
Model-Carrying Code (MCC):
A New Paradigm for Mobile-Code Security*

[Extended Abstract]

R. Sekar, C.R. Ramakrishnan, I.V. Ramakrishnan ancl S.A. Smolka
Department of Computer Science
SUNY at Stony Brook, NY 11794
{sekar,cram,ram,sas } Ocs.sunysb.edu

ABSTRACT
A new approach for ensuring the securi ty of mobile code is
proposed. Our approach enables a mobile-code consumer
to unders tand and formally reason about wha t a piece of
mobile code can do; check if the actions of the code axe
compat ib le wi th h i s /he r securi ty policies; and, if so, execute
the code. The compat ibi l i ty-checking process is au tomated ,
but if there are conflicts, consumers have the oppor tun i ty
to refine their policies, tak ing into account the funct ional i ty
provided by the mobile code. Finally, when the code is ex-
ecuted, our f ramework uses run t ime-moni tor ing techniques
to ensure tha t the code does not violate the consumer 's (re-
fined) policies.

At the hear t of our method , which we call model-carrying
code (MCC), is the idea t ha t a piece of mobile code comes
equipped with an expressive yet concise model of the code 's
(security-relevant) behavior. The generat ion of such mod-
els can be au tomated . MCC enjoys several advantages over
current approaches to mobile-code security. I t protects con-
sumers of mobile code from malicious or faulty code wi thout
unduly res t r ic t ing the code 's functionali ty. Also, i t is appli-
cable to the vast ma jo r i ty of code tha t exists today, which
is wr i t ten in C or C + + . This contras ts with previous ap-
proaches such as J ays 2 securi ty and proof-carrying code,
which are either language-specific or are l imited to type-
safe languages. Finally, MCC can be combined with existing
techniques such as e ryptographic signing and proof-carrying
code to yield addi t ional benefits.

General Terms
Security, Informat ion assurance

*This research is suppor t ed in par t by a ONI t Universi ty
Research Ini t ia t ive grant N000140110967, NSF grants EIS-
9705998, CCR-9876242, IIS-0072927 and CCR-0098154, and
ARO grants DAAD190110003 and DAAD190110019.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NSPW'OI, September 10-13 'h, 2002, Cloudcrof~ New Mexico, USA.
Copyright 2002 ACM 1-58113-457-6/01/0009...$5.00.

Keywords
Mobile code securi ty

1. INTRODUCTION
Mobile code has become am integral pa r t of the Internet . I t
appears in many forms, such as "active pages" (e.g. pages
wi th Java, Javascr ipt , VBScript , or Act iveX content) , con-
tent t ha t invokes plug-ins or helper appl icat ions (e.g. Word,
Excel, Postscr ipt and Powerpoint documents or email at-
tachments) , or software tha t is explici t ly downloaded from
a frseware or commercial site. Since mobile code gets ex-
ecuted with the privileges of the user who downloaded the
code (henceforth referred to as a consumer of the mobile
code), the risk of damage due to malicious or faul ty mobile
code is high. In this paper , we are concerned only with the
risk to the code consumer, and do not address the issue of
risks to the producer due to a (malicious) consumer.

1.1 State-of-the-Art in Mobile Code Security
Many of the techniques current ly deployed in computer se-
cur i ty are not effective when it comes to mobile code. Ap-
proaches such as sand-bozing can provide security, bu t only
at the cost of unduly res t r ic t ing the funct ional i ty of mobile
code (e.g., the code is not pe rmi t t ed to access any files).
Cryptographic code-signing can cert ify the origin (i.e., the
producer) of mobile code and its integrity, bu t does not ad-
dress the fundamenta l risk inherent to mobile code, which
relates to mobile code behavior. This leaves the consumer
vulnerable to damage due to faul ty code (if the producer
can be t rus ted) , or malicious code (if the producer cannot
be t rus ted) .

To midress these inadequacies, several new approaches have
recently been developed to tackle mobile-code security. The
Proof-carrying code (PCC) approach [12] enables safe exe-
cut ion of code fTom un t rus ted sources by requiring a pro-
ducer to furnish a p roof regarding the safety of mobile code.
A consumer can mechanical ly check the correctness of the
proof, and execute the code only ff the proof is correct. The
main pract ical imped imen t in using this approach is the dif-
ficulty of developing proofs, especially when they have to
be machine-checkable, and moreover, opera te on a b inary
representa t ion of code. One proposed solution to this prob-
lem is to use a compiler to au tomat ica l ly generate a proof
frum the source code representa t ion of the mobile code [13].
Whi le au tomat ic generat ion of proofs is possible for simple

23

proper t ies such as m e m o r y safety, a u t o m a t i c p roof gener-
a t i on for more complex p roper t i e s is a d a u n t i n g p rob lem.
A p a r t f rom th i s p rac t ica l difficulty, the re is a more funda-
m e n t a l diff iculty wi th P C C : s ince tk~e p roduce r needs to s end
t he safety proof t oge the r w i t h the mobi le code, the P C C ap-
p roach assumes t h a t the code producer ~r~owa all t)te security
policiea that are o.f intereat to con.,rumers. We believe t h a t
th i s is an unrea l i s t i c a s s u m p t i o n , s ince secur i ty needs va ry
cons ide rab ly across different c o n s u m e r s a n d the i r o p e r a t i n g
e n v i r o n m e n t s .

W h e r e a s P C C places the b u r d e n on t h e p r o d u c e r to iden-
t i fy a n d prove safety p roper t i e s of in te res t to consumers ,
t he Java security model [5] shifts the b u r d e n en t i re ly to t he
c o n s u m e r side. Specifically, J ava 2 provides an access con-
t ro l mecb~=i~m t h a t c an l imi t resource access based on the
i den t i t y of t he code p roducer , and. poss ib ly the i d e n t i t y of
code c o n s u m e r [10]. However, t he policies themse lves axe
dec ided solely by the code constmxer w i t h o u t any involve-
m e n t by t he producer . Thus , th is mode l assumes t h a t the
consumer can deterynine the access requirements of a mobile
application based on its origin, even wi thout an~ knowledge
about the application. Thi s a s s u m p t i o n e i ther leads to an un -
due res t r i c t ion in f u n c t i o n a l i t y of I;he mobi le code, or leads
to a s i t u a t i o n where some applica~.ions are given more ac-
cess t h a n w h a t t h e y need. For example , a c o n s u m e r would
clear ly be wil l ing to allow a d a t a - v i s u a l i z a t i o n p r o g r a m to
r ead the (poss ib ly sensi t ive) flies c o n t a i n i n g t he d a t a to be
visual ized. O n the o the r h a n d , the c o n s u m e r would be un -
wil l ing to let a different p rog ram, such as one t h a t collects
c u s t o m e r feedback u s ing a form e~d sends i t back to the
code p roducer , to r ead such flies.

1.2 NM.~! for N e w Approach
T h e m a i n di iBcul ty w i t h ex i s t ing approaches is t h a t ne i the r
t he p roduce r nor t h e c o n s u m e r ca~ u n i l a t e r a l l y d e t e r m i n e
the secur i ty needs of a mob i l e pro[gram. A p r o d u c e r of mo-
bi le code c a n n o t an t i c ipa t e the secur i ty r e q u i r e m e n t s of the
consumer , s ince each c o n s u m e r m a y have h i s / h e r own se-
cu r i ty r e q u i r e m e n t s a n d policies. Similar ly , t he c o n s u m e r
c a n n o t an t i c ipa t e the access needs of a piece of mobi le code
as these will d e p e n d on t he f u n c t i o n a l i t y of the code a n d on
how it is i m p l e m e n t e d .

An ideal mobi le -code secur i ty fre~nework would enab le a
c o n s u m e r to fo rmal ly reason about; t he secur i ty - re levan t ac-
t ions of a piece of mob i l e code; check if these ac t ions are
c o m p a t i b l e w i th his secur i ty policies; and , if so, execute the
code. T h e compa t ib i l i t y - check ing process would be au to-
m a t e d , b u t if t he re are conflicts , l~he c o n s u m e r would have
the o p p o r t u n i t y to refine his policies, t ak ing in to a~count the
f u n c t i o n a l i t y p rov ided by ~.he mob i l e code. Final ly , w h e n the
code is executed , the f r amework wou ld assure t h a t the code
does no t v io la te t h e c o n s u m e r ' s (ref ined) policies. We pro-
pose a new approach , cal led model-enrrying code (MCC) ,
t h a t seeks to a t t a i n th i s ideal .

M C C is n o t p roposed as an a l t e n l a t i v e to t echn iques such
as P C C or J ava securi ty. P ~ t h e r , M C C fills a void t h a t
is no t addressed b y p rev ious approaches . I t enables b o t h
the c o n s u m e r a n d p r o d u c e r to ~3ord ina te in d e t e r m i n i n g
the secur i ty needs of mob i l e code. Techn iques such as P C C
are c u r r e n t l y l im i t ed to low-level secur i ty p roper t i es such as

m e m o r y safety, a n d t he M C C f ramework can con t inue to
exploi t P C C for es~.ablishing such proper t ies .

2. O V E R V I E W O F A P P R O A C H
T h e key idea in our app roach is the i n t r o d u c t i o n of p r o g r a m
behav io ra l models to b r idge t he s e m a n t i c gap be tween (very
low-level) b i n a r y code a n d high- level secur i ty policies. These
models c a p t u r e s ecu r i t y - r e l a t ed p rope r t i e s of t he code, b u t
do no t c a p t u r e a.~pects of the code t h a t p e r t a i n to its func-
tioned correctness . These mode l s are t h e n sen t by the code
p r o d u c e r to t he code c o n s u m e r , t oge the r w i th the p r o g r a m
(mobi le code). Since these mode l s are m u c h less complex
t h a n progr~rn~ x , i t is feasible for a c o n s u m e r to mechan ica l ly
d e t e r m i n e w h e t h e r a mode l conforms to secur i ty policies of
in te res t . I f t he o u t c o m e of such a check is t rue , t he c o n s u m e r
can safely execu te t he mob i l e code in ques t ion . Otherwise ,
he c a n ref ine his secur i ty policies a n d r e p e a t the checking
procedure . Moreover, p r oduc e r s no longer have to know or
guess the secur i ty policies of i n t e re s t to consumers . Ins tead ,
t hey provide mode l s of s ecu r i ty - r e l evan t p r o g r a m behaviors
t h a t c a n be used to r eason a b o u t m o s t secur i ty proper t ies
of in te res t to a ny consumer . T h e mode ls themse lves m a y
be deve loped e i ther m a n u a l l y , or by u s i ng a u t o m a t e d tech-
n iques t h a t ope ra t e on p rog rams .

T h e use of mode ls enab les us to decompose the secur i ty-
a s su rance a r g u m e n t in to two par ts :

policy con$~ormance: check w h e t h e r t he mode l con-
forms to the pol icy

model soundness: check if t h e m o d e l represen ts a safe
a p p r o x i m a t i o n of p r o g r a m behavior . Ottr n o t i o n of
soundne s s will be b a s e d on t he p a r t i c u l a r execu t ion of
the p r o g r a m t h a t t akes place a t a c o n s u m e r site, r a the r
them be i ng b a s e d on all poss ib le execut ions .

Note t h a t the second p a r t is necessa ry because the con-
s u m e r does n o t necessa r i ly t r u s t a p roduce r . I n pa r t i cu la r ,
t he p r o d u c e r m a y prov ide an incor rec t mode l (i.e., a mode l
t h a t does no t c o r r e s p o n d to the secur i ty - re l evan t behav io r
of mobi le code) e i the r due to mal ice , or due to errors in the
m o d e l - g e n e r a t i o n process. 2

T h e above d e c o m p o s i t i o n of t he s ecu r i t y -a s su rance argu-
m e n t b r o a d e n s t he choice of t e chn iques avai lable to mobi le-
code consumers . For i n s t ance , a c o n s u m e r m a y rely on for-
m a l ver i f ica t ion to e~sure po l icy confo rmance . Models be ing
m u c h s imple r t h a n p rog rams , such a u t o m a t e d ver i f icat ion is
feasible. For e s t ab l i sh ing mode l soundness , a c o n s u m e r m a y
rely on one of t he fol lowing t echn iques :

IFor in s t ance , our m o d e l for a large p r o g r a m such as the
W a s h i n g t o n U n i v e r s i t y F T P server, con ta ins a b o u t 200
s ta tes , as c o m p a r e d to t he source code size of several t hou -
s a n d lines.
2Such errors m a y arise due to h u m a n error or bugs in
an a u t o m a t e d p r o c e d u r e for mode l ex t rac t ion . T h e y m a y
also occur because t he p r o d u c e r a n d c o n s u m e r execute the
code in different r u n t i m e e n v i r o n m e n t s , t h e r e b y memifest~
ing behav iors a t t he c o n s u m e r t h a t differ f rom behaviors
o b s e r v e d / e x p e c t e d b y t h e p roduce r .

24

/
. •

............. / I ,-u,,~y I [Feedback
mmm~

I
/ ",, 2

~ Model)___~ Model I / _ (Consistency~
Generator / - ~ Resolver J

r
z !

/
i !

/
""'"'" i/

Ho7o£3.o / /
/ " • • . . . • • .

/
P r o d u c e r - s i d e / C o n s u m e r - s i d e

I Enforcement J
Model

- (Run- t ime TM -'"
- ~ Moni tor • - "

• • " - • • - ' • " • •

F i g u r e 1: T h e M o d e l - C a r r y i n g C o d e F r a m e w o r k

• runtime-checking: the consumer can monitor execu-
t ion of the mobile code, and atfirm that its behavior is
consistent with the model. Efficient runt ime checking
is feasible when policies are specified in terms of ex-
ternalJy observable events, such as system calls made
by & program to access OS resources [19].

• model-signing: the code and the model may be cryp-
tographically signed by the producer to ensure their
authentici ty and integrity. The consumer may then
t rus t the producer 's claim tha t the model is sound.
Although such model-signing bears some similarity to
code-signing, there is an impor tan t difference. The
notion of t rust is much more clearly defined and nar-
rower in the case of signed models: tha t the consumer
trusts the producer to provide a model tha t faith_tully
captures the security-relevant actions of the code.

• proof-carrying code: a producer may provide a formal,
machine-checkable proof tha t the model is sound. This
proof can be checked by a consumer before the model
is accepted as being accurate.

The first and third techniques allow a consumer to accept
and execute code from unt rns ted producers, while the sec-
ond works only with producers that are t rusted by the con-
sumer. A combinat ion of these techniques may also be
used. s

-qWe note that some classes of security policies are more eas-
ily supported using one of these techniques as compared to
another. For instance, runtime-checking can easily support
enforcement of policies involving resource usage (e.g., CPU
time used), whereas model-signing and possibly PCC ap-
proaches can provide better support for policies that involve
information flow. We also note tha t in genera], resource us-
age policies are difficult (if not impossible) to verify at the
consistency resolution stage, bu t can be easily enforced at
runt ime.

Figure 1 illustrates our approach. In the figure, the model
generator is responsible for generating a model of the security-
relevant behavior of the program. Such a model would cap-
ture all of the security-relevant operations made by the pro-
gram, as well as the temporal relationships between these
operations. The model may also capture information flows
in the program, although this aspect is not explored further
in this paper. Both the code and the model are then sent
to the consumer side, where a consistency resolver checks
whether the model conforms to security policies selected by
the consumer. When a model does not conform to a policy,
the consistency resolver generates a "difference" between the
model and security policy, which will then be presented to
the consumer for further resolution, as shown in the "conflict
feedback" loop in the figure. Alternatively, this difference
may be combined with the model to produce an enforce-
ment mode/ tha t is given to the runtime mor~itor. The run-
t ime monitor is responsible for confining the execution of
mobile code so tha t it conforms to the enforcement model•
At the first instance when the program deviates Erom the
model, it may be terminated. Alternatively, the consumer
may be prompted about the deviation, and queried whether
the deviation is to be permit ted. The run t ime monitor may
provide recovery capabilities to undo the effects of partial
execution of the mobile code.

We expect the run t ime enforcement to be a deterrent mech-
anism against attacks where a producer supplies an invalid
model. Knowing tha t such attacks would be thwarted dur-
ing the execution of mobile code, attackers would look to-
wards or.her ways to attack a consumer. This means that
in practice, models would be sound, and hence the primary
decision point for acceptability of mobile code is the consis-
tency resolver.

25

lo•J(config files)

local_read (icon file) ~ ~

F i g u r e 2: M o d e l oF v e b s C a t

3. AN E X A M P L E S C E N A R I O
C o n s i d e r t h e m o b i l e a p p l i c a t i o n v . s b s t a t , a f r eeware p ro -
g r a m o b t a i n e d f rom an u n t r u s t e d source , w e b s t a t g a t h -
ers a n d p r e s e n t s u sage s t a t i s t i c s f r o m W e b - s e r v e r log files.
Fo r d i s p l a y i n g t h e r e su l t s , i t d o w n l o a d s p l a t f o r m - d e p e n d e n t
icons a n d / o r p lug in s over t h e n e t w o r k . I n t h e r e s t of t h i s ex-
a m p l e , we a s s u m e t h a t t h e s e c u r i t y pol ic ies of t h e c o n s u m e r
a re de f ined on a s i t e - w i d e bas i s , a n d we h e n c e refer to t h e m
as "s i te pol ic ies" as o p p o s e d t o " c o n s u m e r pol ic ies ."

T h e c o n s u m e r s i t e c o n s i d e r s t h e c o n t e n t s of W e b - s e r v e r log
files to b e p r i v a t e a n d w a n t s to p r o t e c t t h e m f r o m b e i n g
e x p o r t e d . I n o u r e ~ a m p l e , t h i s s e c u r i t y r e q u i r e m e n t is in i -
t i a l l y s t a t e d as policies t h a t c l a s s i ly m o b i l e a p p l i c a t i o n s as
]ile-only or communication-only. P i l e - o n l y a p p l i c a t i o n s can
r e a d al l files b u t h a v e no n e t w o r k access , a n d a re ve ry l i m i t e d
in t e r m s o f w r i t e o p e r a t i o n s on files. C o m m u n i c a t i o n - o n l y
a p p l i c a t i o n s have n e t w o r k access b u t c a n n o t access a n y files.

I n t h e IV[CC a p p r o a c h , t h e code for e e b s C a t comes e q u i p p e d
w i t h a b e h a v i o r m o d e l . I n ou r e ~ m p l e , t h e m o d e l is t h e
a u t o m a t o n shown in F i g u r e 2. T h e m o d e l is e x p r e s s e d as an
e x t e n d e d f i n i t e - s t a t e a u t o m a t o n (E F S A) , i.e. a f i n i t e - s t a t e
a u t o m a t o n whose s t a t e s a r e a n n o t a t e d w i t h d a t a va r i ab l e s
a n d va lues , a n d w h o s e t r a n s i t i o n s w e ~ = = o t a t e d w i t h even t s
a n d c o n d i t i o n s on even t a r g u m e n t s . T h e m o d e l in t h e f igure
is a n a b s t r a c t ve r s i on of t h e p r o d u c e ~ - s u p p l i e d m o d e l . T h e
ful l m o d e l is g iven in t e r m s of louver-level even t s such as
s y s t e m cal ls , a n d a lso h a s t r a n s i t i o n s on o t h e r even t s such
as w r i t e s t o t e m p o r a r y files. We, have chosen to p r e s e n t
a n a b s t r a c t , h igh- leve l ve r s ion of t h e m o d e l t o s imp l i fy our
p r e s e n t a t i o n .

Clear ly , v e b s c a t is n e i t h e r a f i l e -on ly n o r a c o m m u n i c a t i o n -
o n l y a p p l i c a t i o n , a n d h e n c e v i o l a t e s t h e s e c u r i t y pol ic ies .
T h e c o n s i s t e n c y rosolvez d e t e c t s t h i s v i o l a t i o n a n d in fo rms
t h e c o n s u m e r t h a t a v i o l a t i o n o f t h e p o l i c y ar ises d u e to t h e
f ac t t h a t v e b s t a t m a k e s a n e t w o r k access . T h e c o n s u m e r ,
a t t h i s po in t , h a s t h e o p t i o n of g e t t i n g f u r t h e r i n f o r m a t i o n
f r o m t h e c o n s i s t e n c y r e so lve r r egm:d ing t h e conf l ic t , such as
a c o m p l e t e s c e n a r i o t h a t i l l u s t r a t e s t h e confl ic t . T h i s in-
f o r m a t i o n c a n b e u s e d t o rev ise t h e pol icy . A less soph i s t i -
c a t e d c o n s u m e r m a y choose t o r e ly on a h i e r a r c h y o f s e c u r i t y
po l ic ies t h a t have b e e n p r e - d e f i n e d b y a loca l s e c u r i t y ad-
m i n i s t r a t o r t o a i d in p o l i c y r e f i n e m e n t . S u p p o s e t h a t t h i s
h i e r a r c h y p r o v i d e s s eve ra l r e f i n e m e n t s to t h e "f i le-only" pol -
icy, one of w h i c h is no access to securitT/-critic~zl ~iea, and no
ezternal network access n ~ e r read f rom sensitive files. N o t e

t h a t t h e r e v i s e d p o l i c y r e d u c e s access to c e r t a i n o p e r a t i o n s
(e.g. r e a d s on s e c u r i t y - c r i t i c a l fi les), wh i l e i nc r ea s ing access
t o c e r t a i n o t h e r o p e r a t i o n s (e.g. s e n d o p e r a t i o n s over t h e
ne twork) .

Also , in t h e r e v i s e d pol icy , t h e n o t i o n s of w h i c h files a re con-
s i d e r e d sens i t i ve (or s e c u r i t y - c r i t i c a l) , a n d w h i c h hos t s a re
c o n s i d e r e d e x t e r n a l , is s i te -spec i f ic . I n t h i s case, t h e W e b -
se rve r log files a r e c o n s i d e r e d sens i t ive , whi l e a file t h a t con-
tai~.q access p e r m i s s i o n s for r e m o t e access
(e.g. / e Z e / h o s t s . d e n y) m a y b e c o n s i d e r e d s ecu r i t y - c r i t i c a l .
In a d d i t i o n , t h e r e v i s e d p o l i c y i l l u s t r a t e s t h e ab i l i t y of our
a p p r o a c h t o c a p t u r e t e m p o r a l b e h a v i o r . O u r l a n g u a g e for
r e p r e s e n t i n g s e c u r i t y po l ic ies wi l l a lso b e b a s e d on E F S A ,
b u t t h i s a u t o m a t o n will t y p i c a l l y o p e r a t e over h ighe r - l eve l
even t s (e.g. , '~read f r o m sens i t i ve f i les") t h a n t h o s e u s e d in
t h e m o d e l E F S A . E a c h h igh - l eve l e v e n t wil l i t se l f b e de f ined
in t e r m s o f a n E F S A on low- leve l even t s such as s y s t e m
cal ls , a n d h e n c e i t is p o s s i b l e to t r s n s l a t e t h e p o l i c y E F S A
in to one t h a t o p e r a t e s on low-level e v e n t s u s e d in t h e m o d e l
E F S A .

T h e m o d e l of r e b a t e r sa t i s f ies t h e r e f ined p o l i c y a n d hence
v a b s t a t can b e run . I n genera l , however , t h e c o n s i s t e n c y
r e so lve r m a y b e ab l e t o p r o v e t h e p r o p e r t y on ly w i t h ad -
d i t i o n a l c o n s t r a i n t s on t h e p r o d u c e r - s u p p l i e d m o d e l . Fo r
i n s t ance , t h e p r o d u c e r - s u p p l i e d m o d e l m a y sugges t t h a t t h e
p r o g r a m m a y r e a d a r b i t r a r y files f rom t h e / v e x / l o g / d i r e c -
t o ry , whi l e t h e s e c u r i t y p o l i c y m a y a l low on ly r e a d s f r o m t h e
/ v a x / l o g / h t t p d d i r ec to ry . I n t h i s case, t h e c o n s i s t e n c y re-
so lver w o u l d i n d i c a t e t h a t t h e m o d e l sa t i s f ies t h e pol icy , p ro -
v i d e d t h e file accesses a r e r e s t r i c t e d to
/ v a x / l o g / h t t p d d i r ec to ry . I n t h e w o r s t case, t h e consis-
t e n c y reso lve r m a y n o t b e a b l e t o ve r i fy t h e p o l i c y a t all .
I n e i t h e r case, t h e c o n s u m e r m a y wish to r u n t h e code . In
o r d e r to m a k e su re t h a t t h e c o d e c a n n o t v i o l a t e t h e secu-
r i t y pol icy , t h e c o n s i s t e n c y r e so lve r g e n e r a t e s a n enforce-
merit model, w h i c h c a p t u r e s b e h a v i o r s t h a t a re p e r m i t t e d
b y t h e p r o d u c e r - s u p p l i e d m o d e l as well as b y t h e c o n s u m e r -
s e l e c t e d s e c u r i t y pol icy . B y m o n i t o r i n g r u n t i m e b e h a v i o r
u s ing t h e e n f o r c e m e n t m o d e l , we c a n e n s u r e t h a t a r u n of
t h e code c a n n o t v i o l a t e t h e c o n s u m e r ' s s e c u r i t y pol icy.

3.1 Features of the M C C Framework
As i l l u s t r a t e d in F i g u r e 3, t h e m o d e l - b a s e d a p p r o a c h en-
forces s e c u r i t y in t h r e e s t eps : (1) b y ve r i fy ing t h a t t h e m o d e l
of t h e m o b i l e c o d e sa t i s f ies t h e s e c u r i t y pol ic ies , (2) b y gen-
e r a t i n g a n e n f o r c e m e n t m o d e l as a r e s u l t of t h e ve r i f i ca t ion
run , a n d (3) b y e n s u r i n g t h a t a r u n of t h e c o d e con fo rms
to t h e e n f o r c e m e n t m o d e l . T h e s a t i s f a c t i o n r e l a t i on , r ep re -
s e n t e d in t h e f igure as " ~ " , mean~ t h a t euery r u n of t h e
m o d e l is c o n s i s t e n t w i t h t h e pol icy . T h e c o n f o r m a n c e re la -
t i on w h i c h t a l k s o n l y a b o u t p a r t i c u l a r r u n s of t h e code is
r e p r e s e n t e d in t h e f igure as "=~ ' . A m o r e d i r e c t a p p r o a c h is
to ensure , b y r u n t i m e m o n i t o r i n g , t h a t a r u n of t h e m o b i l e
code c o n f o r m s to s e c u r i t y pol ic ies . Se ve ra l k e y a d v a n t a g e s of
M C C over e ~ t i n g t e c h n o l o g y as wel l as a d i r e c t - m o n i t o r i n g
a p p r o a c h , a r e a p p a r e n t f r o m t h e a b o v e scenar io .

• A m o b i l e a p p l i c a t i o n such as v e b s t a t c a n n o t b e se-
cuze ly r u n us ing c u r r e n t t~ -h~o logy . Fo r in s t ance ,
p r o o f - c a r r y i n g c o d e is n o t a p p l i c a b l e s ince t h e p r o p -

26

Model
Generator)

t

_•Cousistcncy• Reselver J Model I = Policy

I Enforcement I Enforcement Model
Model Model I= A Policy

R.a-r~ae) run(Cede) ==>
Monitor Enforcement

Model !
I

run(Code) ==> Policy

F i g u r e 3: L o g i c a l v i e w o f t h e M o d e l - C a r r y i n g C o d e F r a m e w o r k

er ty to be proved is site specific (e.g. wha t are sensitive
files?); hence the proof cannot be provided by a pro-
ducer oblivious to the consumer 's requirements. The
Java securi ty architecture, as well as a number of o ther
proposals on mobile-code and mobile-agent security,
are based on a ref inement of t radi t ional access-control
mechanisms. They cannot express the t empora l as-
pects of permissions (e.g. no network access after read
f rom. . .). Moreover, the access-control decisions are
made based on the wishes of the code producer and
consumer, wi th no regard for the funct ional i ty pro-
vided by the mobile code.

If run t ime moni tor ing is used as the sole means of en-
suring security, an appl icat ion must be run "in iso-
lation" so t ha t its effects are observable to the out-
side only when its execution satisfies the securi ty poli-
cies. Isolation, rollback, and commi tmen t are difllcu]t
to achieve when appl icat ions communica te wi th the
external world.

The feedback offered by the model -based approach is
crucial for refining securi ty policies. I t should be noted
tha t securi ty policies may be refined in different ways,
depending on the appl icat ion at hand. For instance,
the same si te in the above scenario may want to run
a SATAN-like appl icat ion to look for sys tem ruiner-
abilities. For such applicat ions, i t is conceivable tha t
the policy to be enforced would allow read access to
the entire file system, but disallow writes of any kind
except to the screen and/or to a specific ou tpu t log
file.

4. REALIZING MCC
In this section, we outl ine our technical approach for real-
izing each of the components of the MCC framework. A
comprehensive t r ea tmen t of each of these areas is outside
the scope of this paper . W h a t we a t t e m p t here is to t ry
to convince the reader tha t each of the components m n be
real/zeal.

The s ta r t ing point for model -car ry ing code is our work on
specif icat ion-based intrusion detect ion [1, 19]. This approach
is based on specifying securi ty-relevant behavior of programs
in a high-level language called Behavior Monitoring Specifi-
cat ion Language (BMSL). We model behaviors of programs

in te rms of systems calls made dur ing execution. At run-
t ime, the execution of these programs is monitored, and any
deviat ions f~om specified behavior are flagged as intrusion
efforts. Since sys tem calls can be observed external ly from
a program, the approach can be used for COTS software
wi thout modificat ion. Our research to da te has shown tha t
(a) BMSL enables convenient and concise specification of
securi ty-relevant p rogram behaviors , and (b) runt ime mon-
i tor ing can be performed with very low overheads (5% or
less) [1, 19]. Many of the techniques descr ibed for realizing
the different components of MCC are based on this research.

4.1 Modeling Language
As descr ibed in the example, we use ex tended fini te-state
a u t o m a t a (EFSA) to represent p rogram models [19]. E F S A
are s imply s t a n d a r d finite s ta te au tomaton (FSA) tha t are
augmented with the abi l i ty to store values in a fixed number
of state variables, each capable of s toring v~lues over a finite
or inR=ite domain. The s ta te of the E F S A is thus charac-
ter ized by its control state (which has the same meaning as
the notion of "state" in the case of FSA) , plus the values
of these s ta te variables. (Henceforth, the t e rm state will
be used to refer to the control s ta te of an EFSA.) Transi-
t ions in the E F S A are each associa ted with an event, an
enabling condit ion involving the event arguments and s ta te
variables, and a set of assignments to s ta te variables. For
a t ransi t ion to be taken, the associated event must occur
and the enabling condi t ion must hold. W h e n the t rans i t ion
is taken, the assignments associated with the t ransi t ion are
performed.

The event a lphabe t of the E F S A will consist of system-cal l
names. Since all access to resources is media ted by the
opera t ing system, and all appl icat ions obta in resource ac-
cess through the opera t ing sys tem's system-cal l interface,
expressing securi ty-relevant behaviors in terms of system-
call sequences is a good choice. This hypothesis has been
val ida ted by many research .efforts in intrusion detection,
including our own.

Whi le sys tem calls are a na tu ra l choice for the event alpha-
bet , this choice does not preclude o ther possibilities. For
instance, in the context of Java, we m a y choose to model
security-relevLut behaviors in terms of higher-level opera-
tions, such as those tha t opera te on I / O streams. Even
within the context of p rograms wr i t t en in C, one may choose

27

to r ep resen t secur i ty p roper t i e s in t e r m s of ope ra t ions on a
higher-level API , such as t he func t ions def ined in l i b ¢ .

Note t h a t r egu la r expressions, FSA, or w - a u t o m a t a based
approaches [15] c an also express behav iors in te rms of sys t em-
call sequences. However, t h e y lack the power to refer to
sys tem-ca l l a r g u m e n t s , e.g., t h e y csamot c a p t u r e the differ-
ence be tween the o p e n i n g of a file m the / t rap d i rec tory or
the o p e n i n g of t he password file. I n con t ras t , E F S A can
represen t such d i s t inc t ions . T h e y can also represen t prop-
ert ies t h a t r equ i re sys tem-ca l l a r g u m e n t s used in the pas t ,
e.g., a p r o g r a m opens a file whose n a m e was p rov ided as
a c o m m a n d - l i n e a r g u m e n t (i.e., as a n a r g u m e n t to an exe©
s y s t e m call execu ted in the pas t) .

4.2 Security Policies
Secur i ty policies will also be r ep resen ted us ing E F S A . T h e
p r i m a r y difference b e t w e e n secur i ty policies a n d models is
t he a l p h a b e t over which t h e y opera te . Secur i ty policies will
refer to m u c h higher- level even t s t h a n models , which would
enab le consumers to descr ibe the i r policies a t a h igher level
of a b s t r a c t i o n them s y s t e m cedis. Moreover, t he policies will
be pa rame te r i zed , so as to a c c o m m o d a t e site-specific cus-
t o m i z a t i o n v ia i u s t a n t i a t i o n of th~me pa rame te r s . For in-
s tance , we i n t e n d to c a p t u r e a concep t such as "read f rom
a sensi t ive file" as a high-level event . T h i s even t is paxame-
te r ized w i th respect to t.he set SF of sens i t ive files.

4.3 Runtime Monitoring
l ~ u n t i m e moni t .or ing consis ts of i n t e r c e p t i n g secur i ty - re levan t
events , a n d m a t c h i n g t h e m against, mode l s of expec ted be-
havior of mob i l e code. W e have p rev ious ly deve loped a sys-
t e m for r u n t i m e m o n i t o r i n g t h a t opera tes on E F S A models
a n d takes s y s t e m calls as i n p u t [19, 1]. O u r e x p e r i m e n t s
show t h a t r u n t i m e m o n i t o r i n g can be pe r fo rmed very effi-
ciently, a d d i n g less t h a n a 5% overhead to the execu t ion
t i m e of m o s t p rograms . W e expe¢~ to be able to use th is
s y s t e m for r u n t i m e m o n i t o r i n g for MCC.

No te t h a t even if a p r o g r a m does nr,t dev ia t e f rom its model ,
it m a y sti l l no t have p e r f o r m e d t h e ,~omputat ion expec ted by
t h e user. For in s t ance , a maliciot~i p r o g r a m p u r p o r t i n g to
do file compress ion m a y remove its i n p u t file without, pro-
duc ing a useful compressed file ou.tput. To deal wi th th is
p rob lem, we can isolate the ope ra t ions of mob i l e code in an
e n v i r o n m e n t where no o the r p r o g r a m can view the resul ts
of i ts c o m p u t a t i o n . (If t h e mob i l e , 'ode executes as mu l t ip l e
processes, t he u n i t of i so la t ion inc]:udes all such processes.)
After the mob i l e code comple tes execut ion , the user m a y
check t h a t t he p r o g r a m pe r fo rmed as expected , a n d t h e n
c o m m i t t he changes m a d e by t he ¢~de so t h a t t h e y are vis-
ible to the rest of t h e sys tem. Clearly, such i so la t ion m a y
no t always possible, e.g., t he mobi le code m a y c o m m u n i -
ca te w i th r emote sites. B u t for the more c o m m o n case of
r e m o v i n g or u p d a t i n g files, such i so la t ion is achievable by
i n t e r cep t i ng s y s t e m calls t h a t open a file for wr i t i ng a nd
t ranMparent ly r ed i rec t ing t h a t o p e r a t i o n to a different file.

A l t h o u g h our ex i s t ing r u n t i m e m o n i t o r i n g s y s t e m opera tes
on sys t em calls, ou r app roach is by no m e ~ s res t r i c ted by
this . I t is re la t ive ly easy, for i n s t ance , to develop r u n t i m e
m o n i t o r i n g t echn iques for J ava progrRm-q b y add ing hooks
in to the J V M to i n t e r cep t a r b i t r a r y f u n c t i o n calls m a d e by

Java p rograms a n d feeding t h e m in to a moni to r . A l t e rna -
tively, t he m o n i t o r could be used to replace the secur i ty-
m a n a g e m e n t re la ted classes w i t h i n the JVM.

4.4 Model Generation
Observe t h a t the m o d e l - g e n e r a t i o n process has to ba l ance
the confl ic t ing r e q u i r e m e n t s of ease of cons i s t ency reso lu t ion
(which argues in favor of " th rowing away" as m u c h infor-
m a t i o n f rom t he p r o g r a m s as poss ible) a n d t he danger of
l eav ing ou t i n f o r m a t i o n of in te res t to a c o n s u m e r (which ar-
gues in favor of r e t a i n i n g as m u c h i n f o r m a t i o n in the mode l
as possible) . We propose a t rade-of f t h a t cap tu res mos t of
the secur i ty - re levan t i n f o r m a t i o n of in te res t to consumers ,
while still be ing a m e n a b l e to a u t o m a t e d verif icat ion. We
propose to express mode ls of p r o g r a m behav io r us ing (non-
de t e rmin i s t i c) E F S A . O n e way to gene ra t e such models is
to abstract t h e source code of a p r o g r a m so as to r e t a i n on ly
those po r t i ons t h a t r e la te to s y s t e m calls m a d e b y the pro-
gram. A n approach for de r iv ing f in i t e - s ta te mode ls us ing
p r og r a m analys is is desc r ibed in [20], where these models
are used for i n t r u s i o n de tec t ion .

A d rawback of approaches ba se d on s ta t ic analys is is t ha t
t hey are language-speci f ic , t h u s neces s i t a t i ng r edeve lopmen t
for each p r o g r a m m i n g language . Moreover, for conven t iona l
l anguages such as C a n d C-t-+, th i s approach suffers f rom
the fact t h a t we m a y no t have source code access to l ibraries ,
especial ly those t h a t are loaded dynamica l ly . F ina l ly , ex-
t e n d i n g the approach to p r oduc e E F S A mode ls (ra the r t h a n
F S A models) t h a t c a n c a p t u r e r e l a t ionsh ips be tween sys t em
call a r g u m e n t s is very difficult, due to l i m i t a t i ons of pro-
g r am analysis . Therefore , we cons ider an approach based on
m a c h i n e - l e a r n i n g to be a m o r e p r omi s i ng a l t e rna t ive . This
approach has t he a d d i t i o n a l benef i t t h a t i t is o b t a i n e d by
obse rv ing t h e execu t ion of a p r o g r a m u n d e r typ ica l condi-
t ions, a n d as such, c a n be m o r e accu ra t e t h a n compi l e - t ime
techniques .4

We have a l ready deve loped a n approach for l ea rn ing pro-
g r a m behav io r s as f in i t e - s t a t e m a c h i n e s in t he con tex t of
our prev ious work on a n o m a l y i n t r u s i o n de tec t ion [18]. Our
approach genera tes c o m p a c t mode l s (c on t a in ing a few to
several h u n d r e d s ta tes , even for complex p rog rams such as
F T P a n d Apache web server) . A l i m i t a t i o n of our cu r r en t
app roach is t h a t i t does n o t c a p t u r e sys tem-ca l l a r g u m e n t
values. A n ex t ens ion of ou r t e c h n i q u e to address this l imi-
t a t i o n is u n d e r way.

4.5 Consistency Resolution
As discussed in t he c on t e x t of the w e b s t a t example consid-
ered above, the cons i s t ency resolver is conce rned wi th (a)
ver i fy ing w he t he r a mode l satisfies a policy, a n d (b) pre-
s en t ing the "difference" b e t w e e n t h e m to t he user, a n d help
the user refine t he pol icy as appropr i a t e . In th i s sect ion,
we conce rn ourselves on ly w i th (a). A possible t echn ique to

*It m u s t be no ted , however , t h a t the mode l s l ea rn t b y r u n -
t i m e m o n i t o r i n g are no t conserva t ive . T h u s , even if t he
mode l of a p r o g r a m satisfies a s ecu r i ty policy, t h e p r o g r a m
m a y in fact v io la te t he policy. However, th i s factor does
n o t nega t e t h e safety g u a r a n t e e s p rov ided by the M C C ap-
proach. T h r o u g h r u n t i m e m o n i t o r i n g , we would discover
t h a t the p r o g r a m is e x h i b i t i n g behav io r s i ncons i s t en t wi th
the model , a n d a b o r t it .

28

simplify user choices in (b) using a policy hierarchy was out-
lined in the example, bu t we do not discuss this any further
in this section,

We rely on formal verification to determine whether a model
satisfies a policy. Our techniques will be based on model
checking [2], a popular technique originally proposed for ver-
ifying temporal properties of finite-state systems. Since the
policies as well as the models are captured in the form of
state machines, our techniques will draw on the automata-
theoretic formulation of model-checking [9].

If M denotes the model of a mobile program, and P de-
notes a security policy, then verification amounts to check-
ing if M =~ P. Noting tha t M and P are represented as
state machines, we can th ink of the languages L(M) and
L(P) accepted by these machines. Now, implication check-
ing amounts to determining whether L (M) N L (P) ' is empty.
(Here, L(P) ~ denotes the complement of the language L(P).)
Note, however, tha t we are interested in the "difference" be-
twsen P and M, as we wish to present this information to
a user as part of conflict resolution. This difference is given
by L(M) n L (P) ' , so we will simply present this to the user.
We discuss the computa t ion of this difference below.

If M and P axe represented using FSA (rather than EFSA),
then operations such as intersection and complementat ion
axe straightforward. In the case of EFSA, we face the prob-
lem tha t such complementat ion and intersection problems
may be undecidable in general. We tackle this problem in
two steps. For complementat ion, we note- tha t the security
properties of interest axe usually safety properties, which are
of the form tha t Ucertain bad things do not happen." (In
the example, we considered the property "a network write
operation does not occur after a read of a sensitive file.") It
is thus easier for users to specify an EFSA corresponding to
the occurrence of the "bad thing" and state tha t this should
not happen. Such an EFSA directly captures the negation
of the property we require, and hence complementat ion is
no longer an issue.

To tackle the problems posed by taking the intersection of
EFSA, we make use of the following approach. We simply
use the s tandard FSA intersection algorithm on EFSA. Let
M and P~ be the two EFSA corresponding to the model
and the complement of the security policy, respectively. The
EFSA D corresponding to their intersection is constructed
as follows. The state variables of D consist of the union
of state variables for M and P ' . The initial state of D is
the state (m~,p~), where m~ and p" are the initial states
of M and P', respectively. Now, we add new states and
transit ions to D as follows. For each state (sl, s2) in D such
that there exists a t ransi t ion on an event e from a state al to
s_q of M and s2 to s4 o f / ~ , we add the state (s.q, s4) to D (if
this state is not already there). We also create a t ransi t ion
from (s l , s2) to (as,s4) on e whose enabling condit ion is
the conjunction of the corresponding enabling conditions in
M and P~. The assignment operations associated with this
t ransi t ion are simply the union of the assignment operations
on the corresponding transi t ions in M and P~.

The catch with this simple algorithm is tha t it may gen-
erate an EFSA tha t contains unrealizable paths. Thus, we

may not be able to tell whether D accepts a nonempty lan-
guage or not. At this point, we do not know whether this
is a problem that is likely to be encountered frequently. For
instance, this problem does no t occur in several examples
we have studied to date, including the one presented in this
paper. When it does occur, the downside will be tha t the
user is given the impression tha t the mobile code may vio-
late a security policy when it does not. Clearly, this is much
less serious than the case when a user is told tha t a model
does not violate h is /her policy when it does. Even so, we
are currently investigating techniques to minimize such in-
stances, by pruning away paths in D tha t are unrealizable.
This research is based on our current work in infinite-state
model checking.

$. IMPLEMENTATION STATUS
Of the components ment ioned in the previous section, we al-
ready have prototype implementat ions of (a) the languages
for expressing security policies and program models, (b) run-
t ime monitoring, and (c) model generation. These imple-
mentat ions were taken from our previous research in intru-
sion detection [19, 7, 1, 18].

We have only recently begun the implementa t ion of the con-
sistency resolver, using our XMC model-cheeker [3, 16] based
on the XSB system [21, 14]. So far, we have succeeded in
verifying security properties for simple examples, such as
the one described in this paper. We do not envision any
problems scaling these results to larger examples, as the ex-
ecution times are adequate (in the range of tens to hundreds
of milliseconds in our initial prototype), and because the al-
gorithm~ in use are designed to provide good performance,
possibly at the cost of being appro~dmate.

We have also prototyped an implementa t ion of the conflict
resolver, where the technical problem is one of presenting
the conflicts identified by the verifier in a nser-friendiy form.
Our prototype is based on our earlier research in proof jus-
tification [17].

6. SUMMARY
In this paper, we presented a new approach tha t promises to
lead to a comprehensive solution to the problem of mobile-
code secarity, providing the following features:

Support for mobile code from untruated sources. The
ability to enforce behaviors at run t ime enables safe
execution of code from un t rns t ed sources. The run-
t ime monitor can provide isolation capability so that
changes made by a mobile application can be undone
in the event of a policy violation~ provided the appli-
cation does not communicate with other applications
or sites.

Secure mobile code '%ere and now." PCC technol-
ogy appears to be still far away from universal deploy-
ment , mainly due to source-language restrictions and
the classes of properties tha t can be verified automati-
cally. Java security is not applicable to the vast major-
ity of mobile code tha t is wri t ten in other languages.
In contrast, our approach is directly applicable to ex-
isting mobile code. Even in the absence of models from

29

the producer, we can ensure security by enforcing the
policies on the code directly at runtime.

Ezpressiue language for speciflrmg consumer security
policies. Our approach provides a high-level language
in which security policies can be expressed concisely
and conveniently. The language is expressive enough
to specify not only invariant properties, but also tem-
poral properties such as "mobile code can overwrite
or delete only those files it created previously," and
"no operations to send da ta over a network are per-
mit red after read operations on certain sensitive files."
Such policies, which rely on sequencing relationships
between different operations, cannot be expressed in
existing f~a~neworks for mobile code security such as
Javl~.

Synergy with e.zisting approac~.es. As mentioned be-
fore, o u r approach can be combined with existing ap-
proaches such as eryptographic signing (for authen-
ticity and integrity), and proof carrying code. Such
combinations of techniques ma:v render runt ime moni-
toring nnnecessary. The elimin;stion of runt ime checks
can improve performance, but perhaps more impor-
tautly, will allow our approach to deal with proper-
ties tha t cannot be efficiently checked by monitoring
security-relevant operations, e.g., properties relating
to information flow. (Such properties would require us
to reason about every assignment in the program.)

These capabilities are achieved in our approach without plac-
ing an undue burden on either the code producer or the
consumer.

. R E F E R E N C E S
[1] 1~ Bowen, D Chee, M Segal, R Sekax, P Uppuluri,

and T Shanbag. Building sur~dvable systems: An
integrated approach based on intrusion detection
and co-Rnement. In DARPA Information Security
Symposium, 2000.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automat ic verification of finite-state concurrent
systems using temporal logic specifications. ACM
TOPLAS, 8(2), 1986.

[3] B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C. 11.
t tamakrishnan, I. V. Ramakri~hnan,
A. I~ychoudhury , S. A. Smolka, and D. S. Warren.
Logic programming and model checking. In Static
Analysis Symposium. Springer Verlag, 1998.

[4] S Forrest, S Hofmeyr, and A Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 1998.

[5] L Gong. Inside Java ~. Platform Security:
Architecture, API Design, and Implement=tion.
Addison-Wesley Pub Co, 199.S.

[6] G. J. Holzmemn. The model checker SPIN. IEEE
7~naactiona on So~ware Engineering,
23(5):279-295, May 1997.

[7] K Jain and 11 Sekar. User-level infrastructure for
system call interposition: A platform for intrusion
detection and confinement. In ISOC Network and
Distributed Sgstem Security, 2000.

[8] C Ko, G Fink, and K Levitt. Au tomated detection
of vulnerabilities in privileged progl'arn~ by
execution monitoring. In Computer Security
Application ConJerence, 1994.

[9] R Kurshan. Computer Aided Verification of
Coordinating Processes: The Automata-Theoretic
Approach. Princeton University Press, 1994.

[10] C. Lai, L. Gong, L. Koved, A. Na~lalin, 11. Schemers.
User Authent icat ion and Authorizat ion in the Java
Platform. Annual Computer Security Applications
Conference, 1999.

[11] K. Milner. Communication and Concurrency.
International Series in Compute r Science. Prentice
Hall, 1989.

[12] G Necula. Proof carrying code. In ACM Principles
of Programming Languages, 1997.

[13] G Necula and P Lee. The design and implementation
of a certifying compiler. In Programming Languages
Design and Implementation, 1998.

[14] Y. S. l~mal~rishna, C. EL.]qArnaJ~rishnan, I. V.
Ramakrishnan, S. A. Smolka, T. L. Swift, and D. S.
Warren. Efficient model checking using tabled
resolution. In Proceedings of the 9th International
Conference on Computer-Aided Verification
(CAV '97), Ha&fa, Israel, July 1997. Springer-Verlag.

[15] F. Schneider, Enforceable Secuxity Policies, ACM
Transactions on Information Systems Security, 3(1),
2000.

[16] C.11. lqA.makrishnem, I.V. lq~maJLrishnan, S.A.
Smolka, Y. Dong, X. Du, A. 11oychoudhtlry, and
V.N. Venkatalrxishnan. XMC: A
logic-programming-based verification toolset. In
Compnter A~ded Verification (CA]/'), 2000.

[17] A. P~oychoudhury, C. R. Kamakrishnan, and I. V.
B~makrishnan. Justifying proofs using memo tables.
In ACM Conference on Principles and Practice of
Declarative Programming (PPDP), 2000.

[18] 11. Sekar, M. Bendre, P. Bollineni and D. Dhttrjati,
A Fast Automaton-Based Approach for Learning
Program Behaviors, I E E E Symposium on Security
and Privacy, 2001.

[19] 11. Sekar and P. Uppuluxi. Synthesizing fast
intrusion prevent ion/detect ion systems from
high-level specifications. In USENIX Security
Symposium, 1999.

[20] D. Wagner and D. Dean, Intrusion detection via
static analysis, I E E E Symposium on Security and
Privacy, 2001.

[21] XSB. The XSB tabled logic progr=mming system.
Available fTom htl;p : / / x e b . = o u ~ c e f o r g e . n e t .

30

