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ABSTRACT

The growth of the Internet has triggered tremendous op-
portunities for cooperative computation, where people are
jointly conducting computation tasks based on the private
inputs they each supplies. These computations could oc-
cur between mutually untrusted parties, or even between
competitors. For example, customers might send to a re-
mote database queries that contain private information; two
competing financial organizations might jointly invest in a
project that must satisfy both organizations’ private and
valuable constraints, and so on. Today, te conduct such
computations, one entity must usually know the inputs from
all the participants; however if nobody can be trusted enough
to know all the inputs, privacy will become a primary con-
cern.

This problem is referred to as Secure Multi-party Compu-
tation Problem (SMC) in the literature. Research in the
SMC area has been focusing on only a limited set of spe-
cific SMC problems, while privacy concerned cooperative
computations call for SMC studies in a variety of compu-
tation domains. Before we can study the problems, we
need to identify and define the specific SMC problems for
those computation domains. We have developed a frame-
work to facilitate this problem-discovery task. Based on
our framework, we have identified and defined a number
of new SMC problems for a spectrum of computation do-
mains. Those problems include privacy-preserving database
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query, privacy-preserving scientific computations, privacy-
preserving intrusion detection, privacy-preserving statistical
analysis, privacy-preserving geometric computations, and
privacy-preserving data mining.

The goal of this paper is not only to present our results,
but also to serve as a guideline so other people can identify
usefu] SMC problems in their own computation domains.
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1. INTRODUCTION

The proliferation of the Internet has triggered tremendous
opportunities for cooperative computation, where people are
cooperating with each other to conduct computation tasks
based on the inputs they each supplies. These computa-
tions could occur between trusted partners, between par-
tially trusted partners, or even between competitors. For
example, customers might send to a remote database the
queries that contain private information, two competing fi-
nancial organizations might jointly invest in a project that
must satisfy both organizations’ private and valuable con-
straints, and so on. Usually, to conduct these computations,
one must know inputs from all the participants; however if
nobody can be trusted enough to know all the inputs, pri-
vacy will become a primary concern. For example, consider
the following applications:

1. Alice thinks that she may have some genetic disease,
and she wants to investigate it herself. She also knows
that Bob has a database containing DNA patterns
about various diseases. After Alice gets a sample of
her DNA sequence, she sends it to Bob, who will then
tell Alice the diagnosis. However, if Alice is concerned
about her privacy, the above process is not acceptable
because it does not prevent Bob from knowing Alice’s
private information—both the DNA and the query re-
sult. :

2. After a costly market research, company A decided
that expanding its market share in some region will be



very beneficial. However A is aware that another com-
peting company B is also planing to expand its market
share in some region. Strategically, A and B do not
want to compete against each other in the same re-
gion, so they want to know whether their regions aver-
lap without giving away location information (not only
would disclosure of this information cost both compa-
nies a Jot of money, it can also cause significant damage
to the company if it is disclosed to other parties, e.g.
another bigger competitor could then immediately oc-
cupy the market there before A or B even starts; or
some real estate company could actually raise their
price during the negotiation if they know A or B is
very interested in that location). Therefore, they need
a way to solve the problem while maintaining the pri-
vacy of their locations.

3. Two financial organizations plan to cooperatively work
on a project for their mutual benefit. Each organi-
zation would like its own requirements being satis-
fied (usually, these requirements are modeled as lin-
ear equations or linear inequalities). However, their
requirernents are proprietary data that includes the
customer’s projects of the likely future evolution of
certain commodity prices, interest and inflation rates,
econornic statistics, portfolio holdings. Therefore, no-
body likes to disclose its recuirements to the other
party, or even to a “trusted” third party. How could
they cooperate on this project while preserving the
privacy of the individual information?

The common property of the above three examples is the fol-
lowing: two or more parties want to conduct a computation
based on their private inputs, but neither party is willing to
disclose its own input to anybody else. The problem is how
to conduct such a computation whi.e preserving the privacy
of the inputs. This problem is referred to as Secure Multi-
party Computation problem (SMC) in the literature [39].
Generally speaking, a secure multi-party computation prob-
lem deals with computing any probabilistic function on any
input, in a distributed network where each participant holds
one of the inputs, ensuring independence of the inputs, cor-
rectness of the comnputation, and that no more information
is revealed to a participant in the computation than can be
inferred from that participant’s input and output [18].

Currently, to solve the above problems, a commonly strat-
egy is to assume the trustworthiness of the service providers,
or to assume the existence of a trusted third party, which
is risky in nowadays’ dynamic and malicious environment.
Therefore protocols that can support joint computations
while protecting the participants’ privacy are of growing
importance. In theory, the general secure multi-party com-
putation problem is solvable [39, 31, 16] but, as Goldreich
points out in [16], using the soluticns derived by these gen-
eral results for special cases of multi-party computation can
be impractical; special solutions shculd be developed for spe-
cial cases for efficiency reasons.

Goldwasser predicts that “the field of multi-party computa-
tions is today where public-key cryptography was ten years
ago, namely an extremely powerful tool and rich theory
whose real-life usage is at this time only beginning but will
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become in the future an integral part of our computing re-
ality” [18].

Goldreich’s observation and Goldwasser’s prediction moti-
vated us to search for specific SMC problems that have
“real-life usage”, as well as to search for their solutions. To
this end, we have investigated, under the secure multi-party
computation context, many specific computation domains,
such as data mining, intrusion detection, database query,
scientific computation, geometric computation, and statisti-
cal analysis. The results bring many interesting problems.
The goal of this paper is to document the results of this
research and present remaining open problems.

To search for new SMC problemns systematically, we have
proposed a transformation framework that allows us to sys-
tematically transform normal computations (not necessarily
security related) to secure multi-party computations. Fur-
ther research on these resultant problems reveals a number
of interesting new problems. We will describe these new
problems in this paper as well as discussing their potential
applications and the related work, if any. It is important to
point out that the list of problems presented in this paper
is not intended to be an exhaustive list; we believe there
are many other SMC problems in every specific computa-
tion domain. Our paper provides a framework and serves as
a guidelines for researchers who work in other domains to
define new SMC problems for their specific computations.

The frarnework in this paper has already triggered a number
of interesting investigations. Some problems are currently
under investigation, such as privacy-preserving cooperative
statistical analysis [13], privacy-preserving cooperative sci-
entific computations [12], and privacy-preserving geometric
computation [14], privacy-preserving database query [11],
and privacy-preserving intrusion detection.

2. RELATED WORK

The history of the multi-party computation problem is ex-
tensive since it was introduced by Yao [39] and extended by
Goldreich, Micali, and Wigderson [31], and by many others.
These works all use a similar methodology methodology: the
computation problem is first represented as a combinatorial
circuit, and then the parties run a short protocoal for every
gate in the circuit. While this approach is appealing in its
generality and simplicity, the protocols it generated depend
on the size of the circuit. This size depends on the size of
the input domain, and on the complexity of expressing such
a computation.

In the past, secure multi-party computation research has
mostly been focusing on theoretical studies, and few ap-
plied problems have been studied. In the literature, there
are a few examples of secure multi-party computation prob-
lems, such as the Private Information Retrieval problem
(PIR), privacy-preserving statistical database, and privacy-
preserving data mining.

The PIR problem consists of a client and server; the client
needs to get the ith bit of a binary sequence from the server
without letting the server know i; the server does not want
the client to know the binary sequence either. A solution for
this problem is not difficult; however an efficient solution, in



particular a solution with small communication cost, is not
easy. Studies [26, 7, 24, 23, 27, 30, 28, 19] have shown that
one can design a protocol to solve the PIR problem with
much better communication complexity than by using the
general theoretical solutions.

The privacy-preserving data mining problem is another spe-
cific secure multi-party computation problem that has been
discussed in the literature. Recently, two different privacy-
preserving data mining problems were proposed by Lindell
and Agrawal, respectively. In Lindell’s paper [29], the prob-
lem is defined as this: Two parties, each having a private
database, want to jointly conduct a data mining operation
on the union of their two databases. How could these two
parties accomplish this without disclesing their database to
the other party, or any third party. In Agrawal’s paper [1],
the privacy-preserving data mining problem is defined as
this: Alice is allowed to conduct data mining operation on
a private database owned by Bob, how could Bob prevent
Alice from accessing precise information in individual data
records, while Alice is still able to conduct the data mining
operations? The solution to these two similar problems are
quite different: Lindell and Pinkas use secure multi-party
computation protocols to solve their problem, while Agrawal
uses the data perturbation method.

Apart from the above problems, secure multi-party compu-
tation problems exist in many other computation domains
as well, and most of them have not been studied before.
These new problems emerge if we combine the privacy con-
cerns with the cooperative computation in a specific com-
putation domain. The purpose of this paper is to document
how we identify those problems, and the definition of them.
‘We hope to motivate more people to look at these research
problems. The authors of this paper have already studied
some of these problems [11, 12, 13, 14].

Note that in some situations, only part of the data set needs
to be kept confidential. For example, when two retail stores
want to conduct a joint computation on their joint data,
they are only concerned about their customers’ names, not
about each single transaction. In these cases, the problems
could be solved using pseudonyms techniques [5, 4]

3. FRAMEWORK

We introduce a transformation framework that systemati-
cally transforms normal computations to secure multi-party
computations. We start from describing two different mod-
els of computation (without the privacy requirements), and
then we show how to transform them to models enhanced
with privacy requirements, thus generating new SMC prob-
lems. The model after the transformation is the Secure
Multi-party Computation (SMC) model.

According to the number of distinguished inputs, we clas-
sify computations into two different models: the multi-input
computation model and the single-input computation model.
The multi-input computation model usually has two distin-
guishable inputs. For instance, client/server computation
is a multi-input computation model. The single-input com-
putation model usually has one input or one set of inputs.
For example, in data mining and statistical analysis, all the
inputs usually come from one data set although the inputs
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consist of multiple data items.

Next we want to transform both models to the Secure Multi-
party Computation model, in which, the input from each
participating party is considered as private, and nobody is
willing to disclose its own inputs to the other parties. In
certain specific cases, the computation results could also be
private, namely some party should not learn the results.

For the multi-input computation model, its transformation
to the corresponding SMC model is straightforward because
the model naturally has at least two inputs. Therefore, if we
treat each input as coming from a different party, the new
problem now becomes “how to conduct the same computa-
tion while maintaining the privacy of each party’s input”.
Figure 1(a) demonstrates such a transformation.

For the single-input computation model, since it only has
one input, we cannot use the same transformation as we
used for the multi-input computation model; we have to
somehow transforrn the model to a multi-input computa-
tion model. Let us call this computation C, and assume
that the single input is a set D of data items. If we can
divide D into two disjoint data set D; and D;, we will have
a multiple-input computation model. There are many ways
to divide D into two data sets, and each way could lead to
a different SMC problem. We are focusing on two types of
transformations: homogeneous transformation and hetero-
geneous transformation.

In the homogeneous transformation, D’s data items are di-
vided to two sets, but each single data item is not cut into
two parts. For example, if D is a database of student records,
the homogeneous transformation will put a subset of the
records into one data set, and the rest of the the records
into another data set; however, each student’s record is not
cut into two parts. In other words, the two generated data
sets maintain the same set of features. Figure 1(b) demon-
strates such a transformation.

In the heterogeneous transformation, each single data item
is cut into two parts, with each part going to a separate data
set. Taking the same example used above, if each student
record contains a student’s academic record and medical
record, the heterogeneous transformation could put all stu-
dents’ academic records into one data set, and all students’
medical records into another data set. In other words, the
two generated data sets maintain different set of features.
Figure 1(c) demonstrates such a transformation.

After the above transformation, the new problem now be-
comes “how to conduct the computation C on the union of
D, and D3, where D; belongs to one party and D2 belongs
to another party, and neither of these two parties wants to
disclose his or her private data set to other.

Privacy Requirements

To decide whether a solution achieves the privacy require-
ments, we need to know the formal definition of privacy.
Goldreich has provided a formal definition of privacy in [16],
and has provided a solid theoretical background that solu-
tions to a specific secure multi-party computation problem
should base on. Please refer to [16] for the details.
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Figure 1: Transformation Framework

4. SPECIFICSECURE MULTI-PARTY COM-
PUTATION PROBLEMS

In this section, we will investigate a number of specific corn-
putations including database query, intrusion detection, data
mining, geometric computation, statistical analysis, scien-
tific computation, and some misceilaneous computations.
For each computation, we will apply the transformation
framework to transform it to a Secure Multi-party Com-
putation problem. As will be shown, some of the resulting
problems are new, and some have already been under study
in the past. For the known problems, we give a brief survey
on the related work; for the new problems, we describe their
potential real-life applications. We also transform some well
known computation problems to corresponding SMC prob-
lems whose applications are yet unknown at this time, but
because of the original problem is so5 useful in the real life
that we believe the corresponding SMC problem will even-
tually be applicable.

‘We emphasize that the list presented in this section is not
intended to be exhaustive; we conjecture that many more
new research problems could arise following the models de-
scribed in this paper. This section serves as a guideline
with examples for those researchers who work in their spe-
cific domain to define new SMC problems for their specific
computations.

4.1 Privacy-Preserving Cooperative Scientific

Computations
PRoBLEM 1. (Linear Systems of Equations) Alice has m
private linear equations represented by Mixz = b1, and Bob
has n —m private linear equations represented by Max = by,
where = is an n-dimensional vector. Alice and Bob want
to find a vector z that satisfies both of Alice’s and Bob’s
equations.
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ProBLEM 2. (Linear Least Squares Problem) Alice has
™, private linear equations represented by Miz = b1, and
Bob has ma private linear equations represented by Moz =
ba, where T is an n-dimensional vector and mi1 + ma > n.
Alice and Bob want to find a vector £ that satisfies both
of Alice’s and Bob’s equations. Since there are more con-
ditions (equations) to be satisfied than degrees of freedom
(variables), it is unlikely that they can all be satisfied. There-
fore, they want to attempt to satisfy the equations as best as
they can—that is, make the size of the residual vector r with
components

e
ri="b; — E ajiTi
i=1

as small as possible (aj: are the entries in the new matriz
formed from M1 and Ms3). The least-squares criterion is the
use of the Euclidean (or least-squares) norm for the size of
r; that is, minimize

mi+mg

Y =l

i=1

ProBLEM 3. (Lineer Programming) Alice has m1 private
linear requiremnents represented by Mz < by, and Bob has
another ma private linear requiremnents represented by Maxz <
b2, where = is an n-dimensional vector. They want to mini-
mize (mazimize) the value of a1 * 1+ - - - + an * T,., for the
known ai, ..., @n, and the solution £ = (x1,... ,Tn) should
satisfy all of Alice’s and Bob’s requiremnents.

The linear systems of equations problem, the linear least
squares problem and the linear programming problem have
proved valuable for modeling many and diverse types of



problems in planning, routing, scheduling, assignment, and
design. Industries that make use of these problems and their
extensions include transportation, energy, telecommunica-
tions, and manufacturing of many kinds. In many cases,
those linear equations or linear requirements are proprietary
data and are too valuable to disclose to anybody else, espe-
cially to a potential competitor.

For instance, in one of the examples mentioned in the be-
ginning of this paper, two financial organizations plan to
cooperatively work on a project for mutual benefit. Each
of the organizations would like its own requirements being
satisfied (usually, these requirements are modeled as linear
equations or linear inequalities). However, most of their re-
quirements are very likely their proprietary data which in-
cludes the customer’s projects of the likely future evolution
of certain commodity prices, interest and inflation rates, eco-
nomic statistics, portfolio holding, etc. Therefore, nobody
likes to disclose its requirements to the other party, or even
to a “trusted” third party. How could they cooperate on this
project that has to satisfy everybody’s private requirements
without compromising the privacy requirements? The cur-
rent practice is to operate “in the clear”, that is, by revealing
requiremnents to the other party or to the agent performing
the computation. The consequence is obvious if the other
party or the agent is not trusted. The solutions to the above
problems actually provide a secure way to solve this prob-
lem.

‘We have recently proposed protocols to solve the above three
problems in [12].

4.2 Privacy-Preserving Database Query
PROBLEM 4. (Database Query) Alice has a string q, and
Bob has a database of strings T' = {1, ... ,tn}; Alice wants
to know whether there exists a string ¢; in Bob’s database
that “matches” ¢q. The “match” could be an exact match or
an approximate (closest) match. The privacy requirement is
that Bob cannot know Alice’s secret query q or the response
to that query, and Alice cannot know Bob’s database con-
tents except for what could be derived from the query result.

The exact matching problem has been extensively consid-
ered in the literature [26, 7, 24, 23, 27, 30, 28, 19], even
though it can theoretically be solved using the general tech-
niques of secure multi-party computation [16). The motiva-
tion for giving these specialized solutions to it is that they
are more efficient than those that follow from the above-
mentioned general techniques. This is also our motivation
for studying approximate pattern matching even though it
too is a special case of the general secure multi-party com-
putation problem. Unlike exact pattern matching that pro-
duces “yes” and “no” answers, approximate pattern match-
ing measures the difference between the two targets, and
produces a score to indicate how different the two targets
are. The metrics used to measure the difference usually
are heuristic and are application-dependent. For example,
in image template matching [20, 25], 3"7_,(a; — b;)? and
Y. iq lai — bi| are often used to measure the difference be-
tween two sequences @ and b. In DNA sequence match-
ing [22], edit distance [3, 9] makes more sense than the above
measurements; edit distance measures the cost of transform-
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ing one given sequence to another given sequence, and its
special case, longest common subsequence is used to measure
how similar two sequences are.

Solving approximate pattern matching problems under such
privacy constraints is quite a nontrivial task. Consider the
Y =, |ai — bi| metric as an example. The known PIR (pri-
vate information retrieval) techniques [26, 7, 24, 23, 27, 30,
28, 19] can be used by Alice to efficiently access each indi-
vidual b; without revealing to Bob anything about which b;
Alice accessed, but doing this for each individual b; and then
calculating )7, |a: — b;| violates the requirement that Alice
should know the total score Y 7., |ai — b:| without knowing
anything other than that score, i.e., without learning any-
thing about the individual b; values. Using a general secure
multi-party computation protocol typically does not lead to
an efficient solution. The goals of this research, is to find ef-
ficient ways to do such approximate pattern matchings with-
out disclosing private information.

We have published some research results regarding to this
problem in [11].

4.3 Privacy-Preserving Intrusion Detection

PROBLEM 5. (Profile Matching) Alice has a profile database
containing many known hacker’s behaviors; Bob has col-
lected a hacker’s behavior from a recent break-in, and he
wants to identify the hacker by matching this hacker’s behav-
ior with Alice’s profile database. However, Bob doesn’t want
to disclose the hacker’s actual behavior to Alice because that
might disclose the vulnerability in his system because that be-
havior could be a successful series of actions that leads to the
compromise of his systemn. On the other hand, Alice doesn’t
want to disclose the profile database because of the database
contains confidential information. How could Alice and Bob
cooperatively accomnplish this task without sacrificing their
privacy?

PROBLEM 6. Two major financial organizations wants to
cooperate in preventing fraudulent intrusion into their com-
puting systemn. To this end, they need to share data patierns
relevant to fraudulent intrusion, but they do not want to
share the daia patterns since they are sensitive information.
Therefore, comnbining the databases is not feasible. How can
these two financial orgenizations conduct data mining op-
eration or machine learning operation on the joint of their
data while maintaining the privacy of the data.

In nowadays, many major banks share information fairly
freely in cooperative intrusion investigations, but they have
to be careful because of lawsuits. The solutions to the above
problems could prevent the banks from getting into the legal
troubles.

4.4 Privacy-Preserving Data Mining

PROBLEM 7. (Classification) Alice has a private struc-
tured database Dy, and Bob has another private structured
database D,; both of the structured database are comprised
of atiribute-value pairs. Each row of the database s a trans-
action and each column is an atiribute taking on different
values. One of the attributes in the database is designated



as the class attribute. How could Alice and Bob build a deci-
sion tree based on the D1 U Dy without disclosing the content
of the database to the other party?

Given a decision tree, one can predict the class of new trans-
actions for which the class is unknown. There are several
proposed algorithms for generating decision trees; however,
if the database D; or D2 should be kept private from any-
body other than the owner, those algorithms does not work
because a default assumption for those algorithms is that
the whole database is available. A new algorithm is needed
to solve this new problem.

ID3 algorithm is one of the proposed algorithms for generat-
ing decision trees. Based on the IDJ algorithm, Lindell and
Pinkas proposed a solution to the above privacy-preserving
classification problem in [29] using secure multi-party com-
putation protocol.

PRroBLEM 8. (Data Clustering) Alice has a private database
D;, and Bob has a private database .Da. They want to jointly
perform data clustering on the union of D1 and Da.

Basically, data clustering is to group a set of data (without
a predefined class attribute), based on the conceptual clus-
tering principle: mazimizing the intraclass simnilarity and
minimizing the interclass simnilarity.

PROBLEM 9. (Mining Association Rules) Alice has a pri-
vate database D,, and Bob has a private database Da. They
want to jointly identify association rules in the union of D)
and Ds.

For example, country A’s intelligence agents have observed
the activities X = (zi1,...,Zz») for a period of time, and
Country B’s intelligence agents have observed the activities
Y = (w1, .-, ym) for the same period of time. They want to
collaboratively find out whether the activities in Y has any
correlation with the activities in X. The results of collabo-
ration could help both countries to understand the trend of
the behaviors of the target, such as the behaviors of some
suspected terrorism organization, the military movement of
a dangerous country, etc. However, neither A or B is will-
ing to disclose its observation to the other countries because
they don’t fully trust each other. It is poasible that B might
use A’'s intelligence information (or sell it to the target) to
uncover A’s agents, and thus causing damage to A’s intelli-
gence agents.

PRoBLEM 10. (Data Generalization, Summarization and
Characterization) Alice has a private database D, and Bob
has o privaie database D2. They want to generclize, sum-
marize or characterize the union of these two database.

The above privacy-preserving data mining problems are re-
lated to another research problem—Distributed Data Mining
(DDM) problem. Distributed data mining [2] is a fast grow-
ing area that deals with the problem of finding data patterns
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in an environment with distributed data and computation.
A good DDM algorithm analyzes data in a distributed fash-
ion with modest data communication overhead. Typically
DDM algorithms involve local data analysis followed by the
generation of a global data model through the aggregation
of the local results; therefore, it preserve the privacy of the
local data to some extent, but, the global data model gen-
erated locally might still contain sensitive information that
they do not want to disclose.

We believe, results from the distributed data mining field
will be helpful in solving the privacy-preserving data mining
problem.

4.5 Privacy-Preserving Geometric Computa-
tion

ProBLEM 11. (Intersection)}) Alice has a private shape a,
and Bob has another private shape b; they both want to know
whether a and b intersect? Alice does not want Bob or any-
body else know any inforrnation about the shape a, nor does
Bob want to disclose information about his shape b. More-
over, in no case should anybody learn the relative position
between a and b, and, if these two regions intersect, nobody
should learn where they intersect with each other.

Much of the motivation for studying the privacy-preserving
intersection problem stems from the simple fact that two
private objects cannot occupy the same place at the same
time. For example, in the beginning of the paper, we have
described an example in which two companies plan to ex-
pand their market shares in certain regions, but, they do
not want to compete in the same region. What they really
want to know is whether their selected regions overlap with
each other. Because the information about its own selected
region is so valuable to each company, neither of themn wants
to disclose it to the other party.

ProBLEM 12. (Point-Inclusion) Alice has a private point
z, and Dob has a private polygon P. They want to find out
whether the point is inside the polygon or not? Alice does not
want Bob or anybody else to know any information about the
point, and likewise, Bob does not want anybody else to know
any information about the polygon. Furthermore, Alice and
Bob can only learn whether the point is inside or outside of
the polygon, nobody is allowed to learn the relative position
between the point and the polygon, such as whether z is at
the northwest side of P, or whether z is close to one of the
border of the polygon, and so on.

This problem is very useful in the many scenarios, such as
the following: country A decides to bomb a location = in an-
other country, but A does not want to hurt its relationship
with its friends, who might have some areas of interests in
the bombing region. Those countries might have secret busi-
nesses, secret military bases, or secret agencies in that area.
Obviously, A does not want to disclose the exact location
of = to all of its friends, except the one that will definitely
be hurt by this bombing; on the other hand, its friends do
not want to disclose their secret areas to A either, unless
they are in the target area. If the target is not within the



secret areas, no information should be disclosed, including
the information such as whether the target is at the west
of the area, or within certain longitude or latitude. Basi-
cally it is “all-or-nothing”: if one will be bombed, it knows
all; otherwise it knows nothing. How could they solve this
dilemma?

ProBLEM 13. (Range Searching) Alice has a private range
(represented by either a hyper-rectangular shape or by spher-
ical shape), and Bob has N private points. Alice and Bob
want to jointly find out the number of points in Alice’s range;
however, neither of them is willing to disclose their data to
the other party.

Range searching arises in a wide range of applications, in-
cluding geographic information systems, spatial database,
and time-series database. In many cases, both the query
and the database contain confidential information; there-
fore, to provide the range query service, solutions to the
Privacy-preserving range searching problem are needed.

PRoBLEM 14. (Closest Pair) Alice has M private points
in the plane, Bob has N private points in the plane. Alice
and Bob want to jointly find two points among these M + N
points, such that their mutual distance is smallest.

PROBLEM 15. (Convexr Hulls) Alice has M private points
in the plane, Bob has another N private points in the plane.
Alice and Bob want to jointly find the convez hulls for these
M + N points; however, neither Alice nor Bob wants to
disclose any more information to the other party than what
could be derived from the result.

The authors of this paper have recently proposed solutions
to the point-inclusion problem and the intersection problem
in [14].

4.6 Privacy-Preserving Statistical Analysis

PROBLEM 16. (Correlation and Regression Analysis) Al-
ice has a private data set D, (z1,... ,Zn), Bob has an-
other private data set D3 = (y1,... ,yn), where z; is the
value of variable z, and y; is the corresponding value of vari-
able y. Alice and Bob want to find out the following results
without compromising the privacy of their data set:

1. correlation coefficient between = and y: the strength
of a linear relationship between = and y, namely the
degree to which larger ¢ values go with larger y values
and smaller x values go with smaller y values.

2. regression line: an equation that provides values of y
Jor given value of . The objectives of regression anal-
ysis is to make predictions.

This problem has a lot of applications. For example, a bank
wants to investigate if ages can affect people’s financial ac-
tivities. However, the bank only has customers’ financial
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activities, it does not know the ages of its customers. There-
fore, the bank turns to some government bureau who has the
knowledge of every person’s dates of birth, but the govern-
ment bureau is required by laws not to disclose it. On the
other hand, the customers’ financial activities are the bank’s
proprietary data that the bank does not want to disclose to
anybody. The solutions to the privacy-preserving statistical
analysis problem could be used to solve this problem.

In another example, a school wants to investigate the re-
lationship between people’s intelligence quotient (IQ) score
and their annual salary. The school has its students’ IQ
score, but does not have students’ salary information; there-
fore the school needs to cooperate with companies that hire
the students, but those companies are not willing to dis-
close the salary information. On the other hand, the school
cannot give students’ IQ score to their employers either. A
privacy-preserving statistical analysis method [13] is needed
to solve this problem.

Some other privacy-preserving statistical analysis problems
and solutions have been proposed in the statistics commu-
nity. For example, Random response techniques were pro-
posed [37, 38, 21, 33] to compute the mean value of a sample
data without knowing the actual sample data.

4.7 Other Specific Secure Multi-Party Com-
putation Problems

There are many other interesting secure multi-party compu-
tation problems, but here we will only describe some of them
without discussing their applications. For some of them,
their applications are obvious, but for some others, their
real life applications are yet unknown. We will leave those
to readers to justify whether they are useful, we also hope
this can trigger readers to think about more useful problems
in some other specific computation domains.

1. Selection problem (select median, select the kth small-
est element): Alice has a private data set d;, and Bob
has a private data set d3; they want to find the me-
dian (or the kth smallest element) among the data in
dy Uds.

2. Sorting problem: Alice has a private data set d;, and
Bob has a private data set dz; they want to sort the
elements in the union of these two data sets, such that
each element in these two data sets is marked by a
number representing the order of this element.

3. Shortest path problem: Alice and Bob each has a pri-
vate graph represented by gl and g2, respectively, and
the links between these two graphs are known to both
of them. Given any two points (they could be in a same
graph, or in different graphs), how could Alice and
Bob jointly compute the shortest distance (or path)
between these two points. One of the applications of
this problem is the network traffic routing between two
private network service providers if they do not want to
disclose too much information about their own private
network. We already had a solution to this problem.

4. Privacy-Preserving polynomial interpolation: Alice has
71 private pairs (z:,y;), for i=0,... ,n;, Bob has n,



private pairs (z;,y;), for 5 = n1 +1,... ,n. Suppose
Zg,... ,Zn are distinct data points, how can Alice and
Bob jointly find the polynomial p(z) of degree n that
interpolates the data set {(zo,%o0),--- ,(Zn,¥n)}, ie.
plzx) =y for all k=0,... ,n.

5. 'OUTLINE OF SOME APPROACHES

While each SMC problem in a specific domain need a spe-
cific solution, there are certain general approaches that we
have adopted to solve the new SMC problems. These ap-
proaches are based on many cryptographic tools including
zero-knowledge proof [35], oblivious transfer [34], 1l-out-of-
n oblivious transfer [17, 8] oblivious evaluation of polyno-
mials {32], secret sharing [36], threshold cryptography [15,
10], Yan’s Millionaire Protocol [39, 6]. We will only give
an overview of the approaches that we used in solving some
of the problems described in this paper because the main
purpose of this paper is to present the set of new problems,
rather than the specific techniques in solving them.

As we know, to solve a cooperative computation problem
(in the normal case), one party, Alice, can send her inputs
to the other party, Bob, who can then solve the computa-
tion problem by himself. This naive solution is not good
in the privacy-preserving context because Bob can immedi-
ately find out Alice’s inputs. However, what we have learned
from this naive solution is that if Alice can somehow send
her inputs to Bob in such a way that makes it impossible
for Bob to derive Alice’s input while still allowing Bob to
solve the problem by himself, then we do not need to worry
about how Bob solve the problem, because now Bob has
all the inputs, he should be able to solve the problem by
himself. Therefore, to use this approach, the most impor-
tant step is to send Alice’s inputs to Bob while preserving
Alice’s privacy.

For example, we used the above approach to solve Prob-
lem 1, the linear privacy-preserving linear systems of equa-
tions problem. Actually, we solved the following more gen-
eral problem: Alice has a private matriz M1 and a private
vector by, and Bob has a private matriz My and a private
vector bz, where M1 and My are n x n matrices, and b; and
bz are n-dimensional vectors. Without disclosing their pri-
vate inputs to the other party, Alice and Bob want to solve
the linear equation: (My + Mz)z = by + ba.

Our solution is based on the fact that the solution to the lin-
ear equations (Mi+ Mz2)x = by + bz is equivalent to the solu-
tion to the linear equations P(M1+M32)QQ 1z = P(b1+ba).
If Bob knows M’ = P(M1 =+ Mz)Q' and b = P(bl + bz), he
can solve the linear equation problem: M’z = b/, and thus
getting the final solution z, where z = QZ. But how could
Bob know M’ and b’ without being able to derive the value
of M1 and b;7 To solve this problem, Alice generates two
random 7 x 7 matrices P and @Q with Q being invertible.
With the help of 1-out-of-N Oblivious Transfer protocol [17,
8], Bob is able to learn the valus of P(M1 + M2)Q and
P(b1 + b2). However, Bob will not learn the value of PM1Q,
PM3yQ, Pb,, or Pba, much less P, Q, M, or b;. After Bob
gets M' = PM1Q + PM2Q and b’ == Pb; + Pba, he can solve
the linear equations M’z = b’, and then send the solution
Z to Alice, who can compute the final solution z = Qz. Fi-
nally Alice sends the solution to Bab. The complete solution
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of this problem is described in [12]

As we mentioned that the general secure multi-party com-
putation solution (the circuit evaluation) is not practical
because the protocols it generates depend on the size of the
input dornain, and on the complexity of expressing the com-
putation as a circuit (for example, a multiplication circuit
is quadratic in the size of its inputs). However, if the size
of the input domain and the complexity of the circuit are
small, the general solution could be practical. Based on this
observation, one approach to solve a specific secure multi-
party computation problem is to reduce the problem to sub-
problems that have small input domains and small circuit
size.

For example, to solve the Intersection problem (Problem 11),
we reduced the problem to three sub-problems: 1) evalua-
tion of a linear function problem 2) comparisen problem and
3) evaluation of a boolean expression problem. The first two
problems can be solved using known techniques proposed in
the literature, in particular, the oblivious polynomial eval-
uation protocol [32] and Yao’s millionaire protocol [39, 6].
‘The third problem could be solved using the general secure
multi-party computation solution, namely the circuit evalu-
ation protocol. Because in this sub-problem, the input do-
main is just {0, 1}-a very small domain, and the complexity
of building a circuit to evaluate a boolean expression is just
linear to the number of items in this boolean expression.
The complete solution of this problem is described in [14]

Sometimes, it helps to find an efficient solution by intro-
ducing into the protocol a third party—an untrusted third
party. This third party should not learn anything about
either participant’s inputs. This approach has been used
in the literature to solve some secure multi-party compu-
tation problems. For example, to solve Yao's Millionaire
problem [39], Cachin uses an untrusted third party, and has
significantly improved the performance of the solution to the
problem.

6. CONCLUSION AND FUTURE WORK

In this paper, we have studied several specific computations,
such as database query, intrusion detection, data mining,
geometric computation, statistical analysis, and scientific
computations. We studies these computations from another
perspective—secure multi-party computation perspective, i.e.
how to conduct these computations among multiple parties
while maintaining the privacy of each party’s input. As re-
sults, we have defined a number of secure multi-party com-
putation problems, among which some are well studied for
decades, some are studied in recent years, and some are just
new problems.

‘We have only studied a limited number of computations do-
mains in this paper, because it is not our intention to provide
a complete lists of new SMC problems. We want to provide
a guideline for the researchers in other computation areas
to think about their computation problem from this secu-
rity perspective, thus coming up with new SMC problems,
if necessary.

Among those problems list in the paper, some are not solved
yet, some are under active research, and some have triggered



interests from people who works on a variety of computation
domains. We hope that after working on several problems
we can gain more insights on how to solve this type of prob-
lems, what the useful building blocks for solving this type of
the problem are, how the solutions to the existing problem
(without the privacy requirements) could help to solve those
specific secure multi-party computation problems.
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