
Vivek Haldar
The Source is the Proof

Christian H. Stork
University of Califomia, Irvine

CA 92612
USA

Michael Franz

{vhaldar, cstotk,franz)@ics.ud.edu

ABSTRACT
We challenge the apparent consensus for using bytecode
verification and techniques related to proof-carrying code
for mobile code security. We propose an alternative to
these two techniques that transports programs at a much
higher level of abstraction. Our high-level encoding can
achieve safe end-to-end transport of program source
semantics. Moreover, our encoding is safe by construction,
in the sense that unsafe programs cannot even be expressed
in it. We contrast our encoding with certifying compilation
and bytecode-based approaches, and describe how it
overcomes some of their deficienciesI

Keywords
Mobile code, language-based security, abstract syntax
trees.

1. INTRODUCTION
Mobile code has become increasingly widespread in many
forms - executable content on web pages, application
plugins, scripts, and even entire applications. It is now
commonly used on a large gamut of hardware, from smart
cards (JavaCard) to eCommerce servers . It usually
originates from myriad untrusted sources, so a major
concern is its security. Malicious (or even buggy) mobile
code could consume system resources, leak secret data, or
attack a system in a variety of ways. We need to make some
guarantees about its behaviour before executing it.

The problem of mobile code security has recently been the
focus of much research. Broadly, the goal is to make secure
mobi le code representat ions, and accompanying
mechanisms that can check the code for conformance with a
security policy before execution. This checking could be
static (at compile-time or load-time), dynamic (at run-time),
or a combination of both.

Currently there are two major thrusts driving mobile code
research. Industry and consumers mostly use the Java
virtual machine and its bytecode representation. In the
research community, the most interest has been generated
by the technique of proof-carrying code (PCC), certifying
compilation, and its variants.

In this paper, we describe an alternative to both these
techniques . .We, challenge some of their underlying
assumptions and examine some of their deficiencies. Our
approach, called WELL (Wellformed Encoding at tl~e
Language-Level), is based on transporting compressed
abstract syntax trees (CASTs). We compare WELL with
certifying compilation and bytecode-based approaches,
and also discuss its advantages and pitfalls.

The rest of the paper is structured as follows: section 2
presents our WELL encoding; section 3 presents an
evaluation of our encoding, and compares it with PCC and
bytecode-based approaches; we give the status of our work
and outline future work in section 4; section 5 concludes.

2. HIGH-LEVEL MOBILE CODE
In this section we explain WELL-encoding, and then go on
to show how it also turns out to be amenable to safely
carrying annotations.

2.1 Transporting Source-Level Semantics
By "safety" of code we mean type safety. Type-safe code
respects the typing discipline of the language in which it
was written. This allows us to make safety guarantees about
the runtime behaviour of a program by statically checking
it for type safety.

Consider a program (written in a high-level typed language
such as Java) that successfully typechecks. Assuming the
type system of the language is sound, this program can
now be deemed safe with respect to the type system. In
essence, the proof of safety is in the source code itself. This
is what we mean when we refer to a source-level proof. The
question now is how to transport this proof of safety in a
manner such that it can be recovered at the consumer's end.

Our solution is to transport something very close to t h e
source level - abstract syntax trees. An abstract syntax tree
(AST) is the parse tree of a program stripped of superfluous
syntactic elements, such as brackets, which are unnecessary
because the structure of the program is given by the AST.
Our encoding of abstract syntax trees can safely transport
source level semantics. We enforce these semantic
constraints as an intrinsic part of the encoding itself. As a
result, programs that do not satisfy these constraints are
inexpressible i n our encoding. Thus, we guarantee safe
transport of source-level semantics by construction. We
call this wellformedness by construction.

We illustrate the principal ideas behind our encoding
with the help of a simple example. Consider the following
Java code snippet:

int i, j, k;
char a, b, c;
j = i0;
i = j; //encoding this

Consider the encoding of the last statement, given that
everything before it has been encoded. WELL encoding

69

proceeds by walking the AST in pre-order l, and performing
the following two steps at every node:

1. Given all the constraints applicable at this point,
generate the possible legal successors to this
node.

2. The successor to the current node is encoded
simply as its index among the successors
generated in the previous step (if it is not one of
the legal successors, we reject the program).

Note how the combination of these two steps - generating
valid successors and then choosing only from among them
- makes our encoding safe by construction. A program that
does not satisfy the constraints being imposed by our
encoding cannot be expressed in it at all. This is the central
idea behind our encoding.

Also note that often there is only one legal successor
generated by step 1. In this case, nothing needs to be
encoded, as the next choice is obvious.

The first constra int WELL encoding imposes is
conformance to the abstract grammar of the language being
encoded. The relevant grammar rules (in standard EBNF
notation) are:

Stmt = If I While I Assign I
Assign = Lvalue Expr
Lvalue = Field [VarAccess [...

Expr = Unary [Binary I ---
Unary = VarAccess I FieldAccess I . . .

Each node in the AST corresponds to one such rule. The
first rule (Strut) is an example of a choice rule, where the
next valid construct is one of a number of choices. The
second rule is an example of an aggregate rule, where the
next valid construct is afixed sequence of other constructs.

We are encoding a statement (s t r u t) that is an assignment
(Ass ign) . The index of A s s i g n is encoded from among the
possible choices (I f , W h i l e etc.) for the S t ru t rule. The left
hand side of the assignment (L v a l u o) is a variable access
(V a r k e e e s s) . Since Assign is an aggregate rule, its
successors are fixed, so nothing needs to be encoded. Now
we need to generate possible choices' for the Va.rkeeeas
rule. At this point, we impose another constraint - lexical
scoping. There are six variables in scope, and we encode i
as the successor. Now we impose yet another constraint -
the typing rules of the language. Given that the left hand
side is an integer, the right hand side must be Of a
compatible type. Even though there are six variables in the
current scope, only three are of a compatible type (in t) .
The next choice must be made from only among these three.
Note how the encoding rules out any possibility of
expressing an illegal assignment.

The decoder runs conceptually in lockstep with the
encoder. It knows the same set of semantic constraints as
the encoder. It also generates possible legal successor
nodes at every step. However, now the decoder needs to
know which node among the successors to choose from.

or any other traversal order chosen beforehand

For this, it looks up the index of the successor from the
encoded file. If the file is tampered with during transit, the
possibilities are:

1. The index looked up from the file refers to one of
the valid choices. In this case, even though the
program was tampered with, it conforms to the
safety constraints of the decoder, and decoding
proceeds. The decoded program may do
something different than intended or nonsensical,
but it is guaranteed to be safe 2.

2. The index looked up from the file does not refer
to one of the valid choices. This is not possible
since we arithmetic encoding and any bit pattern
will yield one of the indices.

3. The file ends prematurely. The program is
rejected.

In all three cases, unsafe programs are rejected. Our
encoding is essentially a mapping from valid programs to
bit-sequences. Every bit-sequence of sufficient length is
guaranteed to map back to a valid program conforming to
the semantic constraints enforced by the encoding.

Here we have explained our encoding in broad strokes.
The encoding of choices in step 2 is much more
complicated than explained here. We do a probabilistic
modelling of the possible choices, and use it to drive an
arithmetic encoder to generate the actual bits that are
.transmitted. This allows us to achieve an excellent
compression factor that is better than the best publ ished
scheme for Java bytecode. This is expected, because our
semantic constraints greatly reduce the encoding space. For
more details, see [13] and [15].

2.2 Transporting Annotations Safely
One of the requirements of mobile code is quick start-up
time. Since mobile code is in some machine-independent
intermediate representation, we need to generate native
code from it prior to execution 3. However, this usually
happens at run-time while the user is waiting, and must be
fast. It is also very common to use mobile code in a
f ramework that uses dynamic op t imiza t ion to
incrementally improve code quality[5].

We can improve both start-up time and quality of generated
native code by shipping relevant annotations along with
the mobile code. Typically, these annotations are the
results of some static analysis, and help the. consumer to
generate better code faster. The goal is to shift the load o f
compute-intensive analyses to the producer.

Annotations can be broadly classified into two types -
those that do not affect program semantics, but are only
helpful hints to the compiler4; and those that do affect
program semant ics (such as array bounds-check
elimination, or escape analysis). Annotations of the first

2" Integrity of the transmitted file can be easily verified by
using a cryptographic digest function. This is
completely independent of our encoding.

a The other option, .interpretation, is too slow and rarely
used.

4 An example of this is annotations that simply point out
methods where greater optimization effort should be
spent.

70

kind do not need to be verified, because even if they are
tampered with correct code is generated. Annotations of the
latter kind, however, do need to be verified. Maliciously
tampered annotations could lead to unsafe code being
generated an executed. As a simple example, suppose we are
shipping the results of an array bounds check analysis by
indicating which array accesses do not need to be bound-
checked. If a malicious annotation is inserted to indicate
that a bound-check is not required for an array access where
is a bound-check is indeed required, this opens a security
hole where arbitrary memory could be accessed by
indexing this array.

It turns out that WELL encoding is very suitable for
carrying a certain class of annotations safely. As proof-of-
concept, we have augmented WElL to transport the results
of escape analysis. Escape analysis indicates when an
object allocated dynamically on the heap does not escape
its enclosing scope (i.e. no pointers outside its scope refer
to it). Objects that do not escape (or are captured) can then
be allocated on the stack and be automatically freed on exit
from the scope. This reduces garbage collection overhead,
and has been reported to give significant performance
gains[2].

We transport escape analysis information by essentially
adding type modifiers for escaped and captured objects,
and then enforcing some semantic source-level rules to
make sure that objects with these annotations are used
consistently. For example, we do not allow a captured
object to be assigned to an escaping reference. The
consumer does not have to repeat the compute-intensive
analysis, but can quickly verify the results. Full details are
beyond the scope of this paper - we refer the reader to our
technical report[14].

3. COMPARISON AND DISCUSSION
Our goal is to explore the design space for mobile code
intermediate representations. Currently, the most prevalent
mobile code format is Java bytecode[6]. In this paper, we
present an aiternative mobile code representation that is at
a much higher level than bytecode - compressed abstract
syntax trees. We have a prototype implementation of an
end-to-end system that is able to replace the Java classfile
format as a format for mobile code transportation. At the
same time, our high level encoding has a number of
advantages over traditional bytecode-based approaches.

3.1 Bytecode considered harmful
Our work was partly motivated by a number of
shortcomings of bytecode-based approaches to mobile
code. The first and most important among these is the large
semantic gap between the language being encoded and
bytecode that is actually transported. In the Java language
and its corresponding virtual machine for example, type-
unsafe accesses can be made in bytecode, but not in Java;
arbitrary jumps can be made in bytecode, but not in Java.
Fundamentally, all the effort expended for bytecode
verification is to make sure that this semantic gap is not
maliciously exploited. This semantic gap is further
highlighted by...the existence of legal Java programs that
are rejected by all bytecode verifiers[12].

By using ASTs as a mobile code format, what is transport'ed
is much closer to the semantics of the original source
language. As a direct consequence of this, lwe can reduce

the verification overhead versus what is required with
bytecode-based formats. For example, type safety is
evident at the source language level . .4 proof o f safety
exists at the source level and that should be preserved
through the mobile code pipeline. In essence, transporting
bytecode throws away this source-level "proof', requiring
verification effort that in some sense tries to reconstruct
guarantees that existed at the source level originally. High-
level ASTs preserve this source-level proof throughout.

From the point of view of the programmer, it is the
semantics of the source language that she understands, and
indeed it is those semantics that should be "transported"
safely.

High-level encoding of programs protects the code
consumer against attacks based on low-level instructions,
which are hard to control and verify. Even if tampered with,
a file in our format guarantees adherence to the semantic
constraints that we enforce, or is invalidated, thereby
providing safety by construction.

Another major disadvantage of bytecode-based formats is
the great amount of effort that is required to optimize them
to efficient native code. This is again due to the semantic
gap between the source language and the low-level
bytecode format. In general, most backend code-generating
optimizations are greatly helped by high level information

- the kind that is available in source code. But it is
precisely this kind of information that is lost when source
is compiled to bytecode. As a result, the backend optimizer
has to expend great effort to recover some of this high level
structure. For example, the first thing an optimizer does
with bytecode is to construct its control flow graph.
Transporting a high-level format that is very close to
source code trivially solves this problem. The backend
optimizer now has all the information about the high level
structure of the program.

Since our mobile code format contains all the information
provided by the programmer at the source language level,
the runtime system at the code consumer site can readily
use this information to provide optimizations and services
based on source language guarantees. Kistler[5] uses the
availability of the AST to make dynamic re-compilation at
runtime feasible.

It is sometimes feared that using a high-level
representation such as abstract syntax trees would easily
give away intellectual property in the encoded program.
This claim is not well-founded. Local variable names, a
major factor in understanding code, are simply indices in
our ,encoding. Low level representations such as bytecode
offer only illusory protection of intellectual property. This
is readily demonstrated by freely available bytecode
decompilers such as .lODE[17]. Moreover, recent theoretical
results question the very possibility of obfuscating
well[16].

Furthermore, distributing code in source language-
equivalent form provides the runtime system with the
choice of a platform-tailored intermediate representation.
For example, it is possible to use an existing target-
Specific backend. As proof of concept, we have
implemented a GCC-based backend.

71

3.2 Proof-Carrying Code and Certifying
Compilation
Proof-carrying code (PCC)[7] is a technique in which the
code is accompanied with a formal proof of its safety with
respect to a fixed safety policy. This proof may be hard to
generate, but it is easy to check. The code consumer
mechanically checks the proof before executing it. For PCC
to be practical, the proof must be automatically generated.
PCC at the assembly-language level utilizes theorem-
proving to generate proofs. Certifying compilation tries to
generate PCC-annotated binaries from a high-level
language.

PCC so far has been demonstrated with DEC Alpha
assembly language[7], a compiler for Java bytecode to x86
assembly language[3], and a compiler from a type-safe
subset of C to Alpha assembly language s [8]. However, it
has yet to be demonstrated with a full, high-level source
language. The fundamental reason for this is the difficulty
of preserving a proof all the way from the source level to
low-level assembly. It is also an open question how proofs
can be generated for properties other than type-safety.

All the applications of PCC so far have been on low-level
code. As we explained in section 3.1, this suffers from the
same problems of having a large semantic gap from the
source. Our philosophy, on the other hand, is to preserve
the source-level proof, and transport that.

An issue with PCC was the size of its proofs. Recent
work[9] has shown that this can be compressed down to a
small overhead. Though done independently of our work,
their encoding of proofs is similar in spirit to our encoding
of programs[13]. The proof is essentially viewed as a tree.
At a certain point m the proof tree, only a certain number of
rules apply, and the checker must decide which rule to use.
The job of the prover (at the code producer's end) is to
point out to the checker which rule to use next. This is
simply encoded as an index into the list of the rules
currently applicable. This oracle-like encoding that works
by "narrowing of possibilities" is very similar to ours. In
our WELL encoding, the proof and the progra m are
intrinsically bound together. The oracle-like encoding of
PCC proofs approaches this idea.

One advantage of PCC is that it has a very small trusted
computing base (TCB) - the proof checker. One generic
checker can check a large number of properties. The trusted
checker can be made even smaller by using a more basic
logic and expressing other properties in it. This is the
approach taken by foundational PCC (FPCC)[1]. However,
FPCC is even harder to scale to real-world, high-level
languages. There is clearly a trade-off here between size of
the TCB and its scalability to high-level languages. Our
approach is at the other end of the spectrum. We easily
capture and safely transport the source*level semantics of a
large language (Java). However, at the consumer end, the
entire backend, which is essentially a Java compiler, is
trusted.

Another problem with the PCC approach is that the security
policy is fixed and must be known at the time of proof-
generation. This is a limitation because security needs are

5 Note that PCC done with assembly language is not
portable.

varied, and it is unrealistic for the producer to know all the
policies of interest to a consumer. This has motivated
approaches such as model-carrying code (MCC)[11]. MCC
needs to extract a model of program behaviour from code.
One way to do this is to abstract a program to retain only
parts of interest. Our high-level WELL encoding is
particularly well-suited for this purpose, and could
possibly be used as input to an MCC system.

3.3 An end-to-end mobile code system
We envision a mobile code infrastructure where code
producers distribute programs as compressed abstract
syntax trees (ASTs) and code consumers deploy these
programs after decompression by compiling them for their
specific platform. Compressed ASTs provide the following
prerequisites for mobile code: platform independence,
safety, compactness, and suitability for target-specific
optimization.

The code producer distributes software as compressed
ASTs, which constitutes a platform-independent format at a
high level of abstraction. Compression of ASTs is allowed
to be computationally expensive because it is only a one-
time effort performed by the code producer. The general
philosophy is to shift the computational load from the
consumer to the producer. Augmenting the AST encoding
with hard-to-compute but easy-to-verify annotations is a
step in this direction.

As proof-of-concept, we have annotated our encoding with
escape analysis information, and transported it in a safe
manner such that it can be quickly verified at the
consumer's site[14]. We believe that the same concept can
be applied, with relatively little modification, to a number
of other static analysis techniques that are computationally
intensive but whose results are easy to verify. The major
challenge was to demonstrate an effective technique for
trcmsporting these results safely, and we have shown how
to do that.

Compactness is an issue when code is transferred over
networks limited in bandwidth, such as wireless networks.
It is also becoming increasingly important with respect to
storage requirements, especially when code needs to be
stored on embedded devices. Processor performance has
increased exponentially over storage access time in the last
decade. It is therefore reasonable to investigate
compression as a means of Using additional processor
cycles to decrease the demand on storage access[4], leading
to a net gain in performance.

Our prototype implementation compresses Java ASTs,
which are then compiled to native code, thereby
circumventing compilation into bytecode and execution
on the JVM. We chose Java as the language to compress
because there have already been considerable efforts[10] to
compress Java programs. This gives us a viable yardstick
to gauge our results against.

4. STATUS AND FUTURE WORK
We currently have a end-to-and system based on WIqL
encoding. At the producer's site, Java source is encoded to
WELL, which is transported. At the consumer's site, the
WELL file is decoded and fed into a GCC-based backend,
which generates native code.

72

The performance of our backend is not yet competitive. Our
primary focus so far was to have a complete system rather
than optimize for performance. The main thrust for future
work now is to improve the performance of the backend,
both in terms of start-up latency and code quality. The first
step towards this is to make the backend utilize the escape
analysis annotations that we transport. We would also like
to explore transporting other annotations with our
encoding.

5. SUMMARY
Security guarantees for mobile code are easier to reason
about at the source-language level. However, the two major
mobile code techniques, bytecode, and proof-carrying code
and its variants, take a low-level view of mobile code. We
argue that the large semantic gap between high-level source
and low-level mobile code creates inefficiencies both in
reasoning about security properties of the code, as well as
its performance.

Our alternative mobile code representation encodes
programs at a level much closer to source. It is much easier
to transport source-level semantics in our encoding than in
the prevalent low-level approaches. Our encoding also
provides safety by construction, as illegal programs cannot
even be expressed in it. Other advantages of our encoding
are an excellent compression factor, and the ability to
safely transport performance-enhancing annotations.

As proof-of-concept, we have an end-to-end prototype
implementation that can serve as a complete replacement of
the Java virtual machine pipeline.

ACKNOWI,EDGEMENTS
This research effort is partially funded by the U.S.
Department of Defense, Critical Infrastructure Protection
and High Confidence, Adaptable Software (CIP/SW)
Research Program of the University Research Initiative
administered by the Office of Naval Research under
agreement N00014-01-1-0854, and by the National Science
Foundation, Program in Operating Systems and Compilers,
under grant CCR-9901689.

RF.,FF.,RF.,NCES

[1] A. Appel; "Foundational proof-carrying code"; In
Proceedings of the 16th Annual Symposium on Logic
in Computer Science, pages 247-256. 1EEE Computer
Society Press, 2001.

[2] J.D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S.
Midkiff; "Escape Analysis for Java"; In Conference on
Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA'99), Nov. 1999.

[3] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline and M.
Plesko; "A Certifying Compiler for Java"; In
Pro~eediiigs of the 2000 ACM SIGPLAN Conference

on Programming Language Design and
Implementation (PLDI00), Vancouver, British
Columbia, Canada, June 18-21, 2000.

[4]M. Franz and T. Kistler; "Slim Binaries";
Communications of the ACM, 40:12, pp. 87-94; 1997.

[5] T. Kistler and M. Franz; "Automated data-member
layout of heap objects to improve memory-hierarchy
performance"; in ACM Transactions on Programming
Languages and Systems, May 2000.

[6] T. Lindholm and F. Yellin; "The Java TM Virtual
Machine Specification"; Addison-Wesley, 1999.

[7] G. C. Necula; "Proof-Carrying Code"; in Proceedings
of the Conference on Principles of Programming
Languages, January 1997.

[8] G.C. Necula, P. Lee; "The Design and Implementation
of a Certifying Compiler"; in Proceedings of the '98
Conference on Programming Language Design and
Implementation, Montreal, 1998

[9] G. Necula; "A Scalable Architecture for Proof-Carrying
Code"; in The Fifth International Symposium on
Functional and Logic Programming, Tokyo, March
2001.

[10~,V. Pugh; "Compressing Java class files"; In
Proceedings of ACM/SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI) '99, May 1999.

[11] R. Sekar, C.R. Ramakrishnan, I.V. Ramakrishnan and S.
Smolka; "Model-Carrying Code: A New Paradigm for
Mobile Code Security"; in New Security Paradigms
Workshop, 2001.

[12]R. F. Stark and J. Schmid; "The Problem of Bytecode
Verification in Current Implementations of the JVM";
Technical Report, Department of Computer Science,
ETH Zttrich, 2000.

[13]C. Stork, V. Haldar, and M. Franz; "Generic Adaptive
Syntax-Directed Compression for Mobile Code";
Technical Report No.. 00-42, Department of
Information and Computer Science, University of
California, Irvine, November 2000.

[14]C. Stork, V. Haldar, M. Beers and M. Franz; "Tamper-
proof Annotations - by Construction"; Technical
Report 02-10, Department of Information and
Computer Science, University of California, Irvine,
Mar 2002.

[15]C. Stork and V. Haldar; "Compressed Abstract Syntax
Trees for Mobile Code"; in Workshop on Intermediate
Representation Engineering, July 2001.

[16]B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A.
Sahai, S. Vadhan, and K. Yang; "On the (Im)possibility
of Obfuscating ,Programs (Extended Abstract)"; in
Advances in Cryptology (CRYPTO), 2001

[17]Java Optimize and Decompile Environment (JODE);
http://j ode.source forge.net

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post On servers or to redistribute to lists,
requires prior specific permission and/or a fee.
New Security Paradigms Workshop '02, September 23-26, 2002,
Virginia 8each, Virginia.
Copyright 2002 ACM ISBN 1-58113-598-X/02/0009 -.$5.00

73

