
Vivek Haldar 
The Source is the Proof 

Christian H. Stork 
University of Califomia, Irvine 

CA 92612 
USA 

Michael Franz 

{vhaldar, cstotk,franz)@ics.ud.edu 

ABSTRACT 
We challenge the apparent consensus for using bytecode 
verification and techniques related to proof-carrying code 
for mobile code security. We propose an alternative to 
these two techniques that transports programs at a much 
higher level of  abstraction. Our high-level encoding can 
achieve safe end-to-end transport of  program source 
semantics. Moreover, our encoding is safe by construction, 
in the sense that unsafe programs cannot even be expressed 
in it. We contrast our encoding with certifying compilation 
and bytecode-based approaches, and describe how it  
overcomes some of their deficienciesI 

Keywords 
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1. INTRODUCTION 
Mobile code has become increasingly widespread in many 
forms - executable content on web pages, application 
plugins, scripts, and even entire applications. It is now 
commonly used on a large gamut of  hardware, from smart 
cards (JavaCard) to eCommerce servers .  It usually 
originates from myriad untrusted sources, so a major 
concern is its security. Malicious (or even buggy) mobile 
code could consume system resources, leak secret data, or 
attack a system in a variety of  ways. We need to make some 
guarantees about its behaviour before executing it. 

The problem of mobile code security has recently been the 
focus of much research. Broadly, the goal is to make secure 
mobi le  code representat ions,  and accompanying 
mechanisms that can check the code for conformance with a 
security policy before execution. This checking could be 
static (at compile-time or load-time), dynamic (at run-time), 
or a combination of both. 

Currently there are two major thrusts driving mobile code 
research. Industry and consumers mostly use the Java 
virtual machine and its bytecode representation. In the 
research community, the most interest has been generated 
by the technique of  proof-carrying code (PCC), certifying 
compilation, and its variants. 

In this paper, we describe an alternative to both these 
techniques . .We,  challenge some of  their underlying 
assumptions and examine some of their deficiencies. Our 
approach, called WELL (Wellformed Encoding at tl~e 
Language-Level), is based on transporting compressed 
abstract syntax trees (CASTs). We compare WELL with 
certifying compilation and bytecode-based approaches, 
and also discuss its advantages and pitfalls. 

The rest of  the paper is structured as follows: section 2 
presents our WELL encoding; section 3 presents an 
evaluation of our encoding, and compares it with PCC and 
bytecode-based approaches; we give the status of  our work 
and outline future work in section 4; section 5 concludes. 

2. HIGH-LEVEL MOBILE CODE 
In this section we explain WELL-encoding, and then go on 
to show how it also turns out to be amenable to safely 
carrying annotations. 

2.1 Transporting Source-Level Semantics 
By "safety" of  code we mean type safety. Type-safe code 
respects the typing discipline of  the language in which it 
was written. This allows us to make safety guarantees about 
the runtime behaviour of  a program by statically checking 
it for type safety. 

Consider a program (written in a high-level typed language 
such as Java) that successfully typechecks. Assuming the 
type system of the language is sound, this program can 
now be deemed safe with respect to the type system. In 
essence, the proof of  safety is in the source code itself. This 
is what we mean when we refer to a source-level proof. The 
question now is how to transport this proof of  safety in a 
manner such that it can be recovered at the consumer's end. 

Our solution is to transport something very close to t h e  
source level - abstract syntax trees. An abstract syntax tree 
(AST) is the parse tree of  a program stripped of superfluous 
syntactic elements, such as brackets, which are unnecessary 
because the structure of the program is given by the AST. 
Our encoding of  abstract syntax trees can safely transport 
source level semantics. We enforce these semantic 
constraints as an intrinsic part of the encoding itself. As a 
result, programs that do not satisfy these constraints are 
inexpressible i n  our encoding. Thus, we guarantee safe 
transport of  source-level semantics by construction. We 
call this wellformedness by construction. 

We illustrate the principal ideas behind our encoding 
with the help of a simple example. Consider the following 
Java code snippet: 

int i, j, k; 
char a, b, c; 
j = i0; 
i = j; //encoding this 

Consider the encoding of  the  last statement, given that 
everything before it has been encoded. WELL encoding 
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proceeds by walking the AST in pre-order l, and performing 
the following two steps at every node: 

1. Given all the constraints applicable at this point, 
generate the possible legal successors to this  
node. 

2. The successor to the current node is encoded 
simply as its index among the successors 
generated in the previous step (if  it is not one of  
the legal successors, we reject the program). 

Note how the combination of these two steps - generating 
valid successors and then choosing only from among them 
- makes our encoding safe by construction. A program that 
does not satisfy the constraints being imposed by our 
encoding cannot be expressed in it at all. This is the central 
idea behind our encoding. 

Also note that often there is only one legal successor 
generated by step 1. In this case, nothing needs to be 
encoded, as the next choice is obvious. 

The first constra int  WELL encoding imposes is 
conformance to the abstract grammar of the language being 
encoded. The relevant grammar rules (in standard EBNF 
notation) are: 

Stmt = If I While I Assign I .... 
Assign = Lvalue Expr 
Lvalue = Field [VarAccess [ ... 

Expr = Unary [ Binary I --- 
Unary = VarAccess I FieldAccess I . . .  

Each node in the AST corresponds to one such rule. The 
first rule (Strut) is an example of  a choice rule, where the 
next valid construct is one of a number of  choices. The 
second rule is an example of an aggregate rule, where the 
next valid construct is afixed sequence of other constructs. 

We are encoding a statement ( s t r u t )  that is an assignment 
(Ass ign ) .  The index of A s s i g n  is encoded from among the 
possible choices ( I f ,  W h i l e  etc.) for the S t ru t  rule. The left 
hand side of the assignment ( L v a l u o )  is a variable access 
( V a r k e e e s s ) .  Since Assign is an aggregate rule, its 
successors are fixed, so nothing needs to be encoded. Now 
we need to generate possible choices' for the Va.rkeeeas 
rule. At this point, we impose another constraint - lexical 
scoping. There are six variables in scope, and we encode i 
as the successor. Now we impose yet another constraint - 
the typing rules of  the language. Given that the left hand 
side is an integer, the right hand side must be Of a 
compatible type. Even though there are six variables in the 
current scope, only three are of  a compatible type ( in t ) .  
The next choice must be made from only among these three. 
Note how the encoding rules out any possibility of  
expressing an illegal assignment. 

The decoder runs conceptually in lockstep with the 
encoder. It knows the same set of semantic constraints as 
the encoder. It also generates possible legal successor 
nodes at every step. However, now the decoder needs to 
know which node among the successors to choose from. 

or any other traversal order chosen beforehand 

For this, it looks up the index of  the successor from the 
encoded file. If  the file is tampered with during transit, the 
possibilities are: 

1. The index looked up from the file refers to one of  
the valid choices. In this case, even though the 
program was tampered with, it conforms to the 
safety constraints of the decoder, and decoding 
proceeds. The decoded program may do 
something different than intended or nonsensical, 
but it is guaranteed to be safe 2. 

2. The index looked up from the file does not refer 
to one of the valid choices. This is not possible 
since we arithmetic encoding and any bit pattern 
will yield one of  the indices. 

3.  The file ends prematurely. The program is 
rejected. 

In all three cases, unsafe programs are rejected. Our 
encoding is essentially a mapping from valid programs to 
bit-sequences. Every bit-sequence of  sufficient length is 
guaranteed to map back to a valid program conforming to 
the semantic constraints enforced by the encoding. 

Here we have explained our encoding in broad strokes. 
The encoding of  choices in step 2 is much more 
complicated than explained here. We do a probabilistic 
modelling of the possible choices, and use it to drive an 
arithmetic encoder to generate the actual bits that are 
.transmitted. This allows us to achieve an excellent 
compression factor that is better than the best publ ished 
scheme for Java bytecode. This is expected, because our 
semantic constraints greatly reduce the encoding space. For 
more details, see [13] and [15]. 

2.2 Transporting Annotations Safely 
One of the requirements of  mobile code is quick start-up 
time. Since mobile code is in some machine-independent 
intermediate representation, we need to generate native 
code from it prior to execution 3. However, this usually 
happens at run-time while the user is waiting, and must be 
fast. It is also very common to use mobile code in a 
f ramework  that  uses  dynamic  op t imiza t ion  to 
incrementally improve code quality[5]. 

We can improve both start-up time and quality of generated 
native code by shipping relevant annotations along with 
the mobile code. Typically, these annotations are the 
results of some static analysis, and help the. consumer to 
generate better code faster. The goal is to shift the load o f  
compute-intensive analyses to the producer. 

Annotations can be broadly classified into two types - 
those that do not affect program semantics, but are only 
helpful hints to the compiler4; and those that do affect 
program semant ics  (such as array bounds-check 
elimination, or escape analysis). Annotations of the first 

2" Integrity of the transmitted file can be easily verified by 
using a cryptographic  digest  function. This is 
completely independent of  our encoding. 

a The other option, .interpretation, is too slow and rarely 
used. 

4 An example of this is annotations that simply point out 
methods where greater optimization effort should be 
spent. 
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kind do not need to be verified, because even if they are 
tampered with correct code is generated. Annotations of the 
latter kind, however, do need to be verified. Maliciously 
tampered annotations could lead to unsafe code being 
generated an executed. As a simple example, suppose we are 
shipping the results of an array bounds check analysis by 
indicating which array accesses do not need to be bound- 
checked. If a malicious annotation is inserted to indicate 
that a bound-check is not required for an array access where 
is a bound-check is indeed required, this opens a security 
hole where arbitrary memory could be accessed by 
indexing this array. 

It turns out that WELL encoding is very suitable for 
carrying a certain class of annotations safely. As proof-of- 
concept, we have augmented WElL to transport the results 
of escape analysis. Escape analysis indicates when an 
object allocated dynamically on the heap does not escape 
its enclosing scope (i.e. no pointers outside its scope refer 
to it). Objects that do not escape (or are captured) can then 
be allocated on the stack and be automatically freed on exit 
from the scope. This reduces garbage collection overhead, 
and has been reported to give significant performance 
gains[2]. 

We transport escape analysis information by essentially 
adding type modifiers for escaped and captured objects, 
and then enforcing some semantic source-level rules to 
make sure that objects with these annotations are used 
consistently. For example, we do not allow a captured 
object to be assigned to an escaping reference. The 
consumer does not have to repeat the compute-intensive 
analysis, but can quickly verify the results. Full details are 
beyond the scope of this paper - we refer the reader to our 
technical report[14]. 

3. COMPARISON AND DISCUSSION 
Our goal is to explore the design space for mobile code 
intermediate representations. Currently, the most prevalent 
mobile code format is Java bytecode[6]. In this paper, we 
present an aiternative mobile code representation that is at 
a much higher level than bytecode - compressed abstract 
syntax trees. We have a prototype implementation of an 
end-to-end system that is able to replace the Java classfile 
format as a format for mobile code transportation. At the 
same time, our high level encoding has a number of  
advantages over traditional bytecode-based approaches. 

3.1 Bytecode considered harmful 
Our work was partly motivated by a number of  
shortcomings of  bytecode-based approaches to mobile 
code. The first and most important among these is the large 
semantic gap between the language being encoded and 
bytecode that is actually transported. In the Java language 
and its corresponding virtual machine for example, type- 
unsafe accesses can be made in bytecode, but not in Java; 
arbitrary jumps can be made in bytecode, but not in Java. 
Fundamentally, all the effort expended for bytecode 
verification is to make sure that this semantic gap is not 
maliciously exploited. This semantic gap is further 
highlighted by...the existence of legal Java programs that 
are rejected by all bytecode verifiers[12]. 

By using ASTs as a mobile code format, what is transport'ed 
is much closer to the semantics of the original source 
language. As a direct consequence of this, lwe can reduce 

the verification overhead versus what is required with 
bytecode-based formats. For example, type safety is 
evident at the source language level . .4 proof  o f  safety 
exists at the source level and that should be preserved 
through the mobile code pipeline. In essence, transporting 
bytecode throws away this source-level "proof',  requiring 
verification effort that in some sense tries to reconstruct 
guarantees that existed at the source level originally. High- 
level ASTs preserve this source-level proof throughout. 

From the point of  view of the programmer, it is the 
semantics of the source language that she understands, and 
indeed it is those semantics that should be "transported" 
safely. 

High-level encoding of  programs protects the code 
consumer against attacks based on low-level instructions, 
which are hard to control and verify. Even if tampered with, 
a file in our format guarantees adherence to the semantic 
constraints that we enforce, or is invalidated, thereby 
providing safety by construction. 

Another major disadvantage of  bytecode-based formats is 
the great amount of  effort that is required to optimize them 
to efficient native code. This is again due to the semantic 
gap between the source language and the low-level 
bytecode format. In general, most backend code-generating 
optimizations are greatly helped by high level information 

- the kind that is available in source code. But it is 
precisely this kind of information that is lost when source 
is compiled to bytecode. As a result, the backend optimizer 
has to expend great effort to recover some of this high level 
structure. For example, the first thing an optimizer does 
with bytecode is to construct its control flow graph. 
Transporting a high-level format that is very close to 
source code trivially solves this problem. The backend 
optimizer now has all the information about the high level 
structure of the program. 

Since our mobile code format contains all the information 
provided by the programmer at the source language level, 
the runtime system at the code consumer site can readily 
use this information to provide optimizations and services 
based on source language guarantees. Kistler[5] uses the 
availability of the AST to make dynamic re-compilation at 
runtime feasible. 

It is sometimes feared that using a high-level 
representation such as abstract syntax trees would easily 
give away intellectual property in the encoded program. 
This claim is not well-founded. Local variable names, a 
major factor in understanding code, are simply indices in 
our ,encoding. Low level representations such as bytecode 
offer only illusory protection of intellectual property. This 
is readily demonstrated by freely available bytecode 
decompilers such as .lODE[17]. Moreover, recent theoretical 
results question the very possibility of  obfuscating 
well[16]. 

Furthermore, distributing code in source language- 
equivalent form provides the runtime system with the 
choice of  a platform-tailored intermediate representation. 
For example, it is possible to use an existing target- 
Specific backend. As proof  of  concept, we have 
implemented a GCC-based backend. 
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3.2 Proof-Carrying Code and Certifying 
Compilation 
Proof-carrying code (PCC)[7] is a technique in which the 
code is accompanied with a formal proof of its safety with 
respect to a fixed safety policy. This proof may be hard to 
generate, but it is easy to check. The code consumer 
mechanically checks the proof before executing it. For PCC 
to be practical, the proof must be automatically generated. 
PCC at the assembly-language level utilizes theorem- 
proving to generate proofs. Certifying compilation tries to 
generate PCC-annotated binaries from a high-level 
language. 

PCC so far has been demonstrated with DEC Alpha 
assembly language[7], a compiler for Java bytecode to x86 
assembly language[3], and a compiler from a type-safe 
subset of C to Alpha assembly language s [8]. However, it 
has yet to be demonstrated with a full, high-level source 
language. The fundamental reason for this is the difficulty 
of preserving a proof all the way from the source level to 
low-level assembly. It is also an open question how proofs 
can be generated for properties other than type-safety. 

All the applications of PCC so far have been on low-level 
code. As we explained in section 3.1, this suffers from the 
same problems of having a large semantic gap from the 
source. Our philosophy, on the other hand, is to preserve 
the source-level proof, and transport that. 

An issue with PCC was the size of  its proofs. Recent 
work[9] has shown that this can be compressed down to a 
small overhead. Though done independently of our work, 
their encoding of proofs is similar in spirit to our encoding 
of programs[13]. The proof is essentially viewed as a tree. 
At a certain point m the proof tree, only a certain number of  
rules apply, and the checker must decide which rule to use. 
The job of the prover (at the code producer's end) is to 
point out to the checker which rule to use next. This is 
simply encoded as an index into the list of  the rules 
currently applicable. This oracle-like encoding that works 
by "narrowing of possibilities" is very similar to ours. In 
our WELL encoding, the proof and the progra m are 
intrinsically bound together. The oracle-like encoding of  
PCC proofs approaches this idea. 

One advantage of PCC is that it has a very small trusted 
computing base (TCB) - the proof checker. One generic 
checker can check a large number of properties. The trusted 
checker can be made even smaller by using a more basic 
logic and expressing other properties in it. This is the 
approach taken by foundational PCC (FPCC)[1]. However, 
FPCC is even harder to scale to real-world, high-level 
languages. There is clearly a trade-off here between size of  
the TCB and its scalability to high-level languages. Our 
approach is at the other end of the spectrum. We easily 
capture and safely transport the source*level semantics of a 
large language (Java). However, at the consumer end, the 
entire backend, which is essentially a Java compiler, is 
trusted. 

Another problem with the PCC approach is that the security 
policy is fixed and must be known at the time of proof- 
generation. This is a limitation because security needs are 

5 Note that PCC done with assembly language is not  
portable. 

varied, and it is unrealistic for the producer to know all the 
policies of interest to a consumer. This has motivated 
approaches such as model-carrying code (MCC)[11]. MCC 
needs to extract a model of  program behaviour from code. 
One way to do this is to abstract a program to retain only 
parts of  interest. Our high-level WELL encoding is 
particularly well-suited for this purpose, and could 
possibly be used as input to an MCC system. 

3.3 An end-to-end mobile code system 
We envision a mobile code infrastructure where code 
producers distribute programs as compressed abstract 
syntax trees (ASTs) and code consumers deploy these 
programs after decompression by compiling them for their 
specific platform. Compressed ASTs provide the following 
prerequisites for mobile code: platform independence, 
safety, compactness, and suitability for target-specific 
optimization. 

The code producer distributes software as compressed 
ASTs, which constitutes a platform-independent format at a 
high level of abstraction. Compression of ASTs is allowed 
to be computationally expensive because it is only a one- 
time effort performed by the code producer. The general 
philosophy is to shift the computational load from the 
consumer to the producer. Augmenting the AST encoding 
with hard-to-compute but easy-to-verify annotations is a 
step in this direction. 

As proof-of-concept, we have annotated our encoding with 
escape analysis information, and transported it in a safe 
manner such that it can be quickly verified at the 
consumer's site[14]. We believe that the same concept can 
be applied, with relatively little modification, to a number 
of other static analysis techniques that are computationally 
intensive but whose results are easy to verify. The major 
challenge was to demonstrate an effective technique for 
trcmsporting these results safely, and we have shown how 
to do that. 

Compactness is an issue when code is transferred over 
networks limited in bandwidth, such as wireless networks. 
It is also becoming increasingly important with respect to 
storage requirements, especially when code needs to be 
stored on embedded devices. Processor performance has 
increased exponentially over storage access time in the last 
decade. It is therefore  reasonable  to investigate 
compression as a means of  Using additional processor 
cycles to decrease the demand on storage access[4], leading 
to a net gain in performance. 

Our prototype implementation compresses Java ASTs, 
which are then compiled to native code, thereby 
circumventing compilation into bytecode and execution 
on the JVM. We chose Java as the language to compress 
because there have already been considerable efforts[10] to 
compress Java programs. This gives us a viable yardstick 
to gauge our results against. 

4. STATUS AND FUTURE WORK 
We currently have a end-to-and system based on WIqL 
encoding. At the producer's site, Java source is encoded to 
WELL, which is transported. At the consumer's site, the 
WELL file is decoded and fed into a GCC-based backend, 
which generates native code. 
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The performance of our backend is not yet competitive. Our 
primary focus so far was to have a complete system rather 
than optimize for performance. The main thrust for future 
work now is to improve the performance of the backend, 
both in terms of start-up latency and code quality. The first 
step towards this is to make the backend utilize the escape 
analysis annotations that we transport. We would also like 
to explore transporting other annotations with our 
encoding. 

5. SUMMARY 
Security guarantees for mobile code are easier to reason 
about at the source-language level. However, the two major 
mobile code techniques, bytecode, and proof-carrying code 
and its variants, take a low-level view of mobile code. We 
argue that the large semantic gap between high-level source 
and low-level mobile code creates inefficiencies both in 
reasoning about security properties of the code, as well as 
its performance. 

Our alternative mobile code representation encodes 
programs at a level much closer to source. It is much easier 
to transport source-level semantics in our encoding than in 
the prevalent low-level approaches. Our encoding also 
provides safety by construction, as illegal programs cannot 
even be expressed in it. Other advantages of our encoding 
are an excellent compression factor, and the ability to 
safely transport performance-enhancing annotations. 

As proof-of-concept, we have an end-to-end prototype 
implementation that can serve as a complete replacement of 
the Java virtual machine pipeline. 
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