
Breaking the Barriers: High Performance Security for
High Performance Computing

Kay Connelly
Indiana University

150 S. Woodlawn Ave.
Bloomington, IN 47405

(812) 855-0739
connelly@indiana.edu

Andrew A. Chien
University of California, San Diego
9500 Gilman Drive, Dept. 0114

La Jolla, CA 92093-0114
(858) 822-2458

achien@cs.ucsd.edu

ABSTRACT
This paper attempts to reconcile the high performance
community's requirement of high performance with the need
for security, and reconcile some accepted security approaches
with the performance constraints of high-performance
networks. We propose a new paradigm and challenge existing
practice. The new paradigm is that not all domains need long-
term forward data confidentiality. In particular, we take a fresh
look at security for the high-performance domain, focusing
particularly on component-based applications. We discuss the
security and performance requirements of this domain in order
to elucidate both the constraints and opportunities. We
challenge the existing practice of high-performance networks
sending communication in plaintext. We propose a security
mechanism and provide metrics for analyzing both the
security and performance costs.

General Terms
Distributed Computing, High Performance, Security.

1. INTRODUCTION
Over the past decade, high performance networks of
workstations have replaced supercomputers for scientific
parallel computations. As these clusters have become easier to
manage and use, distributed applications outside of parallel
scientific codes have targeted this platform as well. Search
engines, airline reservation systems and command-and-control
systems are just a few such applications. The combination of
low-cost and high-performance execution has made such
systems desirable to a wide variety of industries. In particular,
developments in user-level communication layers have
enabled applications to access the raw performance of such
networks. Applications achieve peak bandwidths over 1Gbps,
and latencies on the order of 10 to 20 microseconds.

With the focus centered on performance, there has been little
research into security for high performance systems. Much of
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
New Security Paradigms Workshop '02, September 25-26, 2002,
Virginia Beach, Virginia.
Copyright 2002 ACM ISBN 1 -58113-598 -X /02 /0009 . . .$5.00

the security-related work in the high performance computing
(HPC) community addresses how to securely communicate to
high-performance applications from the wide-area (i.e.: how to
retrieve remote data sets or how to securely start a remote high-
performance application) [1, 6].

But, beyond simple logins and access rights associated with
those logins, there are few security mechanisms being
regularly employed within the high-performance clusters,
themselves. In terms of the communication going over the
high performance network, the standard practice is to have no
security. All data is sent in plaintext. The main goal is to keep
the communication overhead to a minimum. Grafting an
existing encryption mechanism onto the communication path
is not seriously considered due to the relatively high
overheads. A typical symmetric key encryption algorithm
incurs an overhead of milliseconds, which is two to three
orders of magnitude greater than the network latency in high-
performance networks. Using such a mechanism would take
the "high performance" out of HPC. Now that industry and the
military are seriously pursuing high performance clusters as
an environment to run their distributed applications, the I-IPC
community must revisit the issue of security.

Distributed components are quickly becoming the
programming model o f choice for distributed high
performance applications [16]. In this type of model, the
functionality of the application is encapsulated in multiple
components and spread over the network. In order for the
application to make any forward progress, components must
interact with other components via remote procedure calls
(RPC). Thus, the state of the execution of the application can
be pieced together with these RPCs.

One noticeable effect of low-latency communication is that the
ideal balance of computation and communication changes
dramatically from traditional TCP/IP over Ethernet. On the
slower networks, a component must compute a lot and
communicate rarely in order to achieve its peak performance.
If it doesn't have enough computation to keep it busy while
waiting on the results from an RPC, then it becomes idle
waiting on the network. In the high performance domain,
communication is many orders of magnitude faster. Thus,
components can have much less computation, and still not
block on the network. This results in applications that have
many fine-grained components (as opposed to fewer, larger
components). Finer-grained applications have more RPCs,
making a more detailed state-reconstruction possible.

36

There are two important security attack scenarios for high
performance component applications. The first is for an
attacker to send RPC messages to various components in order
to change the execution of the application. The attacker may
not need to reconstruct the current state of the application in
order for such an attack to succeed. Since RPCs are currently
sent in plaintext with no authentication mechanisms, this
attack is feasible as long as the locations of the components
are accessible. The second scenario consists of an attacker
eavesdropping on the communication and determining when
the application is in a vulnerable state. The attacker can then
attack the application, another application, or use the
information to gain an advantage in the real world.

The contributions of this paper include:

• A discussion of specific security and performance
needs of high performance applications.

• An approach for protecting tightly-coupled, high-
performance, component communication.

• Definition of security and complexity metrics to
analyze this approach.

• A characterization of the security achieved by this
approach. For a modest sized component, this
approach provides a brute-force search space of 102s.
A known-plaintext attack requires at least 2 0
plaintext/ciphertext pairs.

• A proof-of-concept prototype that adds less than
10% to the message latency.

Section 2 describes the shift in the way we must think about
security for high-performance systems. Section 3 gives o n e
possible approach to satisfying the security and performance
requirements of this domain and introduces the metrics we use
to analyze the approach. We apply these metrics to three
particular security techniques in Section 4. Section 5
describes an initial prototype with performance numbers
which demonstrate that this approach is promising in terms of
performance. Finally, we describe some related work in
Section 6, and conclude in Section 7.

2. PARADIGM SHIFT
When looking at security for specialized domains such as
high-performance component applications, we cannot naively
apply existing securi ty solutions without potential ly
sacrificing the benefits of that domain. Instead, we must
evaluate the needs of the system. There are security needs, but
there are other needs, such as performance, reliability and
usability.

In the case of HPC, the driving force is performance. Existing
security mechanisms simply incur too much overhead for them
to be adopted by the HPC community. Thus, we have an
additional restriction on security mechanisms, in that they
must have a low overhead. ~'Low overhead", of course, is a
fuzzy term. For now, let it be sufficient that the overhead
incurred by the security mechanism must be the same order of
magnitude as the latency of the message sent in plain text. In
the case of 100 Mb switched Ethernet sending small messages,
this means that the security mechanism may incur an overhead
up to 100 microseconds in order to satisfy the performance
constraint.

Now, let us turn to the security needs of high-performance
component applications. The bulk of the communication in
this type of application is temporary data or information
related to the control flow of the application. For example, in
the case of scientific, parallel applications, the data traversing
the network might be intermediate values in a computation. In
the case of a command-and-control application, the data may
consist of sensor-values or simple Booleans to enable and
disable various resoui:ces. The risk of the communication
being exposed is not that the data is valuable, but that the da ta
may indicate that the application is in a weakened state,
making it vulnerable to a specific attack. It does not matter i f
an attacker is able to determine the current state of the
application in a few hours, minutes or seconds, as the
application will have moved on to another state. This is an
important change in perspective: long-term forward security is
not the ultimate goal. The goal is to protect the data long
enough for the application to change state, and to do so with
low overhead.

While any sensitive data which needs long-term forward
security must use a traditional encryption mechanism, the
bulk of the communication in our target applications consists
of these intermediate, or short-term, values; and thus, they
have a shorter cover time than traditional data. This gives us a
new opportunity when designing a security mechanism. In
order for an application programmer to be able to determine i f
the cover time is long enough for their particular application,
it will be necessary to precisely quantify the cover time
provided by any proposed mechanism. In the most naive
aRack, the cover time is roughly proportional to the size of the
brute-force search space. In a more sophisticated aaack on the
state of the security module, we must determine the frequency
with which the module must be reconfigured with a new secret
key. This frequency must be low enough that the overhead of
transmitting the keys does not dominate.

A key question for a given application is: how long does the
cover time need to be? The security requirements depend on
the frequency of the state changes. For a loosely-coupled
application, communication (and thus state changes) are
infrequent, necessitating a longer cover time. For t ightly-
coupled applications, communication and state changes are
frequent, requiring a much smaller cover time. In essence,
there is a range of communication patterns and security
requirements.

P rev ious work [7] p r o v i d e s a high-performance
communicat ion l ibrary which allows the application
programmer to turn communication security (DES) on and off.
We believe, however, that more than two modes are needed in
order to get the HPC community to actually use the provided
security. For example, triple DES, which incurs one-way
overheads on the order of a few milliseconds for 4k messages,
could be used for loosely coupled applications. Single DES,
which incurs overheads on the order of 500 microseconds
could be used for applications which are somewhere in the
middle o f the t ightly-to-loosely coupled continuum. And
finally, instead of the plaintext option, another mechanism
should be available which incurs virtually no overhead and
provides very short term security for t ightly coupled
applications.

There already exist security mechanisms for the medium to
loosly-coupled applications. The rest of this paper explores

37

one possible approach for a security mechanism specifically
designed for tightly-coupled components.

3. APPROACH
Existing encryption mechanisms apply operations such as
substitution and transposition in an iterative fashion on the
data. For every iteration, data is read from a buffer,
transformed in some way, and copied to another buffer.
Analysis of messaging layers shows that buffer copies are one
of the major sources of overhead to avoid [3, 9]. Indeed, zero-
copy messaging layers have become the accepted norm in the
HPC community.

Thus, when developing a security mechanism foL t ightly-
coupled, high-performance applications, it is necessary to
avoid buffer copies whenever possible; making an "iterative"
approach undesirable.

Instead, our approach applies traditional security techniques
such as transposition, substitution and data padding while the
message is being marshaled onto the wire. We apply these
operations on the primitive data types (i.e, bytes and words) in
the RPC marshalling layer. This allows us to avoid all buffer
copies, and to capitalize on the marshaling infrastructure that
already exists, adding what we anticipate to be a modest
amount of overhead.

In addition, much of the computation in the techniques we
propose can be done before the message becomes available
from the application. This allows our system to pre-compute
the more time-consuming algorithms during any CPU idle
time, significantly reducing the communication latency
experienced by the application.

3.1 Metrics
In order to determine the success of this approach, we must
analyze the level of security as well as the implementation
complexity for any possible algorithms that combine
transpositions, substitutions and data padding.

We define two metrics for security:

1. S is the size of the brnte-force search space. Given S, an
applicat ion developer may determine i f it is
suff ic ient ly large enough for their particular
application.

2. M is i~he number of plaintext/ciphertext pairs necessary
in order to determine the internal state of the security

module. The security module sends a new key before
M messages is sent. Of course, key transmission
overhead must not dominate. M must be large enough
that a sufficient amount of communication may occur
before a new key must be securely transmitted.

In addition, we define one metric for implementation
complexity:

1. C is the complexity of the algorithm, normalized to
some base operations: basic compute, memory load
and store operations, as well as a basic random number
generation operation. The symbols used to represent
each of these operations in equations will be: op, ld, st
and rand, respectively.

We expect all possible algorithms to have a tradeoff between
security and complexity. The more secure, the more complex;
and thus, the slower the performance. The key is to provide a
precise analytical model of security and complexity so that an
application developer may determine i f the approach is
suitable for their application and deployment environment.

4. DESIGN
In this section, we describe how three basic security
techniques (substitution, transposition and data padding) may
be applied in the RPC marshalling layer. These operations are
used to make all of the RPC messages look the same in terms
of their structure, so that any particular RPC message could be
invoking any of the methods on the destination server.

4.1 Substitution
Substitution replaces each character in the plaintext with a
different Character in the ciphertext. Conceptually,
substitution is implemented with substitution tables, which
enables the individuals with access to the tables to
encode/decode messages one character at a time. The
substitution table is the "secret" which must be kept from
adversaries. Historically, static substitution tables are used to
determine the mapping, which means that the table does not
change for some period of time. A major drawback of static
substitution tables is that if an adversary obtains the plaintext
and ciphertext of a message, he can easily reconstruct the table,
making it possible to immediately decode all filture messages.
Another drawback is that they are susceptible to frequency
analysis attacks, where the frequency of characters in the
plaintext and ciphertext can be used to determine the
substitution table.

Table 1: Security and performance metrics for sample algorithms, assuming reasonable use of registers to reduce memory
load/store operations [4]. n is the number of items in the message, k is the number of bits used to hold the method offset, b is the

number of random bits per random number used in SHUFFLE algorithm and p is the number of padding arguments

Method
offset
substi tut ion

S M
2 k 2%1

SHUFFLE n! bnlo~.~2
Padding (n+p)!/p! b(n+p)log~n+p)!2

C
Send: 4 op + 2 ld + 4 st + 1 rand
R#cv: 7 op+ 3 ld + 7 st + 1 rand

1 In op + 2n ld + 2n st + n rand
1 lp op + 2p ld + 2p st + 2p rand

38

Since we anticipate an adversary being able to eventually
decode RPC messages, it is inadvisable to use static
substitution tables, as an adversary would be able to
reconstruct the table over time. Instead, we use dynamic
substitution tables [12]. Figure 1 shows how the table entries
are altered every time they are used. Dynamic substitution
tables not only prevent table reconstruction, but they also
avoid frequency analysis attacks.

Dynamic substitution requires output from a pseudo random
number generator (PRNG) every time the table is used.
Depending on the performance of the PRNG, this could make
applying substitutions to every piece of data in the message
quite expensive. One piece of data that must be substituted,
however, is the method identifier. For this discussion, let us
assume that the method identifier is an offset into an array, as
is the case in Java's RMI (Remote Method Invocation) layer. If
the method identifier is not substituted, but simply placed
into a different location in the message using transposition,
then it will be fairly trivial for an attacker to determine the
remote method being invoked] . Thus, while we may want to
examine applying substitutions on all data in the message, i t
is absolutely necessary to apply a substitution on the method
identifier.

cncryption~
decryption~

Figure 1: Dynamic Substitution

An additional benefit to substituting the method identifier is
that probes of the network can be detected. Specifically, the
range of numbers to which the method offsets are mapped
should be significantly larger than the actual number of
methods in the interface. Thus, if an adversary attempts to
probe the network with some random values just to see what
happens, it is likely that the probe message will cohtain a
method offset value which does not map to an actual method.
For the sample component described later in this section,
almost 84% of all possible method offsets do not point to a

] There are two reasons that permutation-only of the method
identifier results in a trivial attack. First, many of the data
values won ' t fit into the range of method identifiers,
allowing an intruder to immediately eliminate them as
possible method identifiers. Second, the number of data
values that could possibly represent method identifiers will
be dramatically less than all possible method identifiers,
substantially reducing the search space (and thus search
time).

real method. Once a probe is detected, the security system may
notify an intrusion detection system and take evasive actions.

Table 1 gives the values of the security and performance
metrics. The search space, S, equals 2 k, where k is the number
of bits used to encode the method offset. Assuming the PRNG
is good (i.e. it does not get into a short cycle), the minimum
number of messages to determine the random numbers used,
M, is 2k+l. The implementation complexity, C, equals 4 op + 2
l d + 4 s t + l r a n d o n t h e s e n d side, a n d 7 o p + 3 1 d + 7 s t + l
rand on the receive side. As an optimization, the random
number may be generated in advance.

Table 2 gives the values of the metrics for a sample component
which has 41 methods but uses 8 bits to encode the method
offset using dynamic substitution. This results in S = 256 and
M = 257. While the search space is not large for this particular
technique, the number of messages before an intruder may
predict the internal state is more than sufficient. For example,
our implementation's secure key-exchange takes on order of
108 milliseconds, but provides enough bits of entropy to
reseed the PRNG 16 times. Thus, a key must be exchanged
every 4096 messages, resulting in a 15% overhead if the
component is communication bound.

4.2 Transposition
Transposition does not change the values of the data being
sent, but changes the order in which they appear in the
message. A particular order is called a permutation.

Transposition can be applied in the RPC layer simply by
changing the order in which data is marshaled onto the wire.
In order to disperse complex data structures throughout the
message, the order should be changed on the primitive data
(i.e. bytes, or words). Once an order is decided, it costs very
little to alter the marshaling calls to adhere to that order.
Indeed, the most time consuming aspect of transpositions at
this level is determining the desired permutation of the
message.

There are a variety of algorithms in the literature which could
be used to determine a permutation based on random numbers
[5, 8, 10, 11, 13, 14]. It is necessary to analyze any possible
algorithm in terms of the security and complexity metrics
introduced in Section 3.1. To give an example of what is
feasible, we briefly describe an algorithm based on the
SHUFFLE algorithm [5, 8]. In the SHUFFLE algorithm, an array
of data is manipulated, resulting in a permutation of the
original array. In our modified algorithm, we shuffle an array
of positions (1 through n, where n is the number of data items),
and use the position permutation to drive the data marshaling
order. This allows us to determine the permutation before the
data is available. Thus, if we incorporate data padding as
described in the next subsection to make all of the messages
the same length, the permutation algorithm may be computed
in advance during CPU idle time, reducing the message latency
experienced by the application.

39

Table 2 : . This table lists the values o f the security and performance metrics for a sample component which has 41 methods,
with n -- 2 0 , k = 8, b = 64 and p = 1 0 .

Method offset
substitution

SHUFFLE

Padding

S

256

2.43 x 10 is

7.30 x 10 z~

M

257

C

Send: 4 op + 2 Id + 4 st + 1 rand
Recv: 7 op+ 3 ld + 7 st + 1 rand

//param n: number of items to permute

int [] SHUFFLE(int n){

float u;
int k, current, tmp;

int *items = malloc(n * sizeof(int));

//initialize array of positions

for(k=O; k < n; k++)
items[k] = k;

for(current=n-l; current > i; current--){
//generate random number between 0 & 1
u = random(O,l);

// make into int between 1 & current

k = floor(current*u) + i;

// swap items [current] and items[k]

tmp = items[k] ;
items[k] = items [current];

items [current] = tmp;
)
return items;

}
Figure 2: modif ied S H U F F L E algori thm

As the pseudocode shows in Figure 2, our modified SHUFFLE
algorithm starts with an array the size of the number of items
to be permuted, with each entry in the array initialized to its
index in the array. Then, we set the current position to be at
the end of the array. We randomly choose an index in the array
between the beginning and the current position. Swap the
value at the randomly chosen index with the value in the
current position, then decrement the current position. Repeat
until the current position is at the beginning of the array.
Now, the value at index x in the array is the position in the
message for the data normally sent in position x.

Table 1 shows the equations for the security and complexity
metrics of our modified SHUFFLE algorithm. There are n[
possible permutations of the message, where n is the number
of items to be permuted in the message. Table 2 shows that
for our sample component with the number of bits per random
number, b = 64 and the number of data items, n = 20, S = 2.43 x
1018 (or approximately 262). On average, an adversary would
have to be able to analyze 261 states to find the actual state. If
an attacker had a cluster of 1 GHz machines available to her
and if each machine could analyze a state in 20 cycles, she
would require over 45 billion nodes to decode the message in
1 second, or approximately 12.5 million nodes to determine
the message in 1 hour.

To compute M, we determine how many sequences of random
numbers could have resulted in a particular permutation. Then
we can determine how many messages are needed to eliminate
all but one sequence. When b random bits are used in each

21 220 op + 40 ld + 40 st + 20 rand

1 8 110 op + 20 ld + 20 st + 20 rand

iteration of the loop, M is equal to bnlogn~2. In Table 2, we see
that M is 21 messages for the sample component. Using the
key exchange and message latencies that we used in
Subsection 4.1, this would result in a key exchange every 320
messages with an overhead of 69%. While this may appear
large at first, we believe the overhead can be reduced by
performing parts of the key exchange in the background'before
the key is needed.

Finally, we compute the complexity of the algorithm,
assuming that the compiler can make judicial use of registers,
avoiding memory load/store operations for temporary data
like temporary variables and loop iterators. The complexity
then becomes 1 In op + 2n Id + 2n st + n rand.

4.3 Data Padding
Data padding consists of adding data to a message. It is often
used to ensure messages are a particular length, making the
implementation of certain algorithms on the message easier.
In addition, data padding has been used to avoid traffic
analysis attacks, which are able to infer important information
simply by knowing how much data is being sent [15].

For RPC communication, data padding can be used to avoid
traffic analysis attacks which can determine the identity of the
remote method simply by analyzing the length of the message
and the values of the arguments being passed to the method.
Adding padding data makes all of the messages look identical
in terms of their length and the type of data that is being sent.
Thus, to an eavesdropper, any message may be used to invoke
any of the methods on the server.

Data padding can be applied to the message in the marshaling
layer. For each piece of padding data, two things must be
decided: its location in the message and its value. There are
multiple approaches to determine both. To identify the most
suitable, the security and performance metrics must be applied.
Here, we have space to describe one possible approach.

To determine the location of the padding data, we first append
it to the original message. It then undergoes transposition
along with the real data as described in the previous section.
To determine the value, we could simply send a random
number from the PRNG. More intelligent value choices can be
made depending on the types of the real data in the message,
making the values of the data statistically meaningless to an
eavesdropper. For example, if a Boolean is sent, it would be
wise to send the negation of that Boolean value as well. Then,
an eavesdropper cannot easily determine the value of the
Boolean.

Table 1 provides equations for our metrics based on sending
random numbers as our padding data. It does not make sense
to insert padding data without also permuting the message
data, so the security metrics, S and M, contain equations which
include the transposition algorithm. Thus, S is (n+p)!/p!,

40

where p is the number of pieces of padding data in the
message. Similarly, M is b(n+p)logc.+p)!2. The equation for M
assumes that the values of the padding data are checked on the
receiver side to ensure that they are accurate. This check aids
in detecting probes of the network in a way similar to the one
described in Subsection 4.1. The complexity of this algorithm
is the complexity of the transposition algorithm (replacing n
with p) plus one random number for each piece of padding, for
determining the value of the pad: 1 lp op + 2p ld + 2p st + 2p
rand. Of course, the complexity metric does not include the
time it takes to send the padding data (p times the data rate),
but that should be considered as a cost.

As an optimization, all of the overheads associated with the
permutation algorithm may be pre-computed. The data
padding values, however, can only be determined once the
identity of the remote method being invoked is known, as the
number and type of pads is dependant on the remote method.

5. INITIAL EVALUATION
We have implemented a proof-of-concept prototype to
demonstrate the feasibility of this approach. The prototype

performs a diffie-hellman key exchange at connection setup
time. Based on the key, it performs a simple method offset
substitution, message permutation and data padding
algorithm in the RPC layer. The purpose of the prototype is to
prove the concept of implementing this scheme in the RPC
layer, and therefore, it does not explore the many possible
algorithms that could be used to apply the operations to a
given method invocation.

Our prototype builds upon a high-performance Java
implementation called Manta [17]. Our executing
environment is an 8-node network of 1.5 GHz Pentium 4 boxes
with 256 MB of RAM, running RedHat Linux 7.1. The cluster
is connected with 100 Mb switched Ethernet.

Adding simple substitutions and transpositions to the RPC
layer incurs an overhead of less than 10% of the original
message latency, showing that this is a promising approach in
terms of the necessary performance. For example, for an RPC
with 64 data bytes, our mechanism adds 12 microseconds to
the base plain-text latency of 152 microseconds.

In addition, since many of the algorithms that we are exploring
require one or more random numbers, we have measured the
time it takes to retrieve a random number from an
implementation of Yarrow. One call to Yarrow took
approximately 0.241 microseconds to retrieve 64 random bits.
Thus, for our sample component used in Table 2, the time it
would take to obtain all of the necessary random bits is less
than 10 microseconds, which is substantially less than the
maximum overhead requirement of 100 microseconds. It may
be possible to further reduce that overhead by eliminating
function calls and retrieving all of the random bits in one call.

We believe that further optimizations can be performed to
effectively reduce the latency experienced by the application.
Because much of the work in the algorithms we have presented
does not depend on-the actual data being sent, several key
pieces may be computed in advance during CPU idle time.
Possibilities include:

• random number generation

• computation of the message permutation

• diffie-hellman key exchange

6. RELATED WORK
Globus [7] is one of the only high-performance projects which
has added an encryption option (DES)to their standard
communication library. Because of the cost, it is not clear if
this capability has been adopted by their users for
communication within a high-performance cluster.

The Globus [7] and Legion [6] architectures contain
mechanisms for users to specify the level of security required
by each communication channel. While neither project
provides a low-overhead/short-cover-time mechanism as we
have described in this paper, both could include such a
mechanism in the future. With the variety of communication
patterns in high-performance environments, we believe the
flexibility provided by these two architectures is essential for
satisfying the necessary security and performance
requirements.

A seminal work on Lightweight Remote Procedure Calls
optimizes RPCs between processes on the same machine [2].
This concept could be incorporated in any high-performance
messaging layer, disabling all security/encryption of the data
when being sent to another processes on the same machine.
The focus of our paper, however, is on RPCs that traverse the
network.

7. CONCLUSIONS
Because of the performance requirements in high-performance
distributed systems, it is not possible to simply retrofit
existing security mechanisms and expect the HPC community
to use them. This paper is a first attempt to construct a
security solution based on the specific needs of high-
performance component communication. We classified the
data security needs and determined that much of the data
transmitted over the network has a short cover-time
requirement. We then presented an approach which capitalize s
on the marshaling infrastructure in order to maintain a low
overhead. W e specified metrics for evaluating the approach,
and analyzed three security techniques with these metrics.
Finally, we described an initial prototype and its performance
which indicates that this approach is promising for meeting
the performance requirements of the high-performance domain.

8. ACKNOWLEDGMENTS
We would like to thank to Geetanjali Sampemane for
providing feedback on an early draft of this paper, and the
anonymous reviewers for their helpful comments.

This work is partially supported by the Pervasive Technology
Labs at Indiana University, and supported in part by the
Defense Advanced Research Projects Administration through
United States Air Force Rome Laboratory Contracts AFRL
F30602-99-I-0534 and the National Science Foundation thru
NSF EIA-99-75020 Grads.

9. REFERENCES
[1] Allcock, Bill et. al. "Secure, Efficient Data Transport

and Replica Management for High-Performance Data-
IntensiveComputing". 1EEE Mass Storage
Conference, 2001.

[2] Bershad, Brian et. al. "Lightweight Remote Procedure
Call". ACM Transactions on Computer Systems, Vol.
8, issue 1, pages 37-55, February 1990.

41

[3] Clar, David D., Van Jacobson, John Romkey, and
Howard Salwen. "An analysis of TCP processing
overhead". IEEE Communications Magazine, June
1989.

[4] Connelly, K. and A. Chien. "Elusive Interface Design
and Analysis", Computer Science Department, Indiana
University. April, 2002.

[5] Durstenfeld, Richard. "Algorithm 235: Random
Permutation [G6]". Communications of the ACM.
Vol. 7, page 420, 1964.

[6] Ferrari, Adam et. al. "A Flexible Security System for
Metacomputing Environments". High Performance
Computing and Networking Europe, April 1999.

[7] Foster, Ian, Nicholas Karonis, Carl Kessehnan and
Steven Tuecke. "Managing Security in High-
Performance Distributed Computations", Cluster
Computing, Vol 1, issue 1, pages 95-107, 1998.

[8] Knuth, Donald. 1997. The Art of Computer
Programming, Vol 2, Seminumerical Algorithms. 3 ~a
ed. Reading, Mass: Addison-Wesley.

[9] Kay, J. and J. Pasquale. "Measurement, Analysis and
Improvement of UDP/IP Throughput for the
DECstation 5000", Proceedings of the 1993 Winter
Usenix Conference, San Diego, USA, pages 249-258.

[10] Plackett, R. "Random Permutations". Journal of the
Royal Statistical Society, Series B (Methodological).
Vol. 30, issue 3, pages 517-534, 1968.

[11] Rao, C. "Generation of Random Permutations of
Given Number of Elements Using Random Sampling
Numbers". Sankhya, A. Vol. 23, pages 305-307, 1961.

[12] Ritter, Terry. "Substitution Cipher with Pseudo-
Random Shuffling: The Dynamic Substitution
Combiner". Cryptologia Vol. 15, issue 4, pages 289-
303, 1990.

[13] Sandelius, Martin. "A Simple Randomization
Procedure". Journal of the Royal Statistical Society:
Series B (Methodological). Vol. 24, issue 2, Pages
472-481, 1962.

[14] Sloane, N. "Encrypting by Random Rotations".
Cryptography: EUROCRYPT'82. Lecture Notes in
Computer Science Vol. 149, pages 71-128, 1983.

[15] Timmerman, Brenda. "A Security Model for Dynamic
Adaptive Traffic Masking". New Security Paradigms
Workshop, 1997.

[16] Tuecke, S. et. al. "Grid Service Specification".
February 2002.
http://www.globus.org/research/papers/gsspec.pdf

[17] Veldema, Ronald, Rob van Nieuwpoort, Jason
Maassen, Henri E. Bal and Aske Plaat. "Efficient
Remote Method Invocation". Technical Report IR-
450, Vrije Universiteit Amsterdam, September, 1998.

42

