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A B S T R A C T  
The growth of the In terne t  has triggered t remendous op- 
portunit ies for cooperative computat ion,  where people axe 
joint ly conducting computa t ion  tasks based on the private 
inputs  they each supplies. These computat ions could oc- 
cur between mutua l ly  un t rus ted  parties, or even between 
competitors. For example, customers might send to a re- 
mote database queries tha t  contain private information; two 
competing financial organizations might jointly invest in a 
project tha t  must  satisfy both  organizations'  private and 
valuable constraints,  and so on. Today, to conduct  such 
computations,  one ent i ty  must  usually know the inputs  from 
all the participants;  however if nobody  can be t rusted enough 
to know all the  inputs,  privacy will become a pr imary con- 
cern. 

This problem is referred to as Secure Multi-party Compu- 
ta t ion Problem (SMC) in the literatuxe. Research in the 
SMC area hes been focusing on only a limited set of spe- 
cific SMC problems, while privacy concerned cooperative 
computat ions call for SMC studies in a variety of compu- 
ta t ion domains. Before we can s tudy  the problems, we 
need to identify and define the specific SMC problems for 
those computat ion domahm. We have developed a frame- 
work to facilitate this problem-discovery task. Based on 
our framework, we have identified and defined a number  
of new SMC problems for a spec t rum of computat ion do- 
inahm. Those problems include privacy-preserving database 
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query, privacy-preserving scientific computations,  privacy- 
preserving intrusion detection, privacy-preserving statistical 
emalysis, privacy-preserving geometric computations,  and 
privacy-preserving da ta  mining.  

The goal of this paper is not  only to present our results, 
bu t  also to serve as a guideline so other people can identify 
useful SMC problems in their own computat ion domains. 
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i~. I N T R O D U C T I O N  
The proliferation of the In te rne t  has triggered tremendous 
opportunit ies  for cooperative computat ion,  where people are 
cooperating with each other to conduct  computat ion tasks 
based on the  inputs  they each supplies. These computa- 
tions could occur between t rus ted partners,  between par- 
tially t rusted partners,  or even between competitors. For 
example, customers might  send to a remote database the 
queries tha t  contain private information,  two competing fi- 
nancial  organizations might joint ly  invest in a project tha t  
must  satisfy bo th  organizations '  private and valuable con- 
straints,  mad so on. Usually, to conduct  these computations,  
one must  know inputs  from all the  participants;  however if 
nobody can be t rusted enough to know all the inputs,  pri- 
vacy will become a pr imary concern. For example, consider 
the following applications: 

1. Alice thinks tha t  she may have some genetic disease, 
and she wants to investigate it herself. She also knows 
that Bob has a database containing DNA patterns 
about various diseases. After Alice gets a sample of 
her DNA sequence, she sends it to Bob, who will then 
tell Alice the diagnosis. However, if Alice is concerned 
about her privacy, the above process is not acceptable 
because it does not prevent Bob from knowing Alice's 
private information-both the DNA and the query re- 
sult. 

2. After a costly market  research, company A decided 
tha t  expanding its market  share in some region will be 
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3. 

v e r y  benef ic ia l .  However  A is ~tware t h a t  a n o t h e r  com-  
p e t i n g  c o m p a n y  B is also plemJng to  e x p a n d  i t s  m a r k e t  
s h a r e  in some  region .  S t r a t eg i ca l l y ,  A a n d  B do  n o t  
w a n t  t o  c o m p e t e  a g a i n s t  each  o t h e r  in t h e  s a m e  re-  
gion,  so t h e y  w a n t  to  k n o w  w h e t h e r  t h e i r  reg ions  over-  
l a p  w i t h o u t  g iv ing  away  l o c a t i o n  i n f o r m a t i o n  (no t  on ly  
wou ld  d i sc losu re  o f  t h i s  i n f o r m a t i o n  cos t  b o t h  c o m p a -  
nies  a lo t  of  money ,  i t  c an  also cause  s ign i f ican t  d a m a g e  
to  t h e  c o m p a n y  if i t  is d i sc losed  t o  o t h e r  pa r t i e s ,  e.g. 
a n o t h e r  b igger  c o m p e t i t o r  cou ld  t h e n  i m m e d i a t e l y  oc- 
c u p y  the  m a r k e t  t h e r e  be fore  A o r  B even  s t a r t s ;  or  
some  rea l  e s t a t e  c o m p a n y  cou ld  a c t u a l l y  ra i se  t he i r  
p r i ce  d u r i n g  t h e  n e g o t i a t i o n  i f  t h e y  k n o w  A or  B is 
ve ry  i n t e r e s t e d  in t h a t  l oca t i on ) .  The re fo re ,  t h e y  need  
a w a y  to  solve  t h e  p r o b l e m  whi le  m a i n t a i n i n g  t h e  p r i -  
vacy  of  t h e i r  l oca t ions .  

T w o  f inanc ia l  o r g a n i z a t i o n s  p h m  to  c o o p e r a t i v e l y  w o r k  
on  a p r o j e c t  for t h e i r  mutua:[  benef i t .  E a c h  orgeml- 
z a t i o n  w o u l d  l lke i t s  own r e q u i r e m e n t s  b e i n g  sa t i s -  
fied (usual ly ,  these  r e q u i r e m e n t s  a r e  m o d e l e d  as  l in-  
ea r  e q u a t i o n s  or  l i nea r  inequ,~li t ies) .  However ,  t h e i r  
r e q u i r e m e n t s  a r e  p r o p r i e t a r y  d a t a  t h a t  inc ludes  t h e  
c u s t o m e r ' s  p r o j e c t s  o f  t h e  l i lmly f u t u r e  evo lu t i on  of 
c e r t a i n  c o m m o d i t y  pr ices ,  i n t e r e s t  a n d  in f l a t ion  ra tes ,  
e conomic  s t a t i s t i c s ,  po r t fo l io  ho ld ings .  There fo re ,  no-  
b o d y  likes to  d isc lose  i t s  r ec lu i rements  to  t h e  o t h e r  
pa r ty ,  o r  even  t o  a " t r u s t e d "  t h i r d  pa r ty .  How could  
t h e y  c o o p e r a t e  on  th i s  p r o j e c t  whi l e  p r e se rv ing  t h e  
p r i v a c y  o f  t h e  i n d i v i d u a l  i n f o r m a t i o n ?  

T h e  c o m m o n  p r o p e r t y  o f  t h e  a b o v e  l~.hree e x a m p l e s  is t h e  fol- 
lowing:  two  or  m o r e  p a r t i e s  w a n t  to  c o n d u c t  a c o m p u t a t i o n  
b a s e d  on  t h e i r  p r i v a t e  i n p u t s ,  b u t  n e i t h e r  p a r t y  is wi l l ing  to  
d isc lose  i ts  own i n p u t  t o  a n y b o d y  else. T h e  p r o b l e m  is how 
t o  c o n d u c t  such  a c o m p u t a t i o n  whii'Le p r e s e r v i n g  t h e  p r i v a c y  
of  t h e  i npu t s .  T h i s  p r o b l e m  is refe:rred to  as  Secure  M u l t i -  
p a r t y  C o m p u t a t i o n  p r o b l e m  ( S M C )  in t h e  l i t e r a t u r e  [39]. 
G e n e r a l l y  speak ing ,  a s ecu re  m u l t l - p a r t y  c o m p u t a t i o n  p r o b -  
l em dea l s  w i t h  c o m p u t i n g  a n y  p r o b a b i l i s t i c  func t ion  on  may 
i n p u t ,  in a d i s t r i b u t e d  n e t w o r k  w h e r e  each  p a r t i c i p a n t  ho lds  
one  o f  t h e  i n p u t s ,  e n s u r i n g  i n d e p e n d e n c e  of  t h e  i npu t s ,  cor-  
r ec tnes s  of  t h e  c o m p u t a t i o n ,  a n d  t h a t  no  m o r e  i n f o r m a t i o n  
is r e v e a l e d  to  a p a r t i c i p a n t  in t h e  c o m p u t a t i o n  t h e n  can  b e  
in fe r red  f rom t h a t  p a r t i c i p a n t ' s  i n p u t  a n d  o u t p u t  [18]. 

Cn r r e n t l y ,  to  ~olve t h e  a b o v e  p r o b l e m s ,  a c o m m o n l y  s t r a t -  
egy  is to  a s s u m e  t h e  t r u s t w o r t h i n e e s  of  t h e  se rv ice  p rov ide r s ,  
or  to  a s s u m e  t h e  e x i s t e n c e  of  a t r ~ s t e d  t h i r d  p a r t y ,  wh ich  
is r i sky  in n o w a d a y s '  d y n a m i c  a n d  ma l i c ious  e n v i r o n m e n t .  
T h e r e f o r e  p r o t o c o l s  t h a t  can  supl~ort  j o i n t  c o m p u t a t i o n s  
whi le  p r o t e c t i n g  t h e  p a r t i c i p a n t s '  p r i v a c y  axe of  g rowing  
i m p o r t a n c e .  I n  t heo ry ,  t h e  genera l  secure  m u l t i - p a r t y  com-  
p u t a t i o n  p r o b l e m  is so lvab le  [39, .q'.l, 16] b u t ,  as G o l d r e i c h  
p o i n t s  o u t  in  [16], u s i n g  t h e  solutic,ns d e r i v e d  b y  t h e s e  gen- 
e ra l  r e su l t s  for spec i a l  cases  of  mui r ; i -pa r ty  c o m p u t a t i o n  can  
b e  i m p r a c t i c a l ;  spec i a l  s o l u t i o n s  shc,uld b e  d e v e l o p e d  for  spe-  
c ia l  cases  for eff iciency reasons .  

Go l dwas ee r  p r e d i c t s  t h a t  '%he field of  m u l t i - p a r t y  c o m p u t a -  
t ions  is t o d a y  w h e r e  p u b l i c - k e y  c r y p t o g r a p h y  was t e n  yea r s  
ago,  n a m e l y  a n  e x t r e m e l y  power t~ l  t oo l  a n d  r ich t h e o r y  
whose  rea l - l i fe  u sage  is a t  t h i s  t i m e  o n l y  b e g i n n i n g  b u t  wi l l  

b e c o m e  in t h e  f u t u r e  a n  i n t e g r a l  p a r t  of  our  c o m p u t i n g  re- 
a l i ty"  [18]. 

O o l d r e i c h ' s  o b s e r v a t i o n  a n d  G o l d w a s s e r ' s  p r e d i c t i o n  m o t i -  
v a t e d  us  to  sea rch  for speci f ic  S M C  p r o b l e m s  t h a t  have  
'~eal - l i fe  u sage" ,  as well  as  t o  sea rch  for t h e i r  so lu t ions .  To 
th i s  end ,  we have  i n v e s t i g a t e d ,  u n d e r  t h e  secu re  m u l t i - p a r t y  
c o m p u t a t i o n  c o n t e x t ,  m a n y  speci f ic  c o m p u t a t i o n  doma ins ,  
such  as  d a t a  min ing ,  i n t r u s i o n  de t e c t i on ,  d a t a b a s e  query ,  
sc ient i f ic  c o m p u t a t i o n ,  g e o m e t r i c  c o m p u t a t i o n ,  a n d  s t a t i s t i -  
cal  ana lys i s .  T h e  r e su l t s  b r i n g  m a n y  i n t e r e s t i n g  p rob l ems .  
T h e  goa l  o f  t h i s  p a p e r  is t o  d o c u m e n t  t h e  r e su l t s  of  th i s  
r e sea rch  a n d  p r e s e n t  r e m a i n i n g  o p e n  p r o b l e m s .  

To s ea r ch  for n e w  S M C  p r o b l e m s  s y s t e m a t i c a l l y ,  we have  
p r o p o s e d  a t r a n s f o r m a t i o n  f r a m e w o r k  t h a t  a l lows us  to  sys-  
t e m a t i c a l l y  t r a n s f o r m  n o r m a l  c o m p u t a t i o n s  (no t  necessa r i ly  
s ecu r i t y  r e l a t e d )  to  secuxe m u l t i - p a r t y  c o m p u t a t i o n s .  Fu r -  
t h e r  r e sea rch  on t h e s e  r e s u l t a n t  p r o b l e m s  revea l s  a n u m b e r  
o f  i n t e r e s t i n g  n e w  p r o b l e m s .  W e  wil l  d e s c r i b e  t hese  n e w  
p r o b l e m s  in  t h i s  p a p e r  as wel l  as  d i scuss ing  t h e i r  p o t e n t i a l  
a p p l i c a t i o n s  a n d  t h e  r e l a t e d  Work, i f  any.  I t  is i m p o r t a n t  to  
p o i n t  o u t  t h a t  t h e  List of  p r o b l e m s  p r e s e n t e d  in  th i s  p a p e r  
is n o t  i n t e n d e d  to  b e  a n  e x h a u s t i v e  l ist ;  we be l i eve  t h e r e  
a re  m a n y  o t h e r  S M C  p r o b l e m s  in e v e r y  specif ic  c o m p u t a -  
t i on  d o m a i n .  O u r  p a p e r  p r o v i d e s  a f r a m e w o r k  a n d  serves  as  
a gu ide l ines  for r e s e a r c h e r s  who  w o r k  in  o t h e r  d o m a i n s  to  
def ine  n e w  S M C  p r o b l e m s  for t h e i r  spec i f ic  c o m p u t a t i o n s .  

T h e  f r a m e w o r k  in  t h i s  p a p e r  h a s  a l r e a d y  t r i g g e r e d  a n u m b e r  
o f  i n t e r e s t i n g  inves t iga t ions .  S o m e  p r o b l e m s  a re  c u r r e n t l y  
u n d e r  i nves t i ga t i on ,  such  as  p r i v a c y - p r e s e r v i n g  c o o p e r a t i v e  
s t a t i s t i c a l  ana lys i s  [13], p r i v a c y - p r e s e r v i n g  c o o p e r a t i v e  sci- 
en t i f ic  c o m p u t a t i o n s  [12], a n d  p r i v a c y - p r e s e r v i n g  geome t r i c  
c o m p u t a t i o n  [14], p r i v a c y - p r e s e r v i n g  d a t a b a s e  q u e r y  [11], 
a n d  p r i v a c y - p r e s e r v i n g  i n t r u s i o n  d e t e c t i o n .  

2. RELATED W O R K  
T h e  h i s t o r y  o f  t h e  m u l t i - p a r t y  c o m p u t a t i o n  p r o b l e m  is ex-  
termive s ince  i t  was  i n t r o d u c e d  b y  Yao  [39] a n d  e x t e n d e d  b y  
Coldreich, Micali, and Wigderson [31], and by many others. 
These works all use a similar methodology methodology: the 
computation problem is first represented as a combinatorial 
circuit, and then the parties run a short protocol for every 
gate in the circuit. While this apprearht is appealing in its 
generality and simplicity, the protocols it generated depend 
on the size of the circuit. This size depends on the size of 
the input domain, and on the complexity of expressing such 
a computation. 

I n  t h e  p a s t ,  s ecu re  m u l t i - p a r t y  c o m p u t a t i o n  r e sea rch  h a s  
m o s t l y  b e e n  focus ing  on  t h e o r e t i c a l  s tud ie s ,  a n d  few ap -  
p l i ed  p r o b l e m s  have  b e e n  s t u d i e d .  I n  t h e  l i t e r a tu r e ,  t h e r e  
a re  a few e x a m p l e s  of  s ecu re  m u l t i - p a r t y  c o m p u t a t i o n  p r o b -  
terns, such  as  t he  P r i v a t e  I n f o r m a t i o n  R e t r i e v a l  p r o b l e m  
( P I R ) ,  p r i v a c y - p r e s e r v i n g  s t a t i s t i c a l  d a t a b a s e ,  a n d  p r ivacy -  
p r e s e r v i n g  d a t a  m i n i n g .  

T h e  P I R  p r o b l e m  cons i s t s  o f  a c l ien t  a n d  server ;  t h e  c l ien t  
needs  to  ge t  t h e  i t h  b i t  of  a b i n a r y  s e q u e n c e  f rom t h e  se rve r  
w i t h o u t  l e t t i n g  t h e  se rve r  k n o w  i; t h e  s e rve r  does  n o t  w a n t  
t h e  c l ien t  to  know t h e  b i n a r y  s e q u e n c e  e i the r .  A so lu t ion  for 
th i s  p r o b l e m  is n o t  diff icul t ;  how e ve r  a n  efficient  so lu t ion ,  in  
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part icular  a solution with small communicat ion cost, is not  
easy. Studies [26, 7, 24, 23, 27, 30, 28, 19] have shown tha t  
one can design a protocol to solve the P IR  problem with 
much bet te r  communicat ion complexity than  by using the 
general theoretical solutions. 

The privacy-preserving da ta  min ing  problem is another  spe- 
cific secure multi-paxty computa t ion  problem tha t  has been 
discussed in the li terature. Recently, two different privacy- 
preserving da ta  mining  problems were proposed by Lindell 
and Agrawal, respectively. In  Lindell 's paper [29], the prob- 
lem is defined as this: Two parties, each having a private 
database, want  to joint ly  conduct  a da ta  mining  operation 
on the union of their two databases. How could these two 
parties accomplish this without  disclosing their  database to 
the other party, or any third party. In Agrawal's paper  [1], 
the privacy-preserving da ta  min ing  problem is defined as 
this: Alice is allowed to conduct  da ta  mining  operat ion on 
a private database owned by Bob, how could Bob prevent 
Alice from accessing precise information in individual  da ta  
records, while Alice is still able to conduct  the da ta  mining  
operations? The solution to these two similar problems are 
quite different: Lindell and Pinkas use secure mul t i -par ty  
computa t ion  protocols to solve their problem, while Agrawal 
uses the da ta  per tu rba t ion  method.  

Apar t  from the above problems, secure mul t i -par ty  compu- 
ta t ion  problems exist in many  other computa t ion  domahm 
as well, and most  of them have not  been studied before. 
These new problems emerge if we combine the privacy con- 
corns with the cooperative computa t ion  in a specific com- 
pu ta t ion  domain.  The  purpose of this paper  is to document  
how we identify those problems, and the definition of them. 
We hope to motivate more people to look at these research 
problems. The authors of this paper  have already studied 
some of these problems [11, 12, 13, 14]. 

Note tha t  in some situations,  only par t  of the data  set needs 
to be kept confidential. For example, when two retail stores 
want  to conduct  a joint  computa t ion  on their jo int  data,  
they are only concerned about  their customers '  names, not  
about  each single transaction.  In  these cases, the problems 
could be solved using pseudonyms techniques [5, 4]. 

3. FRAMEWORK 
We introduce a t ransformat ion framework tha t  systemati-  
cally transforms normal  computat ions  to secure mul t i -par ty  
computations.  We s tar t  from describing two different mod- 
eis of computat ion (without  the privacy requirements),  and 
then we show how to transform them to models enhanced 
with privacy requirements,  thus generating new SMC pro]>- 
1eros. The model after the t ransformation is the Secure 
Multi-party Compu~ion (SMC) model. 

According to the  number  of distinguished inputs ,  we clas- 
sify computat ions  into two different models: the mul t i - input  
computa t ion  model and the single-input computa t ion  model. 
The mul t i - input  computa t ion  model usually has two distin- 
guishable inputs.  For instance, cl ient/server computa t ion  
is a mul t i - input  computa t ion  model. The  single-input com- 
pu ta t ion  model usually has one input  or one set of inputs.  
For example, in da ta  mining  and statistical analysis, all t h e  
inputs  usually come from one da ta  set al though the inputs  

consist of mult iple da t a  items. 

Next we want  to transform both  models to the Secure Multi- 
par ty  Computa t ion  model, in which, the input  from each 
par t ic ipat ing par ty  is considered as private, and nobody is 
willing to disclose its own inputs  to the other parties. In  
certain specific cases, the computa t ion  results could also be 
private, namely  some par ty  should no t  learn the results. 

For the mul t i - inpu t  computa t ion  model, its t ransformation 
to the corresponding SMC model is straightforward because 
the model na tura l ly  has at least two inputs.  Therefore, if we 
treat  each inpu t  as coming from a different party, the new 
problem now becomes 'qtow to conduct  the same computa- 
t ion while main ta in ing  the  privacy of each par ty ' s  input" .  
Figure l (a)  demonstrates  such a transformation.  

For the single-input computa t ion  model, since it  only has 
one input ,  we cannot  use the same transformation as we 
used for the mul t i - inpu t  computa t ion  model; we have to 
somehow transform the model to a mul t i - input  computa- 
t ion model. Let us call this computa t ion  C, and assume 
tha t  the single inpu t  is a set D of da ta  items. If we can 
divide D into two disjoint da ta  set D1 and D2, we will have 
a mul t ip le- input  computa t ion  model. There  are many  ways 
to divide D into two da ta  sets, and each way could lead to 
a different SMC problem. We are focusing on two types of 
transformations:  homogeneous t ransformat ion and hetero- 
geneous transformation.  

In  the homogeneous t ransformation,  D 's  data  items are di- 
vided to two sets, bu t  each single da ta  i tem is not  cut into 
two parts. For example, if D is a database of s tudent  records, 
the homogeneous t ransformat ion will pu t  a subset  of the 
records into one da ta  set, and the rest of the the records 
into another  da ta  set; however, each s tudent ' s  record is not  
cut into two parts.  In  other words, the two generated da ta  
sets main ta in  the same set of features. Figure l (b)  demon- 
strates such a t ransformation.  

In  the heterogeneous t ransformation,  each single da ta  i tem 
is cut into two parts,  with each par t  going to a separate da ta  
set. Taking the same example used above, if each s tudent  
record contains a s tudent ' s  academic record and medical 
record, the heterogeneous t ransformation could pu t  all stu- 
dents '  academic records into one da ta  set, and all s tudents '  
medical records into another  da ta  set. In  other words, the 
two generated da ta  sets ma in ta in  different set of features. 
Figure 1(c) demonstrates  such a transformation.  

After the above t ransformation,  the new problem now be- 
comes "how to conduct  the computa t ion  C on the union of 
D1 and D2, where D1 belongs to one par ty  and D2 belongs 
to another party, and neither of these two parties wants to 
disclose his or her private da ta  set to other. 

Privacy Requirements 
To decide whether a solution ~h ieves  the  privacy require- 
ments,  we need to know the formal definition of privacy. 
Goldreich has provided a formal definition of privacy in [16], 
and has provided a solid theoretical  background that  solu- 
tions to a specific secure mul t i -par ty  computa t ion  problem 
should base on. Please refer to [16] for the details. 
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4. SPECIFIC SECURE Mt~TI-PARTY COM- 
PUTATION PROBLEM:~ 

In  this  sect ion,  we will inves t iga te  a n u m b e r  of specific com- 
p u t a t i o n s  i nc lud ing  d a t a b a s e  query,  i 'a t rusion de tec t ion ,  d a t a  
min ing ,  geometr ic  c o m p u t a t i o n ,  s t a t i s t i ca l  ans3ysis, scien- 
tific c o m p u t a t i o n ,  and  some misce].lancou.s compu t a t i ons .  
For  each c o m p u t a t i o n ,  we will app ly  the  t remsformat ion  
f ramework  to  t r an s fo rm  it to  a Secure  ]V[u]ti-party Com- 
p u t a t i o n  p rob lem.  As will be  show~., some of the  resu l t ing  
p rob lems  are new, and  some have  ah 'eady b e e n  u n d e r  s t u d y  
in  the  pas t .  For  the  k n o w n  probleme,  we give a br ief  survey  
on  the  re la ted  work; for t he  new  problems,  we descr ibe the i r  
potent.is3 res3-life appl ica t ions .  We s3so t r a n s f o r m  some wen 
k n o w n  c o m p u t a t i o n  p rob l ems  to  co r re spond ing  SIV[C prob-  
lems whose app l lca t ions  are ye t  u n k n o w n  at  this  t ime,  b u t  
because  of the  origins3 p r o b l e m  is s~ useful  in  the  reed life 
t h a t  we bel ieve t he  co r r e spond ing  S[~C p r o b l e m  will even- 
tua3ly be  appl icable .  

We  emphas ize  t h a t  the  list p resen ted  in  th is  sect ion is no t  
i n t e n d e d  to be  exhaus t ive ;  we con jec tu re  t h a t  m a n y  more  
new research p rob l ems  could  smise following the  mode ls  de- 
scr ibed in  this  paper .  Th i s  sec t ion  serves as a guide]Lne 
wi th  examples  for those researchers  who work in  their  spe- 
cific d o m a i n  to  define new SMC prob lems  for the i r  specific 
c o m p u t a t i o n s .  

4.1 Privacy-Preserving Cooperative Scientific 
Computations 

PROBLEM 1. (Linear  ~qystems of  .Equations) Alice has m 
private  linear equations represented by M l Z  ~- bl ,  and Bob 
has n -  ~rL private  linear equations represented by M 2 z  = b2, 
where z is an n -d imens iona l  vector'. Alice and Bob want  
to f ind  a vector z that  satisfies both o f  Alice's  and Bob's  
equagions. 

PROBLEM 2. (Linear  Least  Squares Problem) Alice has 
m l  private linear equations represented by 1~Ilz ---- bl ,  and 
Bob has m2 private Knear equations represented by ]t/I2z 
b2, ~here z ~ an n - d i m e ns i ona l  vector and m~ + m2 ~ n.  
Alice and Bob wan t  to f ind  a vector z that  satisfies both 
of  Alice's  and Bob's  equations. S ince there are more  con- 
ditions (equations) to be satisfied than degrees of  freedom 
(variables), ~t is unlikely that  they can all be satisfied. There- 

fore, they want  to a t t empt  to satisfy the equations as best as 
they can- tha t  is, make  the size of  the residual vector r udth 
components  

r j  ----- bj -- £ a j ~ t  

as smal l  as pass~ble (aj~ are the entries in  the new ma t r i z  
f o rmed  f rom M1 and M2) .  The least-squares criterion is the 
use of  the Euclidean (or least-squares) n o r m  f o r  the size of  
r;  that  is, m i n i m i z e  

PROBLEM 3. (Linear  Programming)  Alice has m l  private 
linear requirements  represented by ]VIlz ~ bl,  and Bob has 
another  m2 pr ivate  linear requirements represented by M2"~ ~ 
b2, ~vhere ~ is an 7z-dimenalonal vector. They  wang £o min i -  
mize  (maz imi ze )  the value o f  ax * zx  ~- . - • ~ a ,  , z=, f o r  the 
k n o ~  a l ,  . . . ,  a , ,  and the solut ion ~ -~ ( z l , . . .  , qe~) should 
sat~sfgt all o f  Alice's  and BobJs requirements.  

T h e  lineax sys tems  of e qua t i ons  p rob lem,  the  l inear  least  
squares  p r ob l e m a n d  t he  l inear  p r o g r a m m i n g  p r o b l e m  have 
proved va luab le  for m o d e l i n g  m a n y  a n d  diverse types  of 
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problems in planning,  routing, scheduling, assignment, and 
design. Industr ies tha t  make use of these problems and their 
extensions include trew~portation, energy, telecommunica- 
tions, and manufac tur ing  of many kinds. In  many  cases, 
those linear equations or linear requirements are proprietary 
data  and are too valuable to disclose to anybody else, espe- 
cially to a potent ial  competitor. 

For instance, in one of the examples mentioned in the be- 
ginning of this paper, two financial organizations plan to 
cooperatively work on a project for mutua l  benefit. Each 
of the organizations would like its own requirements being 
satisfied (usually, these requirements are modeled as linear 
equatiorm or linear inequalities). However, most of their re- 
quirements are very likely their proprietary da ta  which in- 
cludes the customer's projects of the likely future evolution 
of certain commodity prices, interest and inflation rates, eco- 
nomic statistics, portfolio holding, etc. Therefore, nobody 
likes to disclose its requirements to the other party, or even 
to a "trusted" third party. How could they cooperate on this 
project that  has to satisfy everybody's  private requirements 
without compromising the privacy requirements? The cur- 
rent  practice is to operate "in the clear", tha t  is, by revealing 
requirements to the other par ty  or to the agent performing 
the computation.  The consequence is obvious if the other 
par ty  or the agent is not  trusted. The  solutions to the above 
problems actually provide a secure way to solve this prob- 
lem. 

We have recently proposed protocols to solve the above three 
problems in [12]. 

4.2 Privacy-Preserving Database Query 
PROBLEM 4. (Database Query) Alice has a str ing q, and 

Bob has a database of strings T ---- { t z , . . .  , LN}; Alice wants 
to know whether there exists a str ing t~ in Boh's database 
tha t  "matches" q. The  "match" could be an exact match or 
an approximate (closest) match. The privacy requirement is 
tha t  Bob cannot  know Alice's secret query q or the response 
to tha t  query, and Alice cannot  know Bob's database con- 
tents except for what  could be derived from the query result. 

The exact matching problem has been extensively consid- 
ered in the l i terature [26, 7, 24, 23, 27, 30, 28, 19], even 
though it can theoretically be solved using the general tech- 
niques of secure mul t i -par ty  computat ion [16]. The motiva- 
t ion for giving these specialized solutions to it is tha t  they 
are more eff/cient than those that  fol]ow from the above- 
mentioned general techniques. This is also our motivat ion 
for s tudying approximate pa t te rn  matching even though it 
too is a special case of the general secure mult i -par ty  com- 
puta t ion  problem. Unlike exact pa t te rn  matching that  pro- 
duces '~es" and '~o" answers, approximate pa t te rn  match- 
ing measures the difference between the two targets, and 
produces a score to indicate how different the two targets 
are. The metrics used to measure the difference usually 
axe heuristic and are application-dependent.  For example, 
in image template matching [20, 25], ~ffiz(a~ - b~) 2 and 
~ f f i l  ]as -- b~] are often used to measure the difference be- 
tween two sequences a and b. In  DNA sequence match- 
ing [22], edit distance [3, 9] make~ more sense than  the ~bove 
measurements;  edit distance measures the cost of transform- 

ing one given sequence to another  given sequence, and its 
special case, longest common subsequence is used to measure 
how similar two sequences are. 

Solving approximate pa t t e rn  matching problems under such 
privacy constraints is quite a nontr ivial  task. Consider the 
~ ' = 1  [a~ - b~[ metric as an example. The known PIR  (pri- 
vate information retrieved) techniques [26, 7, 24, 23, 27, 30, 
28, 19] can be used by Alice to efficiently access each indi- 
vidual b~ without revealing to Bob anything about  which b~ 
Alice accessed, bu t  doing this for each individual b~ and then 
calculating ~"~ffiz [a~-  b~[ violates the requirement tha t  Alice 
should know the total  score ~=z Is, -- b~[ uJithout knowing 
anything o ~ e r  than that score, i.e., without learning arty- 
th ing about  the individual  bl values. Using a genered secure 
mul t i -par ty  computa t ion  protocol typically does not  lead to 
an efficient solution. The  goals of this research, is to find ef- 
ficient ways to do such approximate pa t te rn  matchings with- 
out disclosing private information. 

We have published some research results regarding to this 
problem in [11]. 

4.3 Privacy-Preserving Intrusion Detection 
PROBLEM 5. (Profile Matching) Alice has a profile database 

containing many  known hacker's behaviors; Bob has col- 
lected a hacker's behavior f rom a recent break-in, and he 
wants to identify the hacker by matching this hacker's behav- 
ior uJith Alice's profile database. However, Bob doesn't want 
to disclose the hacker's ,~ctual beha~or to Alice becaase that 
might disclose the ~ulnerability in his system bemuse that be- 
havior could be a successful series of  actions that leads to the 
compromise of his system. On the other hand, Alice doesn't 
want  to disclose the profile database because of  the databe.ge 
contains confidential information.  How could Alice and Bob 
cooperatively accomplish this task ~uithout sacrificing their 
privacy f 

PROBLEM 6. Two major  f inancial  organizations want~ to 
cooperate in preventing fraudulent intrusion into their com- 
puting ayatem. To this end, they need to share data pa~erTts 
relevant to fraudulent in~asion,  but they do not want to 
share the data patterns since they are sensitive information. 
Therefore, combining the databases is not feasible. How can 
these two financial organizations conduct data mining op- 
eration or machine learning operation on the jo in t  of  their 
data while maintaining the privacy of  the data. 

In  nowadays, many  major  banks share information fairly 
freely in cooperative intrusion investigations, bu t  they have 
to he careful because of lawsuits. The  solutions to the above 
problems could prevent the hanks from getting into the legal 
troubles. 

4.4 Privacy-Preserving Data Mining 
PROBLEM 7. (Classification) Alice has a private sLruc- 

tured database D1, and Bob has another private j tructured 
database Da; both of  the structured database are comprised 
of attribute-value p~irs. Each row of the database is a Lrans- 
action and each column is an attribute taking on different 
values. One o f  the atLributes in the database is designated 

17 



as the class atb-ibute. How could Ah:ce and Bob build a deci- 
s ion tree based on the Dz U D2 wi thout  disclosing the content  
of  the database to the other par~y.~ 

Given  a decis ion tree,  one  can  predk: t  t he  class of new  t r ans -  
ac t ions  for which  the  class is u n k n o w n .  T h e r e  are several  
p roposed  a lgor i thms  for gene ra t i ng  decis ion trees; however,  
ff t he  d a t a b a s e  D I  or D2 shou ld  be  kept  p r iva te  f rom any-  
b o d y  o the r  t h a n  the  owner ,  those  a lgor i thms  does n o t  work 
because  a defaul t  a s s u m p t i o n  for those  a lgor i thms  is t h a t  
the  whole  d a t a b a s e  is avai lable .  A new a lgo r i t hm is needed  
to  solve th is  new  prob lem.  

ID3 a lgo r i t hm is one  of t he  propose~[ a lgor i thms  for genera t -  
ing decision trees.  Based  on  t he  ID3 a lgor i thm,  Lindel l  a n d  
P i n k a s  p roposed  a so lu t ion  to t he  above  p r ivacy-p rese rv ing  
classif icat ion p r o b l e m  in  [29] u s ing  secure  m u l t i - p a r t y  com- 
p u t a t i o n  protocol .  

PROBLEM 8. (Data  C-~ustering) Alice has a private database 
Dr ,  and Bob has a private  database D2. They  ~ a n t  to ~ointly 
per form data clustering on the un ion  o f  1:)1 and D2. 

Basically,  d a t a  c lus te r ing  is to  group a set  of d a t a  (w i thou t  
a p redef ined  class a t t r i b u t e ) ,  based  on  t he  concep tua l  clus- 
t e r ing  pr inciple :  m a x i m i z i n g  the i~ttraclaas s imi lar i ty  and 
• n in imiz ing  the interclass similaritg.  

PROBLEM 9. (Min ing  Assoc ia t ion  Rules)  Alice has a pri-  
vate database D1, and Bob has a pr ivate  database D2. They  
~ a n t  to jo in t l y  ident i fy  associat ion rules in  the un~on of  1)1 
and D2. 

For example ,  c o u n t r y  A ' s  in te l l igence agents  have  observed 
the  act ivi t ies  X ---- (zz,  . . . , z~)  for a per iod  of t ime,  a nd  
C o u n t r y  B ' s  in te l l igence agents  have  observed t he  activitie~ 
Y ---- (yz, ..-, ~=~) for the  s a m e  pe r iod  of t ime.  T h e y  w a n t  to  
co l labora t ive ly  f ind ou t  w h e t h e r  t h e  act iv i t ies  in  Y has any  
cor re la t ion  w i t h  t h e  ac t iv i t ies  in  X. T h e  resul t s  of  col labo- 
r a t i o n  could  help  b o t h  coun t r i e s  to  u n d e r s t a n d  the  t r e n d  of 
the  behav iors  of t he  t a rge t ,  such as t he  behav iors  of some 
suspec ted  t e r ro r i sm  o rgan iza t ion ,  tlhe m i l i t a r y  m o v e m e n t  of 
a dangerous  count ry ,  etc. However,  ne i t he r  A or B is will- 
ing to  disclose its obse rva t ion  to  t h e  o the r  count r ies  because  
t h e y  d o n ' t  fully t r u s t  each other .  I t  is possible  t h a t  B migh t  
use A ' s  in te l l igence i n f o r m a t i o n  (or sell i t  to  t he  ta rge t )  to  
uncover  A ' s  agents ,  a n d  t h u s  cans ing  d ~ n a g e  to  A ' s  intel l i-  
gence agents .  

PROBLEM 10. (Data  Gene~zl~za]~.ion, ~umTnaT-ization and 
~ a r a c t e r i z a t i o n )  Alice h~s a pr ivate  datQbaae Dr ,  and Bob 
has a pr ivate  database D2. They  "want to generalize, sum-  
mar ize  or characterize the un ion  of  these two database. 

T h e  above  p r ivacy-p rese rv ing  d a t a  m i n i n g  p rob lems  are re- 
l a t ed  to  a n o t h e r  resesxch p r o b l e m - D i s t r i b u t e d  D a t a  M i n i n g  
(DDM)  prob lem.  D i s t r i b u t e d  d a t a  rn i= ing  [2] is a fast grow- 
ing a rea  t h a t  deals w i t h  the  p r o b l e m  of f ind ing  d a t a  p a t t e r n s  

in  an  e n v i r o n m e n t  w i th  d i s t r i b u t e d  d~ ta  a n d  c o m p u t a t i o n .  
A good D D M  a l go r i t hm ana lyzes  d a t a  in  a d i s t r i bu t ed  fash- 
ion  w i th  modes t  d a t a  c o m m u n i c a t i o n  overhead.  Typ ica l ly  
D D M  a lgor i thms  involve  local  d a t a  analys is  followed by  the  
gene ra t i on  of a global  d a t a  mode l  t h r o u g h  the  aggrega t ion  
of the  local resul ts ;  therefore,  i t  p reserve  the  pr ivacy  of the  
local  d a t a  to  some ex ten t ,  b u t ,  t h e  global  d a t a  mode l  gen- 
e ra ted  locally m i gh t  st i l l  c o n t a i n  sens i t ive  i n fo rma t ion  t h a t  
t h e y  do n o t  w a n t  to  disclose. 

We believe, resul t s  f rom t h e  d i s t r i b u t e d  d a t a  m i n i n g  field 
will be  helpful  in  so lv ing  t he  p r ivacy -p re se rv ing  d a t a  m i n i n g  
p rob lem.  

4.5 Privacy-Preserving Geometric Computa- 
tion 

PROBLEM 11. (Intersection~ Alice has a private  shape a, 
and Bob has another  pr ivate  shape b; they both wan t  to know 
whether  a and b intersect.~ Alice does not  wan t  Bob or any- 
body else [cr~ow any info~rrLation about the shape a, nor  does 
Bob want  to d~sclose infoz 'mation about his shape b. More- 
over, in  no case should anybody learn the relative posi t ion 
between a and b, and, i f  these two regions intersect,  nobody 
should learn ~here  they intersect  ~ i t h  each other. 

M u c h  of the  m o t i v a t i o n  for s t u d y i n g  t h e  p r ivacy-prese rv ing  
in te r sec t ion  p r o b l e m  s tems  f rom t he  s imple  fact t h a t  two 
pr iva te  ob jec t s  c a n n o t  occupy  t he  s ame  place a t  t he  s ame  
t ime.  For  example ,  in  t he  b e g i n n i n g  of the  paper ,  we have 
descr ibed  a n  e xa mpl e  in  which  two compan ies  p l a n  to ex- 
p a n d  the i r  m a r k e t  shares  in  ce r t a in  regions,  b u t ,  t hey  do 
nor. w a n t  to  c o m p e t e  in the  s a m e  region.  W h a t  t h e y  real /y 
w a n t  to  know is w h e t h e r  t he i r  se lected regions  over lap w i t h  
each other .  Because  t he  i n f o r m a t i o n  a b o u t  its own selected 
region is so va luab le  to  each company ,  ne i the r  of t h e m  wan t s  
to disclose i t  to  the  o the r  par ty .  

PROBLEM 12. (Poin t - Inc lus ion)  Alice has a private  point  
z ,  and Bob has a pr ivate  polygon P .  They  ~aant to f ind out 
whether  the po in t  ~ inside the polT/gon or not .  ~ Alice does not  
wan t  Bob or anybody else to know any  in format ion  abo~t the 
pointj and l i keu~e j  Bob does no t  wan t  anybody else to know 
any i n f o rm a t i on  about the polygon. Furthermore,  Alice and 
Bob c~n only learn whe ther  the po in t  is inside or outside of  
the polygon, nobody is allowed to learn ~he relative posi t ion 
between the point  and the polygon, such as whether  z is at 
the nor thwes t  aide of  P ,  or whether  z is close to one of  the 
border o f  the polygon, and so on. 

This  p r o b l e m  is ve ry  usefu l  in  t he  m a n y  scenarios,  such as 
the  following: c o u n t r y  A decides to  b o m b  a loca t ion  z in  ~n- 
o ther  count ry ,  b u t  A does n o t  w a n t  to  h u r t  i ts  r e l a t ionsh ip  
w i th  i ts  fr iends,  who m i g h t  have  some areas of in te res t s  in  
the  b o m b i n g  region.  T h o s e  coun t r i e s  m i gh t  have  secret  bus i -  
nesses, secret  m i l i t a r y  bases ,  or  secret  agencies in t h a t  area.  
Obviously ,  A does n o t  w a n t  to  disclose t he  exact  loca t ion  
of = to  all of i ts  fr iends,  except  t he  one  t h a t  will de6n i t e ly  
be  h u r t  by  th is  b o m b i n g ;  o n  t he  o the r  h a n d ,  its f r iends do 
no t  w a n t  to disclose the i r  secret  areas to  A ei ther ,  unless  
t h e y  are in  the  t a r g e t  area.  I f  t he  t a rge t  is no t  w i t h i n  t he  
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secret areas, no information should be disclosed, including 
the information such as whether the target is at the west 
of the area, or within certain longitude or latitude. Basi- 
cally it is "all-or-nothing": if one will be bombed,  it knows 
all; otherwise it knows nothing.  How could they solve this 
dilemma? 

PROBLEM 13. (Range ,qearehing) Alice has a private range 
(represented by either a hyper-rectangular shape or by spher- 
ical shape), and Bob has IV private points. Alice and Bob 
want to jo in t ly  f ind out the number of  points in A hes's range; 
however, neither of  them is willing to disclose their data to 
the other party. 

Range searching arises in a wide range of applications, in- 
eluding geographic information systems, spatial  database, 
and time-series database. In  many  cases, both  the query 
and the database contain confidential information; there- 
fore, to provide the range query sorvice, solutions to the 
privacy-preserving range seaxching problem are needed. 

PROBLEM 14. (Closest Pair)  Alice has M private points 
in the plane, Bob h ~  N private points in  the plane. Alice 
and Bob want  to joint ly  f ind two points among these M + N 
points, such that their ntutual distance is smallest. 

PROBLEM 15. (Convez  Hulls) Alice has M private pointa 
in  the plane, Bob has another N private points in the plane. 
Alice and Bob want  to jo in t ly  f ind the convez hulls f o r  these 
M q- N pointa; however, nei ther Alice nor Bob wants to 
disclose any more information to the other party than what 
could be derived f rom the result. 

The authors of this paper  have recently proposed solutions 
to the point-inclusion problem and  the intersection problem 
in [14]. 

4.6 Privacy-Pr-~erving Statistical Analysis 
PROBLEM 16. (Correlation and Regression Analysis)  Al- 

ice has a private data set Da ---- ( zx , . . .  ,z,~), Bob has an- 
other private data set O,3 ---- (Yl,-- .  ,l/,~), where z i  is the 
value of  variable z ,  and yi is the co~'responding value o f  vari- 
able y. Alice and Bob want  to f ind o~t the following results 
without compromising the privacy of their data set: 

1. correlation coe~cien t  between .~ and 7/: the strength 
of  a linear relationship between z and y,  namely the 
degree to which larger z values go with larger y valued 
and smaller  z values 9o ~ i th  smaller y values. 

regression line: an equation that provides values of  y 
for  given value o f  z .  The objectives of  regression anal- 
ysis is to make prediction.s. 

This problem has a lot of applications. For example, a bank 
wants to investigate if ages can affect people's financial ac- 
tivities. However, the bank  only has customers'  financial 

activities, it does not  know the ages of its customers. There- 
fore, the bank  turns  to some government bureau who has the 
knowledge of every person's  dates of bir th,  bu t  the govern- 
ment  bureau  is required by laws not  to disclose it. On the 
other hand,  the  customers '  finemcial activities axe the bank 's  
proprietary da ta  tha t  the  bank  does not  went to disclose to 
anybody. The  solutions to the privacy-preserving statistical 
analysis problem could be used to solve this problem. 

In another example, a school wants to investigate the re- 
lationship between people's intelligence quotient  (IQ) score 
and their annual  salary. The school has its s tudents '  IQ 
score, bu t  does not  have s tudents '  salary information; there- 
fore the school needs to cooperate with companies tha t  hire 
the students,  bu t  those companies axe not  wilting to dis- 
close the salary information. On the other hand,  the school 
cannot  give s tudents '  IQ score to their employers either. A 
priva£y-presorving statist ical  analysis method [13] is needed 
to solve this problem. 

Some other privacy-preserving statistical analysis problems 
and solutions have been proposed in the statistics commu- 
nity. For example, Random response techniques were pro- 
posed [37, 38, 21, 33] to compute the mean  value of a sample 
data  without  knowing the actual  sample data. 

4.7 Other Specific Secure Multi-Party Com- 
putation Problems 

There axe many  other interest ing secure mult i -par ty  compu- 
ta t ion  problems, bu t  here we will only describe some of them 
without discussing their applications. For some of them, 
their applications are obvious, bu t  for some others, their 
read life applications are yet unknown.  We will leave those 
to readers to justify whether they are useful, we also hope 
this can trigger readers to th ink  about  more useful problems 
in some other specific computa t ion  domains. 

1. 

2. 

3. 

4. 

~election problem (select median,  select the kth small- 
eat element): Alice has a private da ta  sot dl,  mad Bob 
has a private da ta  set d2; they want  to find the me- 
diem (or the kth  smallest element) among the da ta  in 
dx U d2. 

Sorting problem: Alice has a private data  set dl,  and 
Bob has a private da ta  set d2; they want to sort the 
elements in the union of these two da ta  sots, such that  
each element in these two da ta  sets is marked by a 
number  representing the  order of this element. 

Shortest  path problem: Alice and Bob each has a pri- 
vate graph represented by g l  and g2, respectively, and 
the links between these two graphs are known to both 
of them. Given any two points  (they could be in a same 
graph, or in different graphs), how could Alice and 
Bob joint ly compute the shortest  distance (or path) 
between these two points. One of the applications of 
this problem is the network trmCfic rout ing between two 
private network service providers if they do not  want  to 
disclose too much information about  their own private 
network. We already had a solution to this problem. 

Privacy-Preserving polynomial interpolation: Alicehas 
nx private pairs (zl, y0 ,  for i = 0 , . . .  , n l ,  Bob has a2 
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pr iva te  pa i rs  (=j ,  y~), for j = nx + I , . . .  , n .  Suppose  
z o , . . .  , z ,  are  d i s t i nc t  d a t a  po in t s ,  how can  Alice a nd  
Bob  j o in t l y  f ind  t he  p o l y n o m i a l  p (~)  of degree n t h a t  
i n t e rpo la t e s  t he  d a t a  set  {(=0, ~0 ) , - - -  , ( = , ,  Y,)} ,  i.e. 
p(~-~) = tt~ for all k = 0 , . . .  , n .  

~. O U T L I N E  OF S O M E  A P P R O A C H E S  
W h i l e  each SMC p r o b l e m  in  a specific d o m a i n  need  a spe- 
cific so lu t ion ,  t he re  are ce r t a in  genera l  approaches  t h a t  we 
have  adop t ed  to  solve t he  new  SM:C prob lems .  Th e se  ap- 
proaches  are based  on  m a n y  c ryp tog raph i c  tools  i n c l ud i ng  
zero-knowledge p roof  [35], ob l iv ious  t r ans fe r  [34], 1-out-of- 
n obl iv ious  t r ans fe r  [17, 8] obl iv io~s  e v a l u a t i o n  o~ po lyno-  
mia ls  [32], secret  s h a r i n g  [36], th reeho ld  c r y p t o g r a p h y  [15, 
10], Ya~'s  Mi l l iona i re  P r o t o c o l  [39, 6]. W e  will on ly  give 
an  overview of t he  approaches  t h a t  we used  in  so lv ing  some 
of  t he  p rob l ems  descr ibed  in  this  :~aper because  the  m a i n  
p u r p o s e  of th i s  p a p e r  is to  p r e sen t  t he  set  of new  prob lems ,  
r a t h e r  t h a n  the  specific t echn iques  in  so lv ing  t h e m .  

As we know,  to solve a coope ra t ive  c o m p u t a t i o n  p r o b l e m  
(in the  n o r m a l  case), one  par ty ,  Alice, can  send  her  i n p u t s  
t o  t he  o the r  pa r ty ,  Bob ,  who can  ,~hen solve the  c o m p u t a -  
t i o n  p r o b l e m  by  himself .  T h i s  na ive  so lu t i on  is n o t  good 
in  the  p r ivacy -p re se rv ing  con t ex t  because  Bob  can  immed i -  
a te ly  f ind  ou t  Alice 's  i npu t s .  However,  w h a t  we have  l ea rned  
f rom this  na ive  so lu t i on  is t h a t  if .Alice c an  somehow send  
her  i n p u t s  t o  Bob  in  such  a way  t h a t  makes  i t  imposs ib le  
for Bob  to  der ive  Alice 's  i n p u t  whi le  st i l l  a l lowing Bob  to  
solve the  p r o b l e m  b y  himself ,  t h e n  we do no t  need  to wor ry  
a b o u t  how Bob  solve the  p r o b l e m ,  because  now Bob  has 
all t h e  i n p u t s ,  he  shou ld  be  ab le  'to solve t he  p r o b l e m  by  
hlm~elf. Therefore ,  to  use  th is  approach ,  t h e  mos t  impor -  
t a n t  s tep  is to  s end  Alice 's  i n p u t s  to  Bob  while  p rese rv ing  
Al ice ' s  pr ivacy.  

For  example ,  we used  the  above  app roach  to  solve P r ob -  
l em 1, t he  l inear  p r i vacy -p re se rv ing  l inear  sy s t ems  of equa-  
t ions  p rob lem.  Actua l ly ,  we solved the  following more  gen- 
era l  p rob lem:  Alice ho.s a pr ivate  lwatri= M1 a~d a private  
vector bl ,  and Bob has a pr ivate  m a t r ~  M z  and a private 
vector b2, where M1 and M2 are ~z x n matrices,  and bl and 
b2 are n -d in%e~iongl  vectors. Wik~out  disclosing their  pri-  
vate inputJ to the other par~y, AKcz and Bob want  to solve 
the line~zr equation: (MI  + M z ) z  =: bl + b2. 

O u r  so lu t ion  is based  on  the  fact  t h a t  t h e  so lu t ion  to  the  l in- 
ear  equa t i ons  (MI  + M 2 ) z  = bl + bz is equ iva l en t  to  the  solu- 
t i o n  to  t he  l inear  e q u a t i o n s  P ( M I + M 2 ) Q Q - I =  = P ( b l + b 2 ) .  
I f  Bob  knows M '  = P ( M 1  + M2)~ '  and  b' = P ( b l  + b2), he 
can  solve t he  l inear  e q u a t i o n  prob~[em: M'~- = b', a n d  thtm 
ge t t i ng  t he  f inal  so lu t ion  =, where  z = Q~.  B u t  how could 
Bob  k n o w  M j and  b' w i t h o u t  b e i n g  able  to  der ive  the  va lue  
of M1 a n d  b l?  To  solve this  p r o b | e m ,  Alice genera tes  two 
r a n d o m  ~ x n ma t r i ce J  P a n d  Q w i t h  Q b e i n g  inver t ib le .  
W i t h  t he  he lp  of 1-out -of-N Obl iv ious  Trans fe r  p ro toco l  [17, 
8], Bob  is able  to  l ea rn  t he  valu,5 of  P ( M 1  + M2)Q a n d  
P ( b l  + b 2 ) .  However,  Bob  will  n o t  ].earn the  va lue  of P M 1 Q ,  
P M 2 Q ,  P b l ,  or Pb2, m u c h  less P ,  Q,  Mx, or bl .  Af ter  Bob  
gets M j = P M x Q + P M 2 Q  and b' == P b x + P b 2 ,  he ca n  solve 
the  l inear  e q u a t i o n s  M ' $  = b', a n d  t h e n  send  the  so lu t ion  

to  Alice, who can  c o m p u t e  the  f inal  so lu t ion  z = Q~.  Fi -  
na l l y  Alice sends  t he  so lu t ion  to  Bob.  T h e  comple t e  so lu t ion  

of th is  p r o b l e m  is descr ibed  in  [12] 

As  we m e n t i o n e d  t h a t  the  genera l  secure  m u l t i - p a r t y  com- 
p u t a t i o n  so lu t ion  ( the  c i rcu i t  eva lua t ion )  is n o t  p rac t ica l  
because  the  protocols  i t  genera tes  d e p e n d  on  the  size of the  
i n p u t  doma i n ,  a n d  on  the  c o m p l e x i t y  of express ing  t he  com- 
p u t a t i o n  as a c i rcui t  (for example ,  a m u l t i p l i c a t i o n  c i rcui t  
is q u a d r a t i c  in  t he  size of i ts  i n p u t s ) .  However,  if t he  size 
of t he  i n p u t  d o m a i n  a n d  t he  complex i t y  of the  c i rcui t  are 
smal l ,  t he  genera l  s o l u t i o n  could  b e  prac t ica l .  Ba~ed on th is  
obse rva t ion ,  one  a p p r o a c h  to  solve a specific secure mu l t i -  
p a r t y  c o m p u t a t i o n  p r o b l e m  is to  r educe  the  p r o b l e m  to  sub-  
p r o b l e m s  t h a t  have  smal l  i n p u t  d o m a i n s  a n d  smal l  c i rcui t  
size. 

For example, to solve the Intersection problem (Problem 11), 
we reduced the problem to three sub-problems: 1) evalua- 
tion of a linear function problem 2) comparison problem and 
3) evaluation of a boolean expression problem. The first two 
problems can be solved using known techniques proposed in 
the literature, in particular, the oblivions polynomial eval- 
uation protocol [32] and Yao's millionaire protocol [39, 6]. 
The third problem could be solved using the general secure 
multi-party computation solution, namely the circuit evalu- 
ation protocol. Because in this sub-problem, the input do- 
main is just ~0, 1}-a very small domain, end the complexity 
of building a circuit to evaluate a boolean expression is just 
linear to the number of items in this boolean expression. 
The complete solution of this problem is described in [14] 

Somet imes ,  i t  he lps  to  f ind a n  el~icient so lu t ion  b y  in t ro-  
d u c i n g  in to  t h e  p ro toco l  a t h i r d  p a r t y - a n  u n t r u s t e d  t h i rd  
par ty .  T h i s  t h i r d  p a r t y  s h o u l d  n o t  l ea rn  a n y t h i n g  a b o u t  
e i ther  p a r t i c i p a n t ' s  i n p u t s .  T h i s  a p p r o a c h  has  b e e n  used 
in  the  l i t e r a tu r e  to  solve some  secure  m u l t i - p a r t y  compu-  
t a t i o n  prob lems .  For  example ,  to  solve Yao 's  Mil l ionai re  
p r o b l e m  [39], C a c h i n  uses  a n  t m t r u s t e d  t h i r d  par ty ,  a n d  has 
s ign i f ican t ly  i m p r o v e d  t he  p e r f o r m a n c e  of t he  so lu t i on  to  t he  
p rob lem.  

6. C O N C L U S I O N  A N D  F U T U R E  W O R K  
I n  th is  pape r ,  we have  s t u d i e d  several  specific c o m p u t a t i o n s ,  
such as d a t a b a s e  query ,  i n t r u s i o n  de tec t ion ,  d a t a  m in ing ,  
geometric computation, statistical analysis, and scientific 
computatior m. We studies these computations from another 
perspective-secure multi-party computation perspective, i.e. 
how to conduct these computations among multiple paxties 
while maintaining the privacy of each party's input. As re- 
suits, we have defined a number of secure multi-party com- 
putation problems, among which some axe well studied for 
decades, some are studied in recent years, and some axe just 
new problems. 

We have only studied a limited number of computations do- 
mains in this paper, because it is not our intention to provide 
a complete lists of new SMC problems. We want to provide 
a guideline for the researchers in 'other computation sxeas 
to think about their computation problem f~om this secu- 
rity perspective, thus coming up with new SMC problems, 
if necessary. 

A m o n g  thc6e p r o b l e m s  list  in  t h e  pape r ,  some  are n o t  solved 
yet ,  some  are u n d e r  act ive  research,  a n d  some have  t r iggered 
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interests from people who works on a variety of computat ion 
domains. We hope tha t  after working on several problems 
we can gain more insights on how to solve this type of prob- 
lems, what the usefitl bui lding blocks for solving this type of 
the problem are, how the solutions to the existing problem 
(without the privacy requirements) could help to solve those 
specific secuxe mult i -par ty  computat ion problems. 
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