ones. Because the vast majority of local buffer overflows
use the other type of buffer overflow illustrated before, we

65

/*

* getregid and generic shell code

» for slirp[v1.0.10(RELEASE)]

/
\xeb\x29\x6e\x31\xc0\xb0\x2e\x31\xdb\xb3\x0c\xcd\x80
\x89\x76\x208\x31\xc0\x6868\x46\x07\x89\x146\x0c\xb0\x0b
\x89\x£3\x8d\x4e\x08\x8d\x66\20c\xcd\x80\x31\xdb\x89
\xd8\x40\xcd\x80\xe8\xd2\xff \xf £\xff\x2f\x62\x69\160
\x2f\x73\x68

Vil

» gpawns a shell from a program executing chroot()
/
\xeb\x4f\x31\xc0\x31\xcH\x5e\x86\x46\x07\xb0\x27\x8d
\x6e\x056\xfa\xc5\xbl\xed\xcd\xB0\x31\xc0\xB8d\x6e\x05
\xb0\x3d\xcd\x80\x31\xcO\xbb\xd2\xd1\xd0\xff\xf7\xdb
\x31\xc9\xb1\x10\x56\101\xce\x89\x16\x83\xc6\x03\xe0
\xf9\x66\xb0\x3d\x8d\x6e\x10\xcd\x80\x31\xc0\x89\x76
\x08\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x66
\x0c\xcd\xB80\xe8\xac\xff\xff\xff/bin/sh

/=

» Alephone’s shell code for system("/bin/sh");
-/
\xzeb\x1£\xE6e\x89\x76\x08\x31\xc0\x88\x46\x07\x89
\x46\x20c\zb0\x0b\xB89\xf3\x8d\x4e\x08\x8d\x66\x0c
\xcd\x80\x31\xdb\x289\xd8\x40\xcd\x80\xe8\xdc\xff
\xff\xff/bin/sh

YLl

= This shellcode exploits cxtermS.1-pli.

* It works on RHE5.2-RH6.0, Slackware 3.6.

* Shellcode is injected via the DISPLAY variable
»/
\Xeb\x1f\x6a\x89\x76\x08\x31\xc0\x88\x46\x07\x89
\x46\x0c\xb0\x0b\x89\xf3\x68d\x4e\x08\x8d\x66\x0¢c
\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff
\xff\xff/bin/sh

Figure 1: Examples of shell codes.



started with the most popular type and decided to leave the
less popular one for future releazes of AngelL.

The technique adopted by Angels to handle buffer overflow
attacks is based on a wrapper fo: the execve () system call,
since buffer overflows are based on the execution of such a
system call. Thus, in any system where Angel has been in-
stalled, a call to exacve() is intercepted by the tool and its
parameters carefully analyzed in order to verify if malicious
code is hidden in them. AngeL first examines the execution
environment of the new process that should execute after
completing the execve() system call is analyzed. The val-
ues of environment variables? such as SHOME or $STERM,
are checked to see if they contain an executable shell code or
a suspicious character, e.g., “/”. Such a step is implemented
as an exhaustive search over all the environment variables
for the set of shell codes collected in the tool knowledge
base. If this check yields a negative result, i.e., none of the
environment variables hides any of the shell codes known
to the tool, AngeL, starts the analysis of the properties of
the program whose execution is invoked via execve(). The
main properties of such a program are gathered by calling
the stat () system call, which provides the information re-
garding the privileges of the new process, i.e., whether it will
be setuid or setgid to root. If this is the case, our analysis
continues by checking the paramieters that will be passed to
the program to see whether there is some known shell code.
If this check too yields a negative result, the new process is
finally spawned, otherwise the executing program is termi-
nated and a message logged for the superuser. Note that in
this case, a drastic action is taken, which may damage the
innocent user whose process is being exploited. Less drastic
actions could be taken, such as preventing the execution of
the offending code while letting the original program pro-
ceed. Refinement such as this will be taken into considera-
tion for Future releases of Angel.. The same applies in case
of hostile packets being intercepted by the network module.

The execve () wrapper execution is fairly overhead prone, as
it will appear in Section 6, because the search for shell codes
is lengthy and computationally heavy. Some improvements
are possible by implementing optimized string matching al-
gorithms, which is part of future releases.

3.2 Local DoS

If the malicious user is unable to perform an attack aimed
at gaining higher privileges, or he/she is simply not inter-
ested in gerining control of the host and a nuisance action is
sufficient, a sitnple way to damage the system is to reduce
its availability to the point of making it useless or extrernely
slow, by consuming one or more of its resources. The easier
technique to achieve such a goal is to launch a local DoS
attack. The most popular attacks of this type are the fork
bombing, aimed at exhausting the resource number of pro-
cesses in the system, and the malloc bombing, aimed at
consuming the dynamic memory area (e.g., the heap) of a
process. In order to block these attacks, we adopted the
following strategy. The fork(}, vfork(), clone() system
calls for the fork bombing attack and the brk() system call
for the malloc bombing attack are protected by wrappers.

2The use of environment variables to insert the shell code in
the vulnerable program has appeared in some cases of buffer
overflow exploits.

66

‘When any of the mentioned system calls is executed, the cor-
responding wrapper is executed instead, which verifies the
current use of the resource by the calling process together
with the rate of use in the last time interval. If one of these
parameters is greater than a threshold value the potentially
hogging process is terminated. The critical factor in this
strategy is obviously the identification of the correct thresh-
old values and time interval. The time interval is set to one
second, which strikes a good balance between too short an
interval, which would not allow to observe a trend, and a
too long one, which would on the contrary emphasize even
small differences.

After an extensive tuming phase, we have defined a set of
threshold values, which are the default values. For this rea-
son, the default values implement a fairly restricted environ-
ment. In order to make the tool as transparent as possible to
non-professional users or users with limited system admin-
istration knowledge, the threshold values of the parameters
cannot be modified. However, since the tool could also be
installed on systems with experienced administrators who
could be willing to tune the parameters to their configura-
tions, they can still change the parameters by modifying the
tool source code.

The system admits at most 100 processes in execution per
user via the compiler directive

#define MAX FORKS_PER_USER 100

with a maximum forking rate of 50 processes per second via
the compiler directive

#define MAX_FORKS_PER_SECOND 6O.

As for the memory allocation, the system accepts up to
500.000 malloc requests per second via the compiler direc-
tive

#define MAX BRK_PER_JIFFIE 6000

where JIFFIE is one hundredth second for a total maximum
memory allocation of 20MB, via the directive :

#define MAX BRK DIMENSION 20000000.

As a special case of local DoS, we illustrate the local Xserver
attack. In this case, the Xserver is forced to behave as a CPU
hog when it receives a control packet that specifies a negative
value for the XC-QUERY-SECURITY-1 parameter at a 20
byte offset from the interested field. The X server takes such
a value and starts decrementing it until it reaches 0, without
checking the initial value. Thus, by setting XC-QUERY-
SECURITY-1 to a negative value, e.g., -1, the whole range
of first the negative and then the positive 64 bit integers is
spanned before the variable reaches 0. Because the variable
is a long, i.e., a double word integer, the operation takes
some time (in the order of minutes) during which the system
does nat respond to any signal whatsoever.



4. THE MODULE FOR NETWORK TAR-

GETED ATTACKS

This module is developed to be integrated with the personal
firewall capability of Linux, i.e., the netfilter tool. With
netfilter, a user can customize actions that some filters will
apply to the packets of various protocols. Different "hooks,”
ie., points where the filters can be inserted in the netfilter
skeleton, are defined for each network protocols, for which
a user can specify a set of rules he wants the protocol to
apply to the packet. Angel. modules are connected to the
NF_IP_LOCAL_OUT hook, i.e., the hook that netflter pro-
vides to handle outgoing IP packets, just before they are
passed to the data link layer pretocols.

In the development of our module, we divided the attacks
targeted on network services in two broad categories: at-
tacks that exploit network and transport layer protocols
vulnerabilities (such as SynFlood for TCP or SMURF for
ICMP [5, 11]), and those that exploit application layer pro-
tocols vulnerabilities, such as the PHF attack on HTTP.

4.1 Network and transport layer attacks

The network and transport layer module handles the UDP,
TCP, ICMP, and IP protocols. Fromn our perspective, the
attacks to such protocols are characterized by the need to
remember previous behavior in order to detect a malicious
intent, or by the simple packet inspection in order to detect
the malicious intent. The former case is the most demand-
ing for the module from a performance point of view as it
requires to maintain, and examine, previous states of the
protocols and the packets.

Attacks such as IP spoofing, SMURF, LAND [6] are ex-
amples of attacks that can be recognized by simple packet
header inspection. As an example, in order to detect a
packet with a spoofed source address that is about to leave
the host it is sufficient to compare the packet IP source ad-
dress with all the IP addresses of the network interfaces of
the host. Similar strategies can be adopted for other attacks
of this kind.

Attacks such as SynFlood and XsHoK are examples of at-
tacks that require that the module maintain variables de-
scribing the history of the behavior of the host with respect
to some critical parameters. As an example, in order to pre-
vent a host to flood a remote Xserver with false requests, a
table addressed by the destination IP address = and the user
id, uid, is maintained. Each table entry contains the number
of connections established by that uid to the Xserver of sys-
tem z. If such a value exceeds a given threshold value, uid
is disabled from opening further connections to the Xserver
on z.

4.2 Application layer attacks

The current release of AngeL, considers the following appli-
cation layer protocols: HTTP, FTP, Sendmail and Telnet.
The attacks considered for the Telnet and FTP protocols
are remote buffer overflows of some implementations of the
servers for these services. These attacks are detected and
blocked by inspecting the packet payload in outgoing pack-
ets to ports 21 and 23, respectively, looking for shell codes
such as those described in Section 3.1.

67

With respect to the HT'TP protocol, we started by consid-
ering attacks that are performed by forcing the server to
execute various commands. These attacks too are detected
by payload inspection. They are characterized by the fact
that they hide command execution requests in *GET” or
"POST" requests. The Angel. module looks for command
execution requests in the packets leaving the host for port
80. Based on this strategy, the module blocks the following
attacks: PHF hacking, IIS arbitrary command execution,
Infosearch arbitrary command execution, Alibaba arbitrary
command execution, Amlite Vulnerability and BizDB vul-
nerability.

5. ON THE DIFFICULTY OF REMOVING
ANGEL

The construction of tools such as AngeL always raises con-
troversial issues regarding the possibility to easily bypass
them and their update. In particular,

e software modules intended to protect a system can be
removed or bypassed in various ways by intruders who
have gained control of the systemn, e.g., by mean of a
root compromise, thus making such a protection in-
effective; AngeL, being a software module, is not im-
mune to this drawback;

» updating the signature database used by all types of
filter modules to detect attacks is particularly difficult
and critical, especially if the database is bundled in the
code, and periodical update is necessary to maintain
the effectiveness of the filter; Angel’s attack signature
database is bundled in the code.

Although these issues may seem different, they are related,
as we will explain in what follows. One of the implemen-
tation choices we faced during the development of Angel,
was between static kernel module and loadable kernel mod-
ule. In the first case, the module is loaded together with
the kernel at boot time as opposed to the second case where
the module is loaded after the boot phase completes as part
of the executing kernel. In the former case, an intruder
who gains superuser privileges on a machine executing An-
gel: can remove it only by downloading on the machine a
copy of the kernel without Angel. and rebooting the ma-
chine with the new kernel. This solution provides a good
security level, as good as it is possible with software mod-
ules, assuming that a reboot operation would not go unno-
ticed. However, updating the signature database becomes
a very serious problem because any database update would
require the re-compilation of the kernel, a critical and time
consuming operation.

On the other hand, by implementing AngeL. as a loadable
module, we simplify the update problem significantly. In or-
der to update the signature database we only need to com-
pile the new version, remove the older one using the romod
system utility and replace it with the new module using the
insmod system utility. Unfortunately, with this solution, it
would be very easy for an intruder to remove the module
from the kernel.



The optimal solution would be the one that gives the same
security level of a static kernel module with the flexibility of
a loadable kernel module. Using some features of Linux, we
were able to implement the optimal solution.

AngeL is configured as a loadable kernel module. In the
loading phase a password is associated with it, ie., it is
loaded with the instruction

insmod angel password = ##dww.

The password is encrypted using MD5 and stored in a kernel
area. An AngeL device (/dev/angel) is also created, on
which no read operation is defined, only write operation
is possible. In order to remove the module, the module
password must be written on the Angel: device /dev/angel.
The write operation on such a device verifies if the newly
written password is equal to the original one, whose MD5
is maintained in kernel memory. If this is the case, a flag is
set that enables the module removal, otherwise the only way
to remove the module would be to download on the disk a
new boot file, and reboot the system as if the module were
a static kernel module.

Although a system reboot is an operation which does not
usually go unnoticed, it is difficult for a “average” end-user,
i.e., a user with little system administration skills, to no-
tice the difference between the malicious boet and the usual
boot. Furthermore, in order to make the operation less no-
ticeable, the intruder may wait for a “natural” boot to occur,
i.e., wait for the system to reboot because of some unrecov-
erable problems rather than force a reboot. It depends on
the type of system how often such an event is for the in-
truder to be willing to wait or not. Unfortunately, while we
can work on improving the prctection rneasures to prevent
our module from being removed from the system, there is
not much that can be done to prevent the system from being
reinstalled completely. The only viable solution in this case
would be r hardware implementation of the module. This
is the only way a disarmed system could not be rearmed.

6. EXPERIMENTAL EVALUATION

In this section we describe the results of a set of experiments
aimed at investigating the impact of AngeL on system per-
formance. The hardware platform used for the experimen-
tal evaluntion is a PC with a 133 MHz Pentium and 64 MB
RAM running Linux Slackware 7.0, 2.4.2 kernel. We per-
formed two sets of tests, one for each module of the tool. In
order to measure the overhead of the local attacks module,
we ran some kernel programs that only execute the wrapped
system calls. Table 1 shows the average number of fork() and
execve() system calls per second that can be issued in the
absence of the module (rightmost column), with the mod-
ule (central columnn), and with full checks on environment
variables (leftmost column). The numbers reported in the
teble are the average over 20.300 runs. As the very small
values of the coefficient of variation indicate, the measure-
ments are fairly stable. As the table shows, checking all
the environment variables in case of execve() reduces the
maxirnum throughput in terms of completed system calls
per second of about 13%. If only the call parameters are
checked, a negligible reduction of 2.5% in the throughput

68

is observed. Unfortunately, with the increasing popularity
of format bugs, checking environment variables is becoming
more and more important. Although a 12.6% reduction in
throughput is not negligible, the axecve () system call is not
invoked continuously, so the impact is not so serious.

w/0 ANGEL w/ANGEL A
exzecve() | B2.171 (0.015) | 72.983 (0.009) | -11.1%
fork() 31.189 (0.02 30.286 (0.02) -2.8%

Table 1: Average number of system calls completed
per second for the execve() and fork() system calls
without the module (rightmost column) and with
the module (central column). In the case of the
execve () system call, the leftmost column gives the
results with the module checking all environment
variables. The value in parentheses is the coefficient
of variation.

Table 2 illustrates the results of the measurements taken
for the network module, on the native system and with the
module, under hostile traffic. The metric in this case is
the average number of packets per second the system can
send under the various scenarios. The numbers reported
in the table are the average over 39.000 packets. In this
case too, very small values of the coefficient of variation
are obtained. As the table shows, the largest impact is on
http traffic, as the worst case is considered for matching all
strings to be checked. However, since the outgoing traffic
is significantly less than the incoming one, a throughput
reduction in the range of 7% to 15% does not affect the
performance as perceived by the user.

pratocol w/o ANGEL | w/ANGEL A

http 86D.7 (0.009) | 739.5 (0.006) | -15%
Ttp/ipd/telnet | 220.9 (0.01) | 203.2 (0.006) | -7.7%
sendmail 1195.5 (0.01) | 1110 (0.009) | -7.1%

Table 2: Average number of packets per second for
various application layer protocols without and with
the module, under different types of traffic. Coeffi-
clents of variation are given in parentheses.

7. CONCLUSIONS

In this paper we have deacribed a tool that disarm computers
by intercepting hostile traffic carrying attacks at networked
hosts and blocking it, and_local attacks such as local DoS
and buffer overflows. The tool is publicly available under
the Gnu Copyleft License. It can be downloaded at the
following URL: http://www.laser.dsi_unimi.it/AngeL.. The
current version was developed under the kernel 2.4.x and
runs also for versions 2.2.18 and following.

Acknowledgments

The authors are grateful to Carla Marceau who excellently
presented the paper on their behalf, to Bob Blakley whose
note keeping effort was this time even more important, and
to Aldo Scaccabarozzi and Paolo Perego, who patiently col-
lected attack exploits and implemented them into Angel
modules.



8. REFERENCES APPENDIX

[1] Andersen J., “Computer security technology planning A. ATTACK REFERENCES
stucly,’_’ U.S. Air Force Electronic System Division The following list is just a partial list of the attacks
Technical Report 73-51, October 1972. handled by the tool based on the cve.mitre.com

database. Only the reference number is provided for

[2] Bandel D. “Linux Security Toolkit,” IDG Books, the sake of space
2000. :

[3] Bruschi D., Cavallaro L., Rosti E., “Less harm, less 1. CVE-2000-0454
worry or how to improve network security by bounding 2. CVE-2000-1180
system offensiveness,” Proceedings of ACSAC ’00, 3. CVE-1999-0137
16th Annual Computer Security Application 4. CVE-2000-0438
Conference, New Orleans, pp 188-195, 2000. 5 CAN-1999-0114

[4] Bruschi D., Rosti E., “Disarming offense to facilitate 6. CVE-2000-0824
defense,” Proceedings of the New Security Paradigm 7. CVE-2000-0844
Workshop 2000, Ireland, pp 69-75, Sept. 2000. 8. CVE-1999-0032

9. CVE-1999-0335

[5] CERT-CC, “TCP SYN flooding attacks and IP
Spoofing attacks,” CERT Advisory CA-96.21,
http://www.cert.org, 1996-98.

[
o

. CAN-2000-0545
. CAN-2000-0545

12. CVE-2000-0218
[6] CERT-CC, "IP Denial of service attacks,” CERT 13. CAN-1999-0317
Advisory CA-97.28, http://www.cert.org, 1997-98. 14. CAN-1099-0317

15. CAN-1999-0651

(=]
[

[{7] Computer Security Institute,

http://www.gocsi.com/prelea_00321.htm. 16. CVE-1999-0034
17. CVE-1999-0138

[8] Cunningham R., Rieser A., "Detecting source code of 18. CVE-2000-0703
attacks that increase privilege,” 19. CVE-1999-0733

presented at RAID 2000, available at http://www.raid-

symposium org/raid2000/Materials/Abstracts /53/53.pdf 20. CVE-2000-0000

21. CAN-1999-0623

[9] Erlingsson, U., Schneider, F.B., “IRM Enforcement of 22. CAN-2000-0620
Java Stack Inspection”, Proceedings of the IEEE 23. CVE-1999-0038
Symposium on Security and Privacy, pp.246-55, May 24. CVE-1099-0128
2000. 25. CVE-1999-0166

[10] Fraser T., Badger L., Feldman M., “Hardening COTS 26. CVE-1999-0016
- software with generic software wrappers,” Proceedings 27. CVE-1999-0513

of the IEEE Symposium on Security and Privacy, 28. CVE-1999-0265
Oakland, CA, May 1999. 29. CVE-2000-0305

[11] Huegen C., “The latest in denial of service attacks: 30. CVE-1999-0067

smurfing. Description and information to minimize 31. CVE-2000-0207
effects,” 32. CAN-2000-0866
http://users.quadrunner.com/chuegen/smurf.cgi, last 33. CAN-1999-0885/0776
updsate Feb. 2000. 34. CVE-2000-0287

[12] Lampson B., “Protection,” republished in Proc. of the 35. CVE-2000-0638/639
5th Princeton Symposium, Operating Systern Review, 36. CVE-2000-0810/811
Vol 8, No 1, pp 18-24, Jan. 1974. 37. CVE-2000-0138

38. CAN-2000-0573
[13] McHugh, J., et al., Discussion at NSPW2001, 2001. 39. CVE-2000-733

[14] Sekar R., Uppuluri P., “Synthesizing fast intrusion 40. CAN-2000-0917

prevention/detection systems from high-level 41. CVE-2000-733
specifications,” Proceedings of the Useniz Security 42. CVE-2000-0567
Symposium, pp , 1999. 43. CVE-2000-0352

[15] Vigna G., Eckmann S., Kemmerer R, “The STAT
tool suite,” Proceedings of DISCEX 2000,

2000.

69



