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ABSTRACT

Attack survival, which means the ability to provide some
level of service despite an ongoing attack by tolerating its
impact, is an important objective of security research. In
this paper we present a new approach to survivability and
intrusion tolerance. Our approach, which we call "survival
by defense” is based on the observation that many applica-
tions can be given increased resistance to malicious attack
even though the environment in which they run is untrust-
worthy. This paper describes the concept of “survival by
defense” in general and explains the assumptions on which
it depends. We will also explain the goals of survival by
defense and how they can be achieved.

INTRODUCTION

Malicious attacks on computer systems are at the core of
security research, and there have been various approaches to
deal with the problem. One approach, which sets its goal at
attack preveniion, defines security policies identifying what
needs protection and then attempts to implement that pro-
tection in hardware and software. This approach has lead
to the development of what is known as a trusted comput-
ing base (TCB)[17]. Another approach, which is primarily
concerned about attack detection and situational awareness,
has lead to the development of various intrusion detection
systems (IDS).

Neither of these approaches is perfect. The TCB is trusted
not to violate the security policy itself, and, in most systems,
it is also trusted to prevent other, possibly malicious, soft-
ware from violating the policy. In practice, most computer
systems today have no such trusted computing base. In fact,
many of the world’s computer systems today run operating
systems and networking software that are far from the TCB
ideal. These systems may lack any security policy, can be
damaged using well-known attacks, and therefore cannot be
trusted to protect anything. These systems will continue to
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be used because of the many applications that already target
them, but are unlikely to be redesigned to be more trust-
worthy. Similarly, although there are many IDSs available
today, they mostly work off-line, without any direct runtime
interaction or coordination with the applications (and with
other IDSs) that they aim to protect. Furthermore, many of
the IDSs have questionable accuracy: sometimes they miss
real attacks and sometimes they raise false alarms.

In short, attack prevention is not absolute and attack de-
tection is not perfect. We therefore, ask the following ques-
tion: what, if anything, can be done to tolerate and sur-
vive cyber attacks assuming that the environment in which
applications will run offers flawed protection and imperfect
intrusion detection? In principle, the answer is “close to
nothing”. A determined attacker can, with sufficient work,
defeat whatever flawed protection is offered by the operat-
ing systems or networking, thus gaining privileges that can
be used either to kill the system completely or to corrupt it
in some other way. Although one might try to protect data
using encryption and digital signatures that are computa-
tionally infeasible to break[16], when that data is processed
by the system it will almost certainly become vulnerable to
an attacker with enough privilege: note that encrypted data
is worthless unless it is decrypted at some time, and it can
be read at that time by a privileged attacker; also note that
digitally signed data must be re-signed when it is modified,
and an attacker who gains the privilege to re-sign data can
forge new, corrupt data as well.

In practice, though, an attacker may not have the skill,
perseverance, preparation, or time needed to carry out the
attacks that are possible in the worst case. Some attackers
rely on prepackaged attack “scripts” and do not have the
skill to repair the scripts if they fail. It may be possible to
put various kinds of obstacles and diversions in their path.
An attacker who meets unexpected obstacles may look else-
where for easier targets rather than persevere in an attack.
An attacker who is not prepared in advance to circumvent
the protection in a specific system will be more likely to
trigger intrusion detection alarms[8]. In any case, the more
time an attacker takes, the more vulnerable he is to being
detected and stopped by system administrators.

These are the factors that our “defense enabling” ap-
proach aims to exploit. We make a distinction between sur-
vival by protection, which seeks to prevent the attacker from
gaining privileges, and survival by defense, which includes
protection but also seeks to frustrate an attacker in case
protection fails and the attacker gains some privileges any-
way. Protection mechanisms are static and pro-active; de-



fense mechanisms enhance the protection mechanisms with
a dynamic strategy for reacting to a partially successful at-
tack. Both protection and defense aim to keep a system
functioning (i.e., survival), but protection tends to be all-
or-nothing, either it works or it coesn’t, whereas defense
can choose from among a range of responses, some more
appropriate and cost-effective than others under different
circumstances.

“SURVIVAL BY DEFENSE” OF CRITI-
CAL APPLICATIONS

“Survival by defense” is not a silver bullet for defending all
applications in general. Different applications have different
survivability needs and willingness to bear the associated
cost. Sometimes, the requirements may conflict with each
other. Therefore, a uniform defense for all applications is
practically impossible. In our work, we focus on the specific
need of a specific type of applications namely, the correct
Junctioning of one or more critical applications. These ap-
plications are critical in the sense that the functions they
implement are the main purpose of the computer system on
which they run. Defending other applications in the same
environment® is not a primary goal. Neither is defending the
application’s environment itself, e.g., the operating systems
and networks that support the critical applications. Defend-
ing the environment is important only so far as it helps to
defend the critical applications themselves.

This implies that the defense enabling technology may
deploy additional mechanisms in the application’s environ-
ment, but it is used in the contexi of defending the critical
application. Note that we are assuming we can modify or
extend the design and implementzation of the critical appli-
cations. This is in sharp contrast with the design and imple-
mentation of the environment, which we assume is almost
completely beyond our control. In other words, we must
live with flaws in the environment but, because our goal is
defending critical applications, we will expend the effort on
the application to mask the impact of their exploitation by
the attacker. Defense enabling is organized around the ap-
plication to be defended rather than around the operating
systems and networks that support it. This follows simply
because the application can be modified whereas the envi-
ronment, for the most part, cannct?. The existence of mid-
dleware is an advantage in this context, because it provides
a means to incorporate and coordinate the capabilities of
the defense mechanisms with the application with minimal
modification of the application itself.

An application that does not function correctly is corrupt.
A corrupt application might deliver bad service or it might

2.

!Throughout the paper we will use the terms environment,
operating environment or system infrasiruciure to mean
mostly the hardware, and networking and operating system
software. We will also assume the exdistence of middleware,
a class of software designed to manage the complexity and
heterogeneity associated with an inter-networked and dis-
tributed environment [2], defined as a software layer above
the operating system but below the application programs to
provide a common and transparent programming abstrac-
tion across a distributed system.

20ne can, however, add mechanisms like IDSs and firewalls
to increase the environment's level of protection, indepen-
dent of and without the control of critical applications. De-
fense enabling does not discount such measures, but wants
to use their services in application’s defense as well.
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fail to deliver any service at all. An application can become
corrupt due to various causes:

e either because of an accident, such as a hardware fail-
ure, or because of malice;

e cither because flaws in its environment or in its own
implementation cause it to misbehave.

The flaws in the environment and the implementation can be
exploited by a malicious attacker to cause a loss of protection
that allows the application to be damaged.

In this paper we focus on corruption that results frem a
malicious attack ezploiting flaws in an application’s environ-
ment. We assume that this is by far the most likely cause of
corruption and so the other causes will be neglected in this
paper. This assumption is reasonable because:

e Malicious atiacks, which are directed and intentional,
are far more effective in corrupting an application than
accidents, which are random.

e Flaws in the application’s implementation can be cor-
rected more easily than flaws in the application’s envi-
ronment, and the latter are likely to be better known
to attackers and exploited by them.

Given this understanding of corruption, the goal of sur-
vival by defense is to delay or prevent corruption of critical
applications. Note that the ultimate way to prevent this
kind of corruption is to prevent the attacker from gaining
the privilege required to corrupt critical applications, which,
as we explained earlier, happens to be the goal of survival
by protection. Defense enabling, therefore, can be divided
into two complementary goals:

1. The attacker’s acquisition of privileges must be slowed
down. This issue is discussed in section 3.

2. The defense must respond and adapt to the privileged
attacker's abuse of resources. Mechanisms for doing
this are the topic of section 4.

The first goal makes the protection in the application’s en-
vironment last longer. The second goal makes the attacker
work harder to use newly-gained privileges to corrupt a crit-
ical application. Because we have assumed that acquisition
of privilege by an attacker cannot be completely prevented
or delayed indefinitely, both goals are needed for defense.

We say that an application is defense-enabled if mecha-
nisms are in place to cause most attackers to take signifi-
cantly longer to corrupt it than would be necessary with-
out the mechanisms. In other words, an attacker must not
only defeat protection mechanisms in the environment, he
must spend additional time defeating defense mechanisms
added to the application. Section 5 explains that many de-
fense mechanisms will tend to be placed into middleware[2],
which is not part of the environment (in the traditional sense
we have defined it here) but is still separate from the ap-
plication’s functionality. This separation keeps the defense
mechanisms from complicating each application’s design and
allows for easy reuse in multiple applications.

3. ACQUISITION OF PRIVILEGE

If privileges could be obtained instantly, the attacker could
immediately grab all the privileges needed to stop all ap-
plication processing and thus deny all service. No defense



would be possible against this unlimited attack. Therefore,
defense enabling depends on slowing the spread of privilege
to attackers to such degree that it renders ineffective the
objective of shutting down critical services instantaneously.

In order to prevent quick spread of privilege, we divide
the system into several security domnains, each with its own
set of privileges. The intent is to force the attacker to take
more time accumulating the privileges needed to corrupt the
applications. ‘This will be true if:

e Each critical application has parts that are intelligently
distributed across many domains so that privilege in
a set of several domains is needed to corrupt it. This
distribution of parts will be discussed in section 4.

e The attacker cannot accumulate privileges concurrently
in any such set of domains. This constraint will be dis-
cussed later in this section.

A security domain may be a network host, a LAN consist-
ing of several hosts, a router, or some other structure. The
domains are chosen and configured to make best use of the
existing protection in the environment to limit the spread
of privilege. The domains must not overlap; for example, if
the domains are sets of hosts then each host is in exactly
one domain.

Each security domain may offer many different kinds of
privilege. The following hierarchy, described in order of in-
creasing privilege (i.e., each of these privileges subsumes all
the previous ones), is a minimal set that is typical in many
domains:

s anonymous user privilege: allows interaction with
servers in a security domain only via network protocols
such as HTTP that do not require the client to be
identified;

o domain user privilege: allows access only to a well-
defined set of data and processes in one particular se-
curity domain (e.g., the user must “log in” to get this
access);

® domain administrator privilege: allows reading
and writing of any data and starting and stopping
any processing in one particular security domain (e.g.,
“root” privilege on Unix hosts).

In addition, we propose to create a new kind of privilege
in each domain to impede the attacker’s progress towards
collecting privileges:

e application-level privilege: allows interaction with
a defense-enabled application using application-level
protocols (e.g., CORBA calls that query the applica-
tion or issue commands).

Application-level privilege differs from other kinds of priv-
ilege in that (a) it is not part of the environment but is cre-
ated specifically to defend an application (b) it uses cryp-
tographic techniques (which will be described later) (c) it
does not subsume any of the other kinds of privilege and it
is not not subsumed by any of them. In particular, gaining
domain administrator (“root”) privilege does not guaran-
tee application-level privilege; this will be explained shortly.
However, an attacker with application-level privilege would
find it easy to control, and thus corrupt, an application. So
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defense enabling must make it hard for an attacker to get
this privilege.

Ideally, one would want the privileges to be discrete and
the acquisition process be independant because that will
gauarntee an increase in attacker’s risk and cost. However,
this ideal goal can only be reached partially as explained be-

low. In the sequence of anonymous, domainuser, domainadmin

privileges, each subsumes the preveous ones, so if an at-
tacker gains domain admin privilege he does not need to
obtain anonymous or domain user privelege. Domain privi-
lege does not imply application level privilege (or vice versa),
as explained later, it is possible to obtain application level
privilege if the attacker gains domain admin privilege. On
the other hand, a malicious intruder will attack a critical
application by collecting the minimum privileges needed to
damage its integrity or to stop it from providing service.
Attackers typically gain new privilege by converting from
another privelege using some flaws in the environment as
opposed to directly obtaining the desired level of privilege.
In this sense the independance goal is partially achieved.

Using the set of privileges just listed, there are three ways
for an attacker to gain new privileges:

1. Case 1: by converting domain or anonymous user
privilege into domain administrator privilege (e.g., ex-
ploiting bugs in trusted services, such as sendmail,
that have domain administrator privilege already);

2. Case 2: by converting domain administrator privilege
in one domain into domain administrator privilege in
another (e.g., using “root” in one domain to log in as
“root” in another);

3. Case 3: by converting domain administrator privilege
into application-level privilege (e.g., using “root” priv-
ilege to invoke unauthorized application commands).

The attacker must be slowed down or prevented from gain-
ing new privileges in each of these ways. How to do this
will depend on the nature of the domains and therefore no
generally-applicable rules can be given. However, security
domains that are sets of network hosts are a very commeon
situation and the following discussion is applicable in this
context. The general idea is to engineer lots of complexities
and obstacles in the privilege escalation process so that the
attacker work load and likelyhood of triggering detection is
increased.

In the first case, the attacker tries to convert domain or
anonymous user privilege into domain administrator privi-
lege by exploiting operating system security flaws. As ex-
plained in section 1, we assume this will always be possible.
We also assume that it takes some time, possibly only a
matter of minutes, but it is not instantaneous. The time
it takes can be maximized by careful configuration of hosts
and firewalls, for example, by applying the latest operating
system patches, disabling or blocking unnecessary network
protocols, and making the password file unreadable.

In the second case, our objective will be achieved if the
attacker is prevented from converting administrator privi-
lege in one domain into administrator privilege in another.
This can be done by proper host configuration and adminis-
tration, and having a heterogeneous environment with vari-
ous types of hardware and operating systems. For example,
hosts in different domains must not respect each other’s priv-



ileges. This forces the attacker to start from scratch when
trying to gain privilege in each domain.

Once having become a domain administrator, the attacker
can quickly damage application processes in that domain
simply by stapping them. With this privilege, he can bypass
the operating system access controls that would normally
prevent this damage. This damage, though, is contained
because the application is distributed across many security
domains.

In the third case, a defense-enabled application must use
cryptographic techniques to prevent the attacker from gain-
ing application-level privilege. An attacker having this privi-
lege would be worse than an attacker who becomes a domain
administrator because direct attacks on the application can-
not be confined to a single security domain anymore: with
application-level privilege, the attacker masquerades as part
of the application itself, bypassing its access controls and
causing it to behave incorrectly by sending it bogus com-
mands and data, which the application itself propagates
across the boundaries between security domains. The fol-
lowing techniques are therefore essential for every defense-
enabled critical application:

e Application processes must be started with authenti-
cation, e.g., executables are stored on disk encrypted
with passwords known only to authorized users and
other application processes;

e All communication between application processes is
digitally signed with private keys known only to the
application itself and uses sequence numbers to pre-
vent replay.

These techniques will make it hard for an attacker, even
one with domain administrator privilege, to masquerade as
part of the application. Assuming the encryption is un-
breakable, the attacker will be unable to corrupt the appli-
cation process’ code on disk. Assuming the digital signa-
tures are unbreakable, the attacker will be unable to disrupt
communication®. However, someone with domain admin-
istrator privilege could gain application-level privilege with
enough effort. For example, with administrator privilege,
one can read the core image of a running process, modify it
to change the process’ behavior, or search it to find the pri-
vate keys used for digital signatures. This attack could be
made harder with techniques for concealing or randomizing
the location of data, e.g., passwords, within a core image. In
practice, however, the effort needed for this kind of attack
is likely to be much greater than the effort needed simply
to kill all application processes ir. the domain, followed by
attacks on other domains.

Finally, the attacker must not be able to gather privi-
leges in many domains concurrently. This constraint means
that an attack on an application in multiple domains cannot
go just as fast as an attack on one single domain. An at-
tack that proceeds sequentially, rather than concurrently, is
called a staged attack. Defense enabling relies on an attacker
using only staged attacks. We can either simply assume
that attackers are limited to staged attacks or we can try
to make the alternative harder to accomplish. As a practi-
cal matter, most attackers will gather privileges sequentially
as they explore a system’s infrastructure, so this is not an

3At a logical level, because the attacker can disrupt the
physical communication by cutting the cables, for instance.
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unreasonable assumption. On the other hand, some attacks
can be automated and carried out many times in parallel, so
in the worst case the attacker can violate an assumption of
staging. This worst case can be made less likely by design-
ing an application to use a diverse set of security domains.
Diversity means the attacker may need to prepare separate
attacks for each kind of domain. It may also be possible to
enforce staging by configuring firewalls so that an attacker
cannot access remote domains at all without first gaining
privileges in nearby ones. This paper does not address the
issue how to enforce staging but henceforth assumes that
only staged attacks are possible.

This section has shown how defense emabling makes an
attacker take longer to collect privileges. The next section
shows how this extra time can be used for defense.

4. CONTROL OF RESOURCES

In the traditional approach to computer security, the de-
fender is given additional privilege initially, which is used
for setting up static protection both for critical applications
and for ensuring that the attacker must never get domain
administrator privilege for himself. In contrast, defense en-
abling assumes the attacker will eventually gain domain ad-
ministrator privilege in some security domains, and in those
domains the attacker and defender will be in symmetrical
positions. What then? Section 3 showed how the defender
can set up a new kind of privilege at the application level
and try to protect it using cryptography. But the defender
can also use domain administrator privilege to dispute the
attacker’s control of domains. This is especially important
in light of the observation that the attacker and the critical
applications compete over system resources: the application
needs them and the attacker attempts to take them away
from the application. This section discusses the capabilities
that can be used to tip the balance away from the attacker.
They include:

‘e Use of redundancy: Creating multiple security do-
mains is not by itself sufficient to force the attacker to
spend more time collecting privileges: if some domain
were a single point of failure for the application, the at-
tacker would need only to gain domain administrator
privilege in that domain and kill application processes
there. Clearly the application must be distributed re-
dundantly across the domains.

The simplest solution is to replicate every essential
part of the application and place the replicas in dif-
ferent domains. Doing this turns the problem of de-
fense into a problem of fault tolerance, where a “fault”
is the corruption of a single replica by the attacker.
The replicas must be coordinated to ensure that, as a
group, they will not be corrupted when the attacker
succeeds in corrupting some of them. Many protocols
for fault tolerant replica coordination exist[15], [5],[12],
[14].

The fault tolerance problem to solve becomes harder
or easier depending on whether the attacker is able to
gain application-level privilege. If the attacker cannot
gain application-level privilege then application repli-
cas will, at worst, crash when corrupted, and so it will
not be necessary for the application to use the more
expensive protocols that protect against “Byzantine”
corruption[3]. If, on the other hand, the attacker does



gain application level privilege, such expensive proto-
cols become necessary. In one of our research efforts,
we assume attackers cannot get application level priv-
ilege and in another we relax that assumption and ex-
plore the use of hybrid-mode fault-tolerance and dy-
namic switching between tolerating crash and Byzan-
tine failures of application replicas.

Redundancy is not necessarily restricted to redundant
processes (replicas as described above) or hosts and
security domains. Communication redundancy in the
form of redundant bandwidth or alternate network path
must also be used by the defense.

e Monitoring: As with any other conflict situation, in-
formation superiority is an advantage. Therefore, it
is important that the defense is aware of incidents in
the environment that are related to attacks and their
impact on the system resources. Intrusion detection
systems (IDSs)[8] can be used, to collect data at the
infrastructure level about possible attacks. Data col-
lected at the application level is also desirable, though,
because it can give a more comprehensive view of the
nature of the attack and more insight into potential
remedies, and because it is more relevant to the needs
of the application. Two kinds of monitoring are im-
portant at the application level:

1. Quality of Service (QoS): whether the application
is getting the QoS it needs from its environment
and whether it is providing the QoS required by
its users. A decrease of either QoS measure is a
potential indication of a possible attack.

2. Self-checking: whether the application continues
to satisfy invariants specified by its developers. A
violation of such invariants is an indication that
the application is corrupt, possibly because the
attacker has gained application-level privilege.

e Adaptation: It should be obvious that survival is
impossible without adaptation. The consequence of
attacker’s abuse of the obtained privilege is, almost
always, some change in the application’s environment
ranging from loss or corruption of application compo-
nents to loss or corruption of resources need by the
application. If the application is not able to adapt to
the changed situation, the application will not be able
to survive. This kind of adaptation may take various
forms. If the attacker denmies resources to a critical
application, for example by flooding communication
channels, the defense mechanism may try to adapt to
restore the QoS it needs or the application may adapt
to live with the reduced resource (thereby degrading
the service it offers). If the source of an attack can
be diagnosed with high confidence, resources can be
denied to the attacker, for example, by killing the at-
tacker’s processes.

Each of these capabilities are worth separate discussions.
We have discussed how to use replication and intrusion de-
tection services to develop adaptive applications that survive
certain kinds of attacks in [10]. We will outline our work on
use of mixed mode fault tolerance in intrusion tolerance in
an upcoming paper [6], and in the next Section, we briefly
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Defeat Work Around | Guard Against
Attack Attack Future Attack
application retry failed redirect reqst; | increase
level request degrade srve self-checking
QoS mgmt reserve CPU, | migrate tighten crypto,
level bandwidth replicas access control
infrastructure | block IP change ports, | configure
level sources protocols IDSs

Table 1: A classification of defensive adaptations

discuss the various ways defensive adaptation can be used
in application’s survival.

Note that it is possible for the attacker to defeat or abuse
any of these capabilities if he manages to acquire sufficient
privilege. For instance, with domain privilege, he can per-
haps jeopardize the replication mechanism by shutting down
the replication management components that run in that do-
main. Similarly, with application privilege he can defeat the
application level self-checking which affects the application
across domain boundaries. We assume that it is not possible
to prevent attacks on defense mechanisms that offer these
capabilities, just as much as it is not possible to prevent
the attacks on the application that these mechanisms aim to
protect. However, we have showed that the attacker’s acqui-
sition of privilege can be prevented or slowed down earlier,
which makes such attacks on the capabilities more difficult
and time consuming. Note also that, even though protec-
tion of defense mechanisms are not perfect, they raise the
bar that an attacker has to overcome in order to successfully
stop a critical application from functioning.

5. USE OF DEFENSIVE ADAPTATION IN
APPLICATION’S SURVIVAL

One can think of multiple dimensions in which defensive
adaptation can be used. The level of system architecture at
which these adaptations work is one such dimension. At the
top end along this ‘dimension are defensive adaptations in-
volving the application itself: for instance, in the face of an
attack the application may find an alternate way ta proceed
or degrade its service expectations. At the other end along
this dimension are defensive adaptations that involve ser-
vices from the operating system and network level, such as
changing the details of how application components commu-
nicate among themselves. Between these two are defensive
adaptations that manipulate QoS management facilities to
obtain the QoS it needs.

In another dimension, adaptations differ according to how
aggressively the attack can be countered. At best, the at-
tack can be defeated, i.e., the effect of the attack on the
application can be completely canceled. Second best is for
the application to work around the attack, avoiding its ef-
fects. Finally, if the attack can neither be defeated nor its
effects avoided the application can make changes to protect
against similar attacks in the future.

Table 1 shows some example adaptations based on the
two dimensions described above. The table is not intended
to be comprehensive: undoubtedly others can be invented
or would be available with specific operating systems. There
may also be other useful categories; for example, the table
does not show any adaptation involving “honeypots” where
an attacker is lured into wasting effort on a decoy.

Attacks can be thought of as two broad kinds:



1. direct attacks against the application, for example by
disrupting the communication between its parts;

2. indirect attacks, in which resources needed by the ap-
plication are denied.

This categorization provides the third dimension for classify-
ing defensive adaptations: some work against direct attacks
and some against indirect attacks. Direct attacks are coun-
tered by the mechanisms working at the application level,
plus the use of encryption. An indirect attack might be
countered by mechanisms that are at various levels of the
system architecture, but generally, lower-level mechanisms
are more focused. For example, configuring a firewall to
block packets from a particular source is a highly focused
defense, but one that needs detailed information about the
attack to have been collected first. At the QoS level, flood-
ing the network can be countered by bandwidth reservation,
over-consumption of CPU through scheduling and priorities,
crashing of a node running an application component by mi-
grating the component elsewhere, and relatively privileged
operations can be disabled with access control if there is a
high risk that they might be used 1naliciously.

‘Whether it can be used for protection from attack as well
as for response to attack, or just for response alone, seems to
be yet another way to classify defensive adaptation. Mech-
anisms needed to support some of the defensive adaptation
described in table 1, can also be used for protection. For
instance, one can start with a high level of self-checking or a
very tight access control or a CPU or bandwidth reservation.
‘While this may offer better protection to begin with, some of
them come with a high price tag. For instance, an IDS con-
figured to be very semsitive to attack, has significant costs
and so needs to be used sparingly. Another case in point
is the use of Byzantine tolerance techniques in replication
management: although it will offer better protection against
corruption it may be impractically expensive to replicate
all components of an application in a Byzantine-tolerant
mode. This is one of the primary reasons we are investigat-
ing adaptive use of mixed-mode replication [6], where only
some of the application components will be replicated, and
tolerance-modes can be switched between crash and Byzan-
tine. Furthermore, running in “best protection” mode may
impede the normal functioning of the system in some cases
and so should be used only when necessary. For instance,
disabling highly privileged operations may be the safest op-
tion, but operators and administrators will need these to
perform their tasks. These observations point out the im-
portance of the capability to change between various modes
and the associated trade-offs, which are fundamental to our
survival by defense approach.

Defensive adaptation, as described so far, is mostly reac-
tive, i.e., these adaptations take place in response to some
triggers (most often the monitoring mechanisms are respon-
sible for generating the triggers). Defensive adaptation could
be pro-active as well, in which case the adaptation takes
place without any external trigger. For example, a client
can periodically change the server it talks to, or a service
provider periodically changes the port through which it of-
fers its services. This kind of adaptation is generally ap-
propriate for limiting the attacker’s knowledge about the
critical system.

A determined attacker can potentially overcome the ef-
fects of defensive adaptation if he can easily predict the
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adaptive response. For instance, consider an attacker whose
objective it is to cut off a particular inter-object interaction
by flooding an appropriate network segment. If the defensive
adaptation responds with establishing a bandwidth reserva-
tion, this attack will be thwarted at first. If however, the
response is predictable, the attacker may come with a two
stage strategy: in the first stage, he will either exploit the
reservation mechanism to establish a large reservation for
himself or attack the bandwidth management mechanism
to make it ineffective. Then in the second stage, he will
flood the network. To cope with this kind of planned at-
tacks, some uncertainty needs to be injected in the defense
so that the adaptive response is not predictable to the at-
tacker. This uncertainty can come from some secret that is
not known to the attacker or can be based upon some non-
determinism incorporated in the adaptation mechanism. In
general, uncertainty seems to enhance the value of defensive
adaptation, especially in the context of planned and coordi-
nated attacks.

The defense strategy of a particular critical application
may involve use of multiple defensive adaptations. Incorpo-
rating multiple mechanisms required for individual defensive
adaptation into a single application can greatly complicate
the application’s design. Fortunately, every one of these
mechanisms is orthogonal to an application’s functionality,
i.e., the application should compute the same results regard-
less of whether or how many defense adaptations have been
used. In other words, every one of these adaptations changes
how an application computes its results, not what results are
computed. This orthogonality allows the design of defenses
to be separated from the design of functionality.

Separating the design of the functional (or business) as-
pects of the application from the design of defensive adap-
tation is good software engineering. It is only mnatural to
put the latter into middleware [2], which acts as an inter-
mediary between the application and the infrastructure and
provides various services to the application transparently.
In addition, advanced middleware such as QuO (short for
Quality Objects)[11], provides support for adaptive behav-
ior and QoS awareness which is especially useful for defen-
sive adaptation and monitoring. This way the functionality
and the defense mechanisms can be developed in a decou-
pled manner. Ideally, defensive strategies and mechanisms
would be reusable for many different applications. In fact,
in most cases, there seems to be a fairly general and reusable
mechanism that interpretes or enforces application specific
parameters or rules. For instance, the same access control
mechanism can be used in different applications with differ-
ent access control policies. However, there are cases where
the mechanisms are more closely tied with the application.
For example, self-checking of application invariants will de-
pend on application-specific data structures.

ISSUES AND LIMITATIONS

The use of disjoint security domains not only results in re-
dundancy (that there are multiple domains) but also hetero-
geniety (since gaining access to one domain does not guar-
antee the same in other domains). This is helpful in terms
replicating application components since this makes it diffi-
cult to successfully attack multiple replicas. Qur use of ap-
plication level replication is further supported by dynamic
adaptation techniques (such as choosing the place to start a
new replicca unprredictable).

6.



Our approch to prevent quick spreading of privilege by
using security domains and application level privilege can
be combined with traditional mechanims like firewalls, even
though a firewall can be a single point of failure. However,
unlike firewalls, our application level privilege mechanism
involves cryptographic keys. We assume that the signa-
tures are unforgeable. We also assume that the keys are
distributed a-priori in a trusted manner. The reliance on
crypto systems is a limitation [1], but addressing it is be-
yond the scope of our work. In addition, in the context of
a mission critical application the overhead associated with
enforcing the application level privilege may impact its per-
formance level.

Defense-enabling makes use of the capabilities of various
defense mechanisms. However, it is not simple to combine
multiple mechanisms in a defense strategy since different
mechanisms may have conflicting goals and assumptions.
Although the defense mechanims used in a defense enabled
application is coordinated at runtime by the QuO adaptive
middleware, the initial work of designing and implement-
ing a defense strategy that involves selection of appropriate
mechanism, potential conflict analysis and resolution has to
be done manually by an expert.

Finally, defense-enabling relies on the fact that attacks
proceed sequentially so that the application have time to
make defensive response. As noted in Section 3, there are
attacks that may not follow sequential stages. For instance,
DDOS attacks involving attackbots or zombies can all at-
tack a target simultaneously. However, if we consider the
act of placing zombies as part of the attack we can clearly
see a sequence of gaining privilege, inserting processes and
then triggering the attack. The problem here is that the
most of the preparatory sequences of such an attack can go
undetected and can be carried over a large period of time
making it hard to correlate. One aproach we are exploring
in this regard is to employ autonomous low level mecha-
nisms that perform knee-jerk reaction to anomalies within a
host. The idea is that each host will act on its own as soon
as it sees an anomaly without the need for a coordinated
detection and corelation of events. For example, as soon as
it sees an anomalous file in a local disk it may erase that
file. This reaction will then be followed up by more coordi-
nated domain or system-wide responses taken at the higher
levels. For instance multiple ocurrance of such a mysterious
file may lead to isolating that host from its domain.

7. RELATED WORK

MAFTIA[7] is an ESPRIT project developing an open
architecture for tramsactional operations on the Internet.
MAFTIA models a successful attack on a security domain,

leading to corruption of processes in that domain, as a “fault”;

the architecture then exploits approaches to fault tolerance
that apply whether the faults have an accidental or mali-
cious cause. The MAFTIA architecture appears to be an
example of defense enabling.

Other projects have similar goals. The “Survivability
Architectures”[9],[18] project aims to separate survivabil-
ity requirements from an application’s functional require-
ments. “An Aspect-Oriented Security Assurance Solution”
is a DARPA-funded project at Cigital Labs that uses aspect-
oriented programming to implement security-related code
transformations on an application program.
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8. CONCLUSION

We are implementing technology for defense enabling un-
der the DARPA project titled “Applications that Partici-
pate in their Own Defense” (APOD). The defense strate-
gies have been implemented using the QuO adaptive mid-
dleware[11]. The implementation is discussed in detail in
[13].

The “Intrusion Tolerance by Unpredictable Adaptation”
(ITUA) project[4], also being conducted at BBN Technolo-
gies, in cooperation with University of Illinois and The Boe-
ing Company, is exploring two related issues:

1. Tolerating planned and coordinated attacks by making
defensive responses unpredictable to the attacker,

2. Tolerating attacks that can gain application-level priv-
ilege and take control over application components ,
by using the services of a hybrid-mode fault-tolerance
mechanism,

Defense enabling can increase an application’s resistance
to malicious attack in an environment that offers only flawed
protection. This increased resistance means that an attacker
must work harder and take more time to corrupt the appli-
cation. This, in turn, means greater survivability for the
application on its own and an increased chance for system
administrators to detect and thwart the attack before it suc-
ceeds.
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