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ABSTRACT 
This paper attempts to reconcile the high performance 
community's requirement of high performance with the need 
for security, and reconcile some accepted security approaches 
with the performance constraints of  high-performance 
networks. We propose a new paradigm and challenge existing 
practice. The new paradigm is that not all domains need long- 
term forward data confidentiality. In particular, we take a fresh 
look at security for the high-performance domain, focusing 
particularly on component-based applications. We discuss the 
security and performance requirements of this domain in order 
to elucidate both the constraints and opportunities. We 
challenge the existing practice of high-performance networks 
sending communication in plaintext. We propose a security 
mechanism and provide metrics for analyzing both the 
security and performance costs. 

General Terms 
Distributed Computing, High Performance, Security. 

1. INTRODUCTION 
Over the past decade, high performance networks of  
workstations have replaced supercomputers for scientific 
parallel computations. As these clusters have become easier to 
manage and use, distributed applications outside of parallel 
scientific codes have targeted this platform as well. Search 
engines, airline reservation systems and command-and-control 
systems are just a few such applications. The combination of  
low-cost and high-performance execution has  made such 
systems desirable to a wide variety of industries. In particular, 
developments in user-level communication layers have 
enabled applications to access the raw performance of such 
networks. Applications achieve peak bandwidths over 1Gbps, 
and latencies on the order of 10 to 20 microseconds. 

With the focus centered on performance, there has been little 
research into security for high performance systems. Much of  
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the security-related work in the high performance computing 
(HPC) community addresses how to securely communicate to 
high-performance applications from the wide-area (i.e.: how to 
retrieve remote data sets or how to securely start a remote high- 
performance application) [1, 6]. 

But, beyond simple logins and access rights associated with 
those logins, there are few security mechanisms being 
regularly employed within the high-performance clusters, 
themselves. In terms of the communication going over the 
high performance network, the standard practice is to have no 
security. All data is sent in plaintext. The main goal is to keep 
the communication overhead to a minimum. Grafting an 
existing encryption mechanism onto the communication path 
is not seriously considered due to the relatively high 
overheads. A typical symmetric key encryption algorithm 
incurs an overhead of  milliseconds, which is two to three 
orders of  magnitude greater than the network latency in high- 
performance networks. Using such a mechanism would take 
the "high performance" out of HPC. Now that industry and the 
military are seriously pursuing high performance clusters as 
an environment to run their distributed applications, the I-IPC 
community must revisit the issue of  security. 

Distributed components are quickly becoming the 
programming model o f  choice for distributed high 
performance applications [16]. In this type of model, the 
functionality of the application is encapsulated in multiple 
components and spread over the network. In order for the 
application to make any forward progress, components must 
interact with other components via remote procedure calls 
(RPC). Thus, the state of the execution of the application can 
be pieced together with these RPCs. 

One noticeable effect of low-latency communication is that the 
ideal balance of  computation and communication changes 
dramatically from traditional TCP/IP over Ethernet. On the 
slower networks, a component must compute a lot and 
communicate rarely in order to achieve its peak performance. 
If  it doesn't have enough computation to keep it busy while 
waiting on the results from an RPC, then it becomes idle 
waiting on the network. In the high performance domain, 
communication is many orders of  magnitude faster. Thus, 
components can have much less computation, and still not 
block on the network. This results in applications that have 
many fine-grained components (as opposed to fewer, larger 
components). Finer-grained applications have more RPCs, 
making a more detailed state-reconstruction possible. 
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There are two important security attack scenarios for high 
performance component applications. The first is for an 
attacker to send RPC messages to various components in order 
to change the execution of the application. The attacker may 
not need to reconstruct the current state of  the application in 
order for such an attack to succeed. Since RPCs are currently 
sent in plaintext with no authentication mechanisms, this 
attack is feasible as long as the locations of the components 
are accessible. The second scenario consists of an attacker 
eavesdropping on the communication and determining when 
the application is in a vulnerable state. The attacker can then 
attack the application, another application, or use the 
information to gain an advantage in the real world.  

The contributions of  this paper include: 

• A discussion of  specific security and performance 
needs of high performance applications. 

• An approach for protecting tightly-coupled, high- 
performance, component communication. 

• Definition of  security and complexity metrics to 
analyze this approach. 

• A characterization of  the security achieved by this 
approach. For a modest sized component, this 
approach provides a brute-force search space of 102s. 
A known-plaintext attack requires at least 2 0  
plaintext/ciphertext pairs. 

• A proof-of-concept prototype that adds less than 
10% to the message latency. 

Section 2 describes the shift in the way we must think about 
security for high-performance systems. Section 3 gives o n e  
possible approach to satisfying the security and performance 
requirements of this domain and introduces the metrics we use 
to analyze the approach. We apply these metrics to three 
particular security techniques in Section 4. Section 5 
describes an initial prototype with performance numbers 
which demonstrate that this approach is promising in terms of  
performance. Finally, we describe some related work in 
Section 6, and conclude in Section 7. 

2. PARADIGM SHIFT 
When looking at security for specialized domains such as 
high-performance component applications, we cannot naively 
apply existing securi ty solutions without potential ly 
sacrificing the benefits of that domain. Instead, we must 
evaluate the needs of the system. There are security needs, but 
there are other needs, such as performance, reliability and 
usability. 

In the case of HPC, the driving force is performance. Existing 
security mechanisms simply incur too much overhead for them 
to be adopted by the HPC community. Thus, we have an 
additional restriction on security mechanisms, in that they 
must have a low overhead. ~'Low overhead", of course, is a 
fuzzy term. For now, let it be sufficient that the overhead 
incurred by the security mechanism must be the same order of  
magnitude as the latency of the message sent in plain text. In 
the case of 100 Mb switched Ethernet sending small messages, 
this means that the security mechanism may incur an overhead 
up to 100 microseconds in order to satisfy the performance 
constraint. 

Now, let us turn to the security needs of  high-performance 
component applications. The bulk of the communication in 
this type of  application is temporary data or information 
related to the control flow of the application. For example, in 
the case of scientific, parallel applications, the data traversing 
the network might be intermediate values in a computation. In 
the case of a command-and-control application, the data may 
consist of sensor-values or simple Booleans to enable and 
disable various resoui:ces. The risk of  the communication 
being exposed is not that the data is valuable, but that the da ta  
may indicate that the application is in a weakened state, 
making it vulnerable to a specific attack. It does not matter i f  
an attacker is able to determine the current state of the 
application in a few hours, minutes or seconds, as the 
application will have moved on to another state. This is an 
important change in perspective: long-term forward security is 
not the ultimate goal. The goal is to protect the data long 
enough for the application to change state, and to do so with 
low overhead. 

While any sensitive data which needs long-term forward 
security must use a traditional encryption mechanism, the 
bulk of the communication in our target applications consists 
of  these intermediate, or short-term, values; and thus, they 
have a shorter cover time than traditional data. This gives us a 
new opportunity when designing a security mechanism. In 
order for an application programmer to be able to determine i f  
the cover time is long enough for their particular application, 
it will be necessary to precisely quantify the cover time 
provided by any proposed mechanism. In the most naive 
aRack, the cover time is roughly proportional to the size of the 
brute-force search space. In a more sophisticated aaack on the 
state of the security module, we must determine the frequency 
with which the module must be reconfigured with a new secret 
key. This frequency must be low enough that the overhead of  
transmitting the keys does not dominate. 

A key question for a given application is: how long does the 
cover time need to be? The security requirements depend on 
the frequency of the state changes. For a loosely-coupled 
application, communication (and thus state changes) are 
infrequent, necessitating a longer cover time. For t ightly- 
coupled applications, communication and state changes are 
frequent, requiring a much smaller cover time. In essence, 
there is a range of  communication patterns and security 
requirements. 

P rev ious  work  [7] p r o v i d e s  a high-performance 
communicat ion l ibrary which allows the application 
programmer to turn communication security (DES) on and off. 
We believe, however, that more than two modes are needed in 
order to get the HPC community to actually use the provided 
security. For example, triple DES, which incurs one-way 
overheads on the order of  a few milliseconds for 4k messages, 
could be used for loosely coupled applications. Single DES, 
which incurs overheads on the order of  500 microseconds 
could be used for applications which are somewhere in the 
middle o f  the t ightly-to-loosely coupled continuum. And 
finally, instead of  the plaintext option, another mechanism 
should be available which incurs virtually no overhead and 
provides very short term security for t ightly coupled 
applications. 

There already exist security mechanisms for the medium to 
loosly-coupled applications. The rest of  this paper explores 
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one possible approach for a security mechanism specifically 
designed for tightly-coupled components. 

3. APPROACH 
Existing encryption mechanisms apply operations such as 
substitution and transposition in an iterative fashion on the 
data. For every iteration, data is read from a buffer, 
transformed in some way, and copied to another buffer. 
Analysis of messaging layers shows that buffer copies are one 
of the major sources of overhead to avoid [3, 9]. Indeed, zero- 
copy messaging layers have become the accepted norm in the 
HPC community. 

Thus, when developing a security mechanism foL t ightly-  
coupled, high-performance applications, it is necessary to 
avoid buffer copies whenever possible; making an "iterative" 
approach undesirable. 

Instead, our approach applies traditional security techniques 
such as transposition, substitution and data padding while the 
message is being marshaled onto the wire. We apply these 
operations on the primitive data types (i.e, bytes and words) in 
the RPC marshalling layer. This allows us to avoid all buffer 
copies, and to capitalize on the marshaling infrastructure that 
already exists, adding what we anticipate to be a modest 
amount of  overhead. 

In addition, much of  the computation in the techniques we 
propose can be done before the message becomes available 
from the application. This allows our system to pre-compute 
the more time-consuming algorithms during any CPU idle 
time, significantly reducing the communication latency 
experienced by the application. 

3.1 Metrics 
In order to determine the success of this approach, we must 
analyze the level of security as well as the implementation 
complexity for any possible algorithms that combine 
transpositions, substitutions and data padding. 

We define two metrics for security: 

1. S is the size of  the brnte-force search space. Given S, an 
applicat ion developer  may determine i f  it is 
suff ic ient ly  large enough for their  particular 
application. 

2. M is i~he number of plaintext/ciphertext pairs necessary 
in order to determine the internal state of the security 

module. The security module sends a new key before 
M messages is sent. Of course, key transmission 
overhead must not dominate. M must be large enough 
that a sufficient amount of communication may occur 
before a new key must be securely transmitted. 

In addition, we define one metric for implementation 
complexity: 

1. C is the complexity of  the algorithm, normalized to 
some base operations: basic compute, memory load 
and store operations, as well as a basic random number 
generation operation. The symbols used to represent 
each of these operations in equations will be: op, ld, st 
and rand,  respectively. 

We expect all possible algorithms to have a tradeoff between 
security and complexity. The more secure, the more complex; 
and thus, the slower the performance. The key is to provide a 
precise analytical model of security and complexity so that an 
application developer may determine i f  the approach is 
suitable for their application and deployment environment. 

4. DESIGN 
In this section, we describe how three basic security 
techniques (substitution, transposition and data padding) may 
be applied in the RPC marshalling layer. These operations are 
used to make all of  the RPC messages look the same in terms 
of their structure, so that any particular RPC message could be 
invoking any of  the methods on the destination server. 

4.1 Substitution 
Substitution replaces each character in the plaintext with a 
different Character in the ciphertext. Conceptually, 
substitution is implemented with substitution tables, which 
enables the individuals  with access to the tables to 
encode/decode messages one character at a time. The 
substitution table is the "secret" which must be kept from 
adversaries. Historically, static substitution tables are used to 
determine the mapping, which means that the table does not 
change for some period of  time. A major drawback of static 
substitution tables is that if  an adversary obtains the plaintext 
and ciphertext of a message, he can easily reconstruct the table, 
making it possible to immediately decode all filture messages. 
Another drawback is that they are susceptible to frequency 
analysis attacks, where the frequency of  characters in the 
plaintext and ciphertext can be used to determine the 
substitution table. 

Table 1: Security and performance metrics for sample algorithms, assuming reasonable use of registers to reduce memory 
load/store operations [4]. n is the number of items in the message, k is the number of bits used to hold the method offset, b is the 

number of random bits per random number used in SHUFFLE algorithm and p is the number of padding arguments 

Method 
offset 
substi tut ion 

S M 
2 k 2%1 

SHUFFLE n! bnlo~.~2 
Padding (n+p)!/p! b(n+p)log~n+p)!2 

C 
Send: 4 op + 2 ld + 4 st + 1 rand 
R#cv: 7 op+ 3 ld + 7 st + 1 rand 

1 In op + 2n ld + 2n st + n rand 
1 lp op + 2p ld + 2p st + 2p rand 
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Since we anticipate an adversary being able to eventually 
decode RPC messages, it is inadvisable to use static 
substitution tables, as an adversary would be able to 
reconstruct the table over time. Instead, we use dynamic 
substitution tables [12]. Figure 1 shows how the table entries 
are altered every time they are used. Dynamic substitution 
tables not only prevent table reconstruction, but they also 
avoid frequency analysis attacks. 

Dynamic substitution requires output from a pseudo random 
number generator (PRNG) every time the table is used. 
Depending on the performance of the PRNG, this could make 
applying substitutions to every piece of data in the message 
quite expensive. One piece of data that must be substituted, 
however, is the method identifier. For this discussion, let us 
assume that the method identifier is an offset into an array, as 
is the case in Java's RMI (Remote Method Invocation) layer. If  
the method identifier is not substituted, but simply placed 
into a different location in the message using transposition, 
then it will be fairly trivial for an attacker to determine the 
remote method being invoked ] . Thus, while we may want to 
examine applying substitutions on all data in the message, i t  
is absolutely necessary to apply a substitution on the method 
identifier. 

cncryption~ 
decryption~ 

Figure 1: Dynamic Substitution 

An additional benefit to substituting the method identifier is 
that probes of  the network can be detected. Specifically, the 
range of  numbers to which the method offsets are mapped 
should be significantly larger than the actual number of  
methods in the interface. Thus, if  an adversary attempts to 
probe the network with some random values just to see what 
happens, it is likely that the probe message will cohtain a 
method offset value which does not map to an actual method. 
For the sample component described later in this section, 
almost 84% of  all possible method offsets do not point to a 

] There are two reasons that permutation-only of the method 
identifier results in a trivial attack. First, many of the data 
values won ' t  fit into the range of  method identifiers, 
allowing an intruder to immediately eliminate them as 
possible method identifiers. Second, the number of data 
values that could possibly represent method identifiers will 
be dramatically less than all possible method identifiers, 
substantially reducing the search space (and thus search 
time). 

real method. Once a probe is detected, the security system may 
notify an intrusion detection system and take evasive actions. 

Table 1 gives the values of  the security and performance 
metrics. The search space, S, equals 2 k, where k is the number 
of bits used to encode the method offset. Assuming the PRNG 
is good (i.e. it does not get into a short cycle), the minimum 
number of messages to  determine the random numbers used, 
M, is 2k+l. The implementation complexity, C, equals 4 op + 2 
l d + 4 s t + l r a n d o n t h e s e n d  side, a n d 7 o p + 3 1 d + 7 s t + l  
rand on the receive side. As an optimization, the random 
number may be generated in advance. 

Table 2 gives the values of the metrics for a sample component 
which has 41 methods but uses 8 bits to encode the method 
offset using dynamic substitution. This results in S = 256 and 
M = 257. While the search space is not large for this particular 
technique, the number of  messages before an intruder may 
predict the internal state is more than sufficient. For example, 
our implementation's secure key-exchange takes on order of  
108 milliseconds, but provides enough bits of entropy to 
reseed the PRNG 16 times. Thus, a key must be exchanged 
every 4096 messages, resulting in a 15% overhead if  the 
component is communication bound. 

4.2 Transposition 
Transposition does not change the values of the data being 
sent, but changes the order in which they appear in the 
message. A particular order is called a permutation. 

Transposition can be applied in the RPC layer simply by 
changing the order in which data is marshaled onto the wire. 
In order to disperse complex data structures throughout the 
message, the order should be changed on the primitive data 
(i.e. bytes, or words). Once an order is  decided, it costs very 
little to alter the marshaling calls to adhere to that order. 
Indeed, the most time consuming aspect of transpositions at 
this level is determining the desired permutation of the 
message. 

There are a variety of  algorithms in the literature which could 
be used to determine a permutation based on random numbers 
[5, 8, 10, 11, 13, 14]. It is necessary to analyze any possible 
algorithm in terms of  the security and complexity metrics 
introduced in Section 3.1. To give an example of  what is 
feasible, we briefly describe an algorithm based on the 
SHUFFLE algorithm [5, 8]. In the SHUFFLE algorithm, an array 
of  data is manipulated, resulting in a permutation of  the 
original array. In our modified algorithm, we shuffle an array 
of positions (1 through n, where n is the number of data items), 
and use the position permutation to drive the data marshaling 
order. This allows us to determine the permutation before the 
data is available. Thus, if  we incorporate data padding as 
described in the next subsection to make all of the messages 
the same length, the permutation algorithm may be computed 
in advance during CPU idle time, reducing the message latency 
experienced by the application. 

39 



Table  2 : .  This  table lists the values o f  the security and performance  metrics for a sample  component  which  has 41 methods,  
with n -- 2 0 ,  k = 8, b = 64 and p = 1 0 .  

Method offset 
substitution 

SHUFFLE 

Padding 

S 

256 

2.43 x 10 is 

7.30 x 10 z~ 

M 

257 

C 

Send: 4 op + 2 Id + 4 st + 1 rand 
Recv: 7 op+ 3 ld + 7 st + 1 rand 

//param n: number of items to permute 

int [] SHUFFLE(int n){ 

float u; 
int k, current, tmp; 

int *items = malloc(n * sizeof(int)); 

//initialize array of positions 

for(k=O; k < n; k++) 
items[k] = k; 

for(current=n-l; current > i; current--){ 
//generate random number between 0 & 1 
u = random(O,l); 

// make into int between 1 & current 

k = floor(current*u) + i; 

// swap items [current] and items[k] 

tmp = items[k] ; 
items[k] = items [current]; 

items [current] = tmp; 
) 
return items; 

} 
Figure 2: modif ied S H U F F L E  algori thm 

As the pseudocode shows in Figure 2, our modified SHUFFLE 
algorithm starts with an array the size of the number of items 
to be permuted, with each entry in the array initialized to its 
index in the array. Then, we set the current position to be at 
the end of the array. We randomly choose an index in the array 
between the beginning and the current position. Swap the 
value at the randomly chosen index with the value in the 
current position, then decrement the current position. Repeat 
until the current position is at the beginning of the array. 
Now, the value at index x in the array is the position in the 
message for the data normally sent in position x. 

Table 1 shows the equations for the security and complexity 
metrics of our modified SHUFFLE algorithm. There are n[ 
possible permutations of the message, where n is the number 
of items to be permuted in the message. Table 2 shows that 
for our sample component with the number of bits per random 
number, b = 64 and the number of data items, n = 20, S = 2.43 x 
1018 (or approximately 262). On average, an adversary would 
have to be able to analyze 261 states to find the actual state. If 
an attacker had a cluster of 1 GHz machines available to her 
and if each machine could analyze a state in 20 cycles, she 
would require over 45 billion nodes to decode the message in 
1 second, or approximately 12.5 million nodes to determine 
the message in 1 hour. 

To compute M, we determine how many sequences of random 
numbers could have resulted in a particular permutation. Then 
we can determine how many messages are needed to eliminate 
all but one sequence. When b random bits are used in each 

21 220 op + 40 ld + 40 st + 20 rand 

1 8 110 op + 20 ld + 20 st + 20 rand 

iteration of the loop, M is equal to bnlogn~2. In Table 2, we see 
that M is 21 messages for the sample component. Using the 
key exchange and message latencies that we used in 
Subsection 4.1, this would result in a key exchange every 320 
messages with an overhead of 69%. While this may appear 
large at first, we believe the overhead can be reduced by 
performing parts of the key exchange in the background'before 
the key is needed. 

Finally, we compute the complexity of the algorithm, 
assuming that the compiler can make judicial use of registers, 
avoiding memory load/store operations for temporary data 
like temporary variables and loop iterators. The complexity 
then becomes 1 In op + 2n Id + 2n st + n rand.  

4.3 Data Padding 
Data padding consists of adding data to a message. It is often 
used to ensure messages are a particular length, making the 
implementation of certain algorithms on the message easier. 
In addition, data padding has been used to avoid traffic 
analysis attacks, which are able to infer important information 
simply by knowing how much data is being sent [15]. 

For RPC communication, data padding can be used to avoid 
traffic analysis attacks which can determine the identity of the 
remote method simply by analyzing the length of the message 
and the values of the arguments being passed to the method. 
Adding padding data makes all of the messages look identical 
in terms of their length and the type of data that is being sent. 
Thus, to an eavesdropper, any message may be used to invoke 
any of the methods on the server. 

Data padding can be applied to the message in the marshaling 
layer. For each piece of padding data, two things must be 
decided: its location in the message and its value. There are 
multiple approaches to determine both. To identify the most 
suitable, the security and performance metrics must be applied. 
Here, we have space to describe one possible approach. 

To determine the location of the padding data, we first append 
it to the original message. It then undergoes transposition 
along with the real data as described in the previous section. 
To determine the value, we could simply send a random 
number from the PRNG. More intelligent value choices can be 
made depending on the types of the real data in the message, 
making the values of the data statistically meaningless to an 
eavesdropper. For example, if a Boolean is sent, it would be 
wise to send the negation of that Boolean value as well. Then, 
an eavesdropper cannot easily determine the value of the 
Boolean. 

Table 1 provides equations for our metrics based on sending 
random numbers as our padding data. It does not make sense 
to insert padding data without also permuting the message 
data, so the security metrics, S and M, contain equations which 
include the transposition algorithm. Thus, S is (n+p)!/p!, 
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where p is the number of  pieces of padding data in the 
message. Similarly, M is b(n+p)logc.+p)!2. The equation for M 
assumes that the values of the padding data are checked on the 
receiver side to ensure that they are accurate. This check aids 
in detecting probes of the network in a way similar to the one 
described in Subsection 4.1. The complexity of this algorithm 
is the complexity of the transposition algorithm (replacing n 
with p) plus one random number for each piece of padding, for 
determining the value of the pad: 1 lp op + 2p ld + 2p st + 2p 
rand. Of course, the complexity metric does not include the 
time it takes to send the padding data (p times the data rate), 
but that should be considered as a cost. 

As an optimization, all of the overheads associated with the 
permutation algorithm may be pre-computed. The data 
padding values, however, can only be determined once the 
identity of  the remote method being invoked is known, as the 
number and type of pads is dependant on the remote method. 

5. INITIAL EVALUATION 
We have implemented a proof-of-concept prototype to 
demonstrate the feasibility of  this approach. The prototype 

performs a diffie-hellman key exchange at connection setup 
time. Based on the key, it performs a simple method offset 
substitution, message permutation and data padding 
algorithm in the RPC layer. The purpose of the prototype is to 
prove the concept of implementing this scheme in the RPC 
layer, and therefore, it does not explore the many possible 
algorithms that could be used to apply the operations to a 
given method invocation. 

Our prototype builds upon a high-performance Java 
implementation called Manta [17]. Our executing 
environment is an 8-node network of 1.5 GHz Pentium 4 boxes 
with 256 MB of RAM, running RedHat Linux 7.1. The cluster 
is connected with 100 Mb switched Ethernet. 

Adding simple substitutions and transpositions to the RPC 
layer incurs an overhead of  less than 10% of the original 
message latency, showing that this is a promising approach in 
terms of the necessary performance. For example, for an RPC 
with 64 data bytes, our mechanism adds 12 microseconds to 
the base plain-text latency of 152 microseconds. 

In addition, since many of  the algorithms that we are exploring 
require one or more random numbers, we have measured the 
time it takes to retrieve a random number from an 
implementation of Yarrow. One call to Yarrow took 
approximately 0.241 microseconds to retrieve 64 random bits. 
Thus, for our sample component used in Table 2, the time it 
would take to obtain all of  the necessary random bits is less 
than 10 microseconds, which is substantially less than the 
maximum overhead requirement of 100 microseconds. It may 
be possible to further reduce that overhead by eliminating 
function calls and retrieving all of the random bits in one call. 

We believe that further optimizations can be performed to 
effectively reduce the latency experienced by the application. 
Because much of the work in the algorithms we have presented 
does not depend on-the actual data being sent, several key 
pieces may be computed in advance during CPU idle time. 
Possibilities include: 

• random number generation 

• computation of the message permutation 

• diffie-hellman key exchange 

6. RELATED WORK 
Globus [7] is one of the only high-performance projects which 
has added an encryption option (DES)to their standard 
communication library. Because of  the cost, it is not clear if 
this capability has been adopted by their users for 
communication within a high-performance cluster. 

The Globus [7] and Legion [6] architectures contain 
mechanisms for users to specify the level of security required 
by each communication channel. While neither project 
provides a low-overhead/short-cover-time mechanism as we 
have described in this paper, both could include such a 
mechanism in the future. With the variety of communication 
patterns in high-performance environments, we believe the 
flexibility provided by these two architectures is essential for 
satisfying the necessary security and performance 
requirements. 

A seminal work on Lightweight Remote Procedure Calls 
optimizes RPCs between processes on the same machine [2]. 
This concept could be incorporated in any high-performance 
messaging layer, disabling all security/encryption of the data 
when being sent to another processes on the same machine. 
The focus of our paper, however, is on RPCs that traverse the 
network. 

7. CONCLUSIONS 
Because of the performance requirements in high-performance 
distributed systems, it is not possible to simply retrofit 
existing security mechanisms and expect the HPC community 
to use them. This paper is a first attempt to construct a 
security solution based on the specific needs of  high- 
performance component communication. We classified the 
data security needs and determined that much of the data 
transmitted over the network has a short cover-time 
requirement. We then presented an approach which capitalize s 
on the marshaling infrastructure in order to maintain a low 
overhead. W e  specified metrics for evaluating the approach, 
and analyzed three security techniques with these metrics. 
Finally, we described an initial prototype and its performance 
which indicates that this approach is promising for meeting 
the performance requirements of the high-performance domain. 
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