
Moving from the Design of Usable Security Technologies
to the Design of Useful Secure Applications

D. K. Smetters
PARC

3333 Coyote Hill Rd.
Palo Alto, CA, USA

smetters @ parc.com

R. E. Grinter
PARC

3333 Coyote Hill Rd.
Palo Alto, CA, USA
beki @ parc.com

ABSTRACT
Recent results from usability studies of security systems have
shown that end-users find them difficult to adopt and use.
In this paper we argue that improving the usability of se-
curity technology is only one part of the problem, and that
what is missed is the need to design usable and useful sys-
tems that provide security to end-users in terms of the ap-
plications that they use and the tasks they want to achieve.
We propose alternate ways of building and integrating secu-
rity technologies into applications and usability methods for
evaluating how successful our prototypes are. We believe
that the end results of designing usable and useful (from
the end-user perspective) systems will be secure applications
which will reflect the needs of users who are increasingly us-
ing computers away from the office and in a wider variety of
networked configurations.

Categories and Subject Descriptors
D.4.6 [Opera t ing S y s t e m s Software]: Security and Pro-
tection; H.1.2 [Models and Principles]: User/Machine
Systems--Human factors

General Terms
Human Factors, Security

Keywords
Usable security

1. INTRODUCTION
There is a small, but increasingly vocal movement suggest-
ing that usability of security technology may be one of the
largest roadblocks standing in the way of increased computer
security [29, 1, 26, 27]. Empirical studies have exposed us-
ability problems in password systems [3, 1, 26], access con-
trol mechanisms [29, 18, 28], and encryption software [27].
To address these problems, the authors of these studies sug-
gest redesigning applications to be more realistic in what

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee,
New Security Paradigms Workshop '02, September 23-26, 2002,
Virginia Beach, Virginia.
Copyright 2002 ACM ISBN 1-58113-598-X102/0009 ...$5.00

they expect of users, and education of the users themselves
to be more effective participants in system security (e.g.,
by choosing better passwords). But very little work (e.g.,
[20, 21, 4]) attempts to design new technologies that solve
security problems from a usability perspective.

At the same time, a number of authors have suggested that
much "classical" computer security technology is designed
for an environment out of step with current computer use
and end-user goals [8, 23], and that it may be time for a shift
in the design of secure systems [8] in order to provide tech-
nology more closely in line with the needs of non-military
users. This is supported by recent analyses that adoption
of security technologies in the public sector is heavily influ-
enced by assessments of risk versus cost [2]. This implies
that lack of widespread adoption of a security technology
from the research community in commonly-used software
may suggest that the technology in question doesn't meet
user needs sufficiently well to justify the cost of implement-
ing it.

We take the more extreme position that the environment
in which security technology is deployed is undergoing rad-
ical change, and that change is such that current usability
problems are only going to get rapidly worse. We argue
that attempting to "add on" usability to existing security
technology is no more likely to be successful than attempts
to "add on" security to existing software systems designed
without it, and that new security technologies need to be de-
signed from the ground up with the user foremost in mind.

To design such new technologies, we have embarked on a
research program focused around the question: "if you put
usability first, how much security can you get?" We ap-
proach this question in the context of ubiquitous computing
and wireless devices, a context where usability and flexibil-
ity are paramount. As part of this program we have begun
to design new approaches to integrating security technology
into applications, as well as new basic security technologies
that enhance usability. We present here several early results
of our work and the work of others as examples of new ways
to design usable approaches to security.

1.1 Why Now: The Changing Face of Users
The traditional "users" of security technology can be divided
into three groups: the developer who integrates security into
a system, the administrator who sets policy and monitors se-

82

curi ty for a n u m b e r of users and machines , and the end-user ,
who mus t ensure t h a t their own practices follow and help to
implement these policies. Research to da te has focused on
the la t ter two groups, and in par t icular on how they use
software whose basic funct ion is inherent ly securi ty-related
(see section 2.2).

As compu t ing leaves the desktop and the office, solut ions
like firewalls and protocols are becoming some th ing t ha t
end-users m u s t u n d e r s t a n d if t hey are to protect their own
devices. Moreover, each individual is more likely to have
a mul t i tude of devices, some which will never see a profes-
sional sy s t em adminis t ra tor , bu t all of which m u s t seam-
lessly work together . In more general te rms, end-users are
becoming their own sys t ems admin i s t r a to r s for increasing
number s of potent ial ly mobile devices [13]. In doing so,
users ' p r imary goals are f ramed in t e rms of the work they
need to accomplish, no t in t e rms of m a n a g i n g securi ty [27,
26], and they are not suppor t ive of technologies t h a t pre-
vent t h e m accompl ishing those p r imary goals [24]. At the
same t ime, a t t e m p t s to categorize a p r i o r i in t e rms of roles
or work processes, what t hey will need to do to accomplish
those goals and ar range the necessary privileges to match ,
have not been successful [18, 8, 23, 24]. If organizat ional
roles and processes could not categorize the office work con-
ducted on desktop computers , t hen how will an a p r i o r i
categorizat ion succeed in a world where devices are used at
work, at home, and in public se t t ings and where the same
machine may be used for a mu l t i t ude of work and leisure
activit ies and somet imes in conjunct ion wi th technologies
owned by friends and s t rangers . Indeed, we th ink it is un-
likely t ha t associat ing securi ty wi th a p r i o r i categorizat ions
will adequate ly suppor t end-users .

Now, more t h a n ever, the challenge to create compell ing se-
curi ty is one of mak ing securi ty software usable as well as
useful, and mak ing software t h a t is not focused directly on
securi ty secure. These challenges fall squarely on the shoul-
ders of applicat ion developers - in essence, any prescript ion

f o r designing secure software m u s t focus in large par t on
them.

1.2 Why Now: The Changing Face of Systems
The d ramat i c increase in home-based compute r networking,
the move from desktop compu te r s and centralized servers to
laptops, and the proliferation of small wireless devices such
as PDAs and cell phones have t r emendous implicat ions for
compu te r security, and par t icular ly how it is provisioned to
and by end-users . T he t radi t ional model of compute r secu-
r i ty began a round controll ing access to resources by m a n y
users on one central mach ine whose software served as a po-
tent ia l ly t rus ted base [8]. We are now moving to a world
where each user m a y have m a n y compute r s or compu t ing
devices, of w h o m s / h e is f requent ly the only user. These
devices are overwhelmingly mobile, and m a y move repeat-
edly in and out of "managed" envi ronments . Devices may
communica t e more often wi th enti t ies outs ide their man-
aged securi ty in f ras t ruc ture (if t hey have one) t h a n enti-
t ies inside it, bu t still m a y need the ability to au then t i ca te
and protect those communica t ions . T he dis t inct ion between
"clients" and "sezvers" blurs - even small wireless devices
are servei~ as well as consumers of informat ion, and need to
be protected accordingly. Shared resources t h a t need more

sophis t ica ted access control are accessed over a network on
some server t ha t migh t be in- or outs ide of the device 's ad-
minis t ra t ive domain . At the same t ime, these machines still
need all of the protect ion mechan i sms designed for an earlier,
more centralized world - bu t ins tead of pro tec t ing shared
resources f rom overreaching users on t he "inside," they are
of ten protec t ing a user ' s mach ine f rom act ions taken by ma-
licious software or in t ruders , or even accidental user action.

Devices and sy s t ems designed pr imar i ly for d is t r ibuted com-
pu t ing are bes t served by a different kind of securi ty archi-
tec ture t h a n their more "inwardly" focused predecessors, for
w h o m dis t r ibuted compu t ing was an occasional nuisance.
First , t he fact t ha t t hey m a y be of ten or always out of reach
of a managed securi ty in f ras t ruc ture m e a n s t h a t we need
tools t ha t allow end-users to effectively manage their own
securi ty and t h a t of their devices [15, 20], ra ther t h an re-
lying more and more on central ized or outsourced securi ty
services. Second, such devices are likely to rely on cryptog-
raphy more heavily to au then t i ca t e their c ross-domain in-
teract ions [8, 25], and to protec t communica t ions on hostile
public networks. Traditionally, sy s t em designs have tended
to minimize or avoid the use of cryptography, even when it
was the r ight tool for t he job, because of its perceived slow-
ness and expense [6]. As a result , t hey have not provided
m a n y facilities to ease its use by developers. T h o u g h crypto-
graphic libraries are becoming ubiqui tous , the inf ras t ruc ture
and opera t ing sy s t em componen t s needed to suppor t t h e m
(see Section 2.1.2) are not.

1.3 What Now: Don't We Just Need a Better
GUI?

There are three conclusions we can draw from the fact t h a t
users are unable to make effective use of much of current
securi ty technology. First , t he problem could be wi th the
users. A really good enough GUI, sl ightly redesigned ap-
plications, or more effective user educat ion abou t why they
ought to choose be t ter passwords could be enough to make
t h e m willing and able to tackle securi ty tasks as they are
current ly formulated [26, 24]. There are indeed cases where
usabil i ty of password sy s t ems can be improved by removing
the mos t egregious d e m a n d s on end users [3, 11, 24,'22], or
adding a nice GUI to a fairly s t a n d a r d piece of securi ty soft-
ware is enough to more it f rom the rarefied domain of sys-
t ems admin i s t r a to r s and place it wi th in reach of end-users
- the mos t effective example of th is being the recent slew
of firewall p rograms designed for use or~ end-user machines.
However, exper imenta l resul ts have a l ready shown us t h a t
th is is not the case in general [27] - wrapp ing a be t ter user
interface a round exist ing securi ty technology does not make
users suddenly able to effectively use it.

Second, the problem m a y be with t he users - t hey m ay
s imply be complete ly incapable of unde r s t and ing or us ing
the technology, and therefore of hav ing any effective control
over their own securi ty s ta te . Such risks, and such choices
mus t therefore be t aken out of their hands , and securi ty
imposed on t h e m un i fo rmly by sy s t ems admin i s t r a to r s our
outsourced services. Here, research has shown us t h a t such
an approach is first, not likely to be flexible enough to let
users actual ly perform their in tended tasks [8, 18, 23, 26]
and second, complete ly in appropr ia te to the increasingly
common s i tua t ion where the user is t he sy s t em adminis t ra -

83

tor [13].

The th i rd conclusion is t ha t the problem is primari ly with
the technology, not the users: even if the technology is good,
it is not doing wha t it was in tended to do (make sys t ems
more secure in practice), and b laming the users will not
make it any more effective [24]. T he mos t expedient m e t h o d
to increase the usabil i ty of securi ty technologies and appli-
cat ions is to build t h e m from the g round up with usabil i ty as
their p r imary focus. Given t h a t now is the t ime when new
securi ty technologies are jus t beginning to be developed to
cope with the world of mobile and wireless devices and ubiq-
ui tous comput ing , now is the t ime to make sure t ha t those
new technologies focus on usabi l i ty f rom the outset .

2. HOW DO WE DESIGN FOR USABLE
SECURITY?

We present here two of t he mos t press ing issues facing re-
searchers who want to design for usable security: first, how
do we look a t securi ty f rom a software engineering perspec-
tive, and bo th design pr imit ives t ha t focus on combining
usabil i ty and securi ty as well as enable developers to use
t h e m effectively. Second, how do we assess how well we've
done?

2.1 Three Engineering Approaches to
Building Usable Security Technology

2.1.1 Build in Implicit Security
The first, and pe rhaps mos t i mpor t an t approach to bui lding
usable securi ty technology is to a t t e m p t to build wha t we
call implicit security into appl icat ions - to unify the often
"separate bu t (un)equal" views the user is forced to have
of applicat ion goals and securi ty operat ions. Appl icat ions
which endeavor to be "securi ty-agnostic ," and to rely en-
t irely on OS securi ty mechan i sms wi thou t bui lding in any
explicit securi ty knowledge of their own suffer from the fol-
lowing problem: securi ty lives in separate , parallel universe
t h a t the user m u s t act on in addi t ion to whatever act ions
are needed to "directly" accomplish their desired task.

For instance, take the s imple t a sk of giving a file to ano ther
user. To temporar i ly share a file us ing s t anda rd file sha r ing
protocols, you m u s t bo t h opt to share the file and change
the file permiss ions so t h a t the des t ina t ion par ty (or, if t he
des t ina t ion par ty is no t a m e m b e r of your securi ty infras-
t ruc tu re and canno t be so named , "everybody") can access
t h a t file. Afterward, you bo th have to r emember to " turn
it all off" - to change your securi ty se t t ings back again. In
o ther words, for each task-or iented action, the user m u s t
per form one or more m a n u a l s teps to manua l ly mirror those
appl icat ion goals in t e rms of opera t ing sy s t em securi ty set-
t ings. Con t r a s t t h a t with the s teps needed to t ransfer the
documen t us ing email . Your access to the documen t is de-
t e rmined a t the point at which you a t t ach it to the emall
message. Your decision to give the des t ina t ion par ty access
to the documen t is indicated by your choosing to a t tach it
to a mail message addressed to them. If you are able to
send the message to t h e m encrypted under a key you know
to be theirs , you can be reasonably confident t ha t t hey have
actual ly succeeded in t ransfer r ing the documen t to them.
In o ther words, your secur i ty-re la ted act ions can be deter-
mined implicitly f rom your goal-directed actions. T h e y do

not require separate, error-prone layer of mir ror ing act ions
on your part .

We have begun to explore the design of appl icat ions t ha t
can take advantage of oppor tun i t i es for implicit security -
where the user takes an act ion t h a t indicates bo th an ap-
plication goal and a required, implied securi ty operat ion,
have these occur au tomat ica l ly as a single s tep ra ther t h a n
requir ing the user to per form mul t ip le parallel opera t ions
(see Section 3.3). In such an applicat ion, the user performs
only act ions designed to accompl ish appl icat ion goals, and
the appl icat ion software au tomat ica l ly invokes the required
parallel securi ty-related actions.

A simple and effective example of such an appl icat ion is
the Secure Shell (SSH [5]). SSH allows a user to make a
t ty -based connect ion to ano the r mach ine in a fashion al-
mos t identical (in t e rms of user experience) to t ha t used
by Telnet. However, the connect ion m a d e by SSH is en-
c rypted and au thent ica ted . SSH offers fairly sophis t ica ted
key m a n a g e m e n t and configurat ion options, bu t by default
these are not visible to the end-user . In i ts defaul t con-
f iguration, users are au then t i ca t ed to their t a rge t sy s t em
us ing s t anda rd password-based logins, bu t those passwords
are t r a n s m i t t e d over the encrypted tunnel . Whi le the first
t ime a user logs into a t a rge t machine , i ts public key is likely
to be accepted based on fai th (though t he user is given a un-
obtrus ive opt ion to verify the key, and sophis t ica ted users
can pre-configure the s y s t e m wi th known keys for impor t an t
t a rge t machines) , t he appl ica t ion automatic 'a l ly t racks the
keys of mach ines the user has connected to, and will warn
the user if t he ta rge t mach ine presents a different key t h a n
the one it has used previously. SSH insta l la t ion is s t anda rd
on m a n y (primari ly Unix-based) opera t ing sys tems , and is
increasingly effectively set up to auto-configure i t s e l f - e.g.,
to genera te and store its long- te rm mach ine key pairs auto-
mat ica l ly the first t ime it is executed.

Whi le it is no t possible to seamless ly in tegra te securi ty and
user goals in every s i tua t ion , we believe it is a valuable and
impor t an t technique. Such appl ica t ions have the advantage
of pu t t i ng the user ' s goals first and foremost , and a t t e m p t
to let the user accompl ish those goals as directly as possible
while a t the s ame t ime not lowering t he ac tual securi ty of
themselves or o thers in any way not required to accomplish
t ha t goal. 1 Appl icat ions designed in such a fashion can be,
a t m i n i m u m , drop-in rep lacements for earlier, less secure
versions; at bes t such appl ica t ions take advan tage of securi ty
technologies to enable new act ivi t ies a t t rac t ive to end-users .

2.1.2 Refactoring Security Infrastructure
There is a cons tan t tens ion in the design of technology be-
tween which fundamen ta l securi ty mechan i sms are par t of
the opera t ing s y s t e m and doma in inf ras t ruc ture , and which
are ~ left to applicat ions. Facilities provided by the opera t -
ing sy s t em have the advan tage t h a t t hey can be much more
s tr ict ly enforced, and only have to be wr i t t en once. Facili-
t ies provided by appl icat ions m u s t f requent ly be reinvented
anew for every applicat ion, and are wr i t t en by appl icat ion

1Also note t h a t even in cases where such an approach would
lower the theoret ical securi ty of a sys tem, it m a y increase
the sy s t em ' s effective security, as users will now use wha t
securi ty measures are in place.

84

developers who have little interest in and experience with
security. Given these criteria, it is usually thought tha t as
little security as possible should be left to applications.

Emphasizing "security-agnostic" applications causes two ma-
jor problems: first, it is often only the application tha t has
sufficient contextual information to be able to make flexi-
ble decisions about access and trust . Second, such appli-
cations cannot use the techniques described above to unify
user goals and required security operations, and must re-
sort to painful manual mirroring techniques to keep the two
worlds in step.

At the same time, there are a number of common infras-
t ructure components tha t are best handled by the operat-
ing system, and an even larger number tha t will be needed
by so many applications tha t it is simply more effective to
write them once and provide them as a service. Standard
software engineering techniques such as refactoring [16] can
be used to identify such common components. Many such
components (e.g., a source of secure random numbers, a
relatively secure place to store keying information, a place
to store system-wide t rust information and a way for do-
main administrators to update it, etc.) are provided by
at least one of the major operat ing systems in current use,
but no single sys tem provides them all. It would greatly
ease development of applications tha t want to use security
technology if they could simply rely on every OS to provide
such facilities. It would also ease development of applica-
tions tha t would allow domain-based management of some
of these components . While such facilities could be provided
by a highly portable add-on toolkit instead of incorporating
them into the OS itself, such a toolkit would have to be ubiq-
uitous enough tha t developers could rely on its presence,
ra ther than having to provide it as an ext ra component to
install themselves, be stable and effective enough tha t there
wouldn ' t be a lot of overhead involved in version compat-
ibility problems, or dealing with incompatible, competing
toolkits, and comprehensive enough to provide all of the fa-
cilities needed (though this lat ter problem could be solved
by a s tandard suite of tools). The security-related classes
provided by the JavaWMclass libraries, and the combination
of the OpenSSL toolkit and / d e v / r a n d o m on Linux begin
to achieve this approach for a subset of the functionality we
describe here.

2.1.3 Building LegoTMBricks for Security
• Finally, we have noticed tha t well-designed security tech-
nologies packaged as reusable components tha t accomplish
a single task effectively are enthusiastically adopted by ap-
plication developers. A notable case in point is the SSL/TLS
protocol [12], as . implemented in a number of easily obtain-
able, fast, and reliable libraries such as OpenSSL and Sun's
s tandard JavaTMimplementation. Developers and designers
who are normally not comfortable with security technology
or eryptography are comfortable with SSL, a lmos t to ex-
t remes - "secure systems" becomes almost synonymous with
"systems tha t use SSL," whether or not SSL is an appropri-
ate tool for the security problems at hand. Kerberos [25]
has also provided a frequently reused set of software tools
enabling application, developers to take advantage of au-
thent icat ion tecl:molc~gies - in this case even to the point
of creating a new verb, to "kerberize" a piece of software.

Similarly, technologies we have designed for authent icat ing
secure connections in ad-hoc networks have seen effective re-
use (see section 3.2). We believe tha t application developers
can begin to make effective use of very goal-oriented security
technologies if provided in forms like these, and have begun
actively looking for common security problems in need of
such reusable solutions.

Similarly, we believe the field would benefit from creating
and using security-related software idioms or "pat terns" sim-
ilar to the software use pa t te rns common in other areas of
development [17, 9]. These could help developers less sophis-
t icated in the use of security technology to unders tand how
to incorporate it more effectively into their applications.

2.2 Usability of Security Software is Not
(Necessarily) Software Security Usability

Traditional approaches to usability test ing focus on observ-
ing and interviewing end-users (either in their real-world
set t ing using techniques such as contextual inquiry [7], or in
an experimental set t ing such as a usability lab). The test
criteria focus assessing the end-users ability to use the appli-
cation to get .their own or an experimental task done. Suc-
cess can be measured objectively using metrics such as task
completion t ime and subjectively using interview questions
(during the experience or afterward) to find out whether the
user found the sys tem easy to use and enjoyed the experi-
ence.

A fundamental problem arises when t rying to apply these
approaches to evaluate the usability of security technology.
Usability methods test the usability of end-user applications,
and there are very few end-user security applications. Us-
ability test ing of security to date has focused on security
applications or end-user visible security mechanisms includ-
ing encryption software [27], password mechanisms [1, 3, 26,
24], and user interfaces for managing policy [28].

In other words, "usability of security" tends to be defined as
"usability of security-related applications." While usability
of security-related applications continues to be a par t of the
challenge, we need to broaden and refine our methodological
base. This is especially impor tan t with dis t r ibuted systems
where every piece of software has to deal with security issues
implicitly or explicitly.

We propose three ways of usability test ing the usability Of se-
cure applications. Each relies on the tradit ional foundations
of da ta gathering: recording, observing, and interviewing.
W h a t we argue here is tha t we need to reformulate tradi-
tional usability test ing approaches to accommodate the fact
tha t security is not the pr imary focus of a t tent ion from the
end-user perspective, and yet it is end-users ' usage tha t we
are most concerned with.

First , we can make use of da ta logs. Da ta logs built into the
applications can check certain secure sys tem behaviors. For
example, when an ~tpplication sends or receives da ta logs of
what was t ransmi t ted can show us whether tha t da ta was
encrypted. One disadvantage of da ta logs is tha t end-users
have to be informed about their presence (to ensure fair
t rea tment as subjects in the study). Specifically, we need to
provide information about what is being logged, why, how

85

the data will be used, and who will get to access those logs.
This can be handled as part of the consent procedure.

Second, we need to design our studies, whether they be ex-
perimental or in the field, to ensure that end-users perform
tasks that require the use of the security infrastructure. In
an experimental approach this requires designing tasks that
involve actions and reactions by the end-user that will utilize
the security infrastructure. In a contextual inquiry approach
where the usability tester observes the end-user doing their
normal computing routines at their place of computer use (at
work, in a public space, at home) this will require finding
appropriate activities that happen "in the wild." Finding
naturally occurring "candidate activities" that have secu-
rity implications can be achieved using fieldwork techniques,
such observing and asking questions of potential users about
the kinds of work that they are doing and what it involves.
After deploying the software the usability tester then vis-
its the end-users when they axe most likely to be engaged in
those candidate activities and observes whether the software
is still helping them achieve their goals.

Third we need to reconsider how and about what we in-
terview individuals about. Asking direct questions about
security creates two problems. First, since we have chosen
at times to make the security a seamless part of the appli-
cation (from the end-user perspective) it will be difficult for
them to answer questions about things they have not seen
or done. Second, asking them questions about security may
lead them to change their own sense of security during the
interview itself. Despite these difficulties, we can design our
interviews to achieve two purposes: ensure that the end-user
has a positive "user experience" and focus in on occasions
where applications made security decisions visible. By the
latter, we mean focus on the times when the security infras-
tructure requires that the user make choices about what to
do and how to do it. 'We can frame these in terms of the
application behavior and other real-world concepts such as
privacy.

Finally, in addition to considering the role of human-computer
interaction (HCI) for evaluating systems, we also propose
considering methods for design. Specifically, fieldwork tech-
niques could also be used to observe candidate settings for
secure applications. The results from these kinds of obser-
vations and interviews could support the design of end-user
applications that leverage the security infrastructure and
help it fit (from the end-user perspective) into the activi-
ties that are a feature of the setting. In other words, field
methods can serve in the requirements part of the software
life-cycle as well as the evaluation part.

3. BEGINNING TO GET IT RIGHT:
EXAMPLE NEW TECHNOLOGIES AND
APPLICATIONS

We present here three examples of technologies and applica-
tions that turn security on its head, and look at it from the
user's point of view. All three are in active development,
and future user testing will tell whether they achieve their
goals of putting usable security directly into the hands of
the user.

3.1 Identity-Based Encryption
One of the most fundamental problems in all of cryptogra-
phy is Key Management - getting the right keys to the right
places at the right times, and being able to trust that you
have actually done so correctly. If it is difficult for cryp-
tographers to design in theory, it is well nigh impossible
for end-users to handle in practice - and yet the basic op-
erations of key management, namely key pair generation,
storage, and public key exchange are those a user must sue-
cessfully go through in order to begin an application task
like exchanging encrypted email [27].

Boneh and Franklin [10] have recently found a practical so-
lution of a long-standing problem in cryptographic research
that turns this user problem on its head. An identity-based
encryption scheme is one where there is a set of (global or
domain-specific) parameters shared by all users, and given
those parameters, a user's public key can be any arbitrary
string - e.g., "beki~parc.com." If you know the system
parameters (which you will either get as part of the installa-
tion of your mail client, or which your client could retrieve
automatically from the DNS server of the intended recip-
ient's domain), you know your intended recipient's public
key. You don't need to do any explicit work up front in
order to be able to send encrypted email to a particular
recipient. When that person receives the encrypted mail,
either their mail client already has a copy of their private
key and can decrypt it, or they are prompted to perform a
one-time retrieval of their private key from the (global or
domain-specific) key server, after which they can decrypt
new messages automatically. Such a system tauts the great-
est demands (one-time retrieval of a private key) on the user
who gains the most reward (ability to decrypt encrypted
email). Such an incentive structure is much more likely to
succeed [19] than one that forces the sending user to make
a decision every time about whether this email is sensitive
enough to require obtaining the recipient's public key, or
whether they might as well send it unenerypted "just this
once."

A demonstration system for identity-based encryption and
a plug-in for the Eudora email client program are available
on the Internet (http://crypto.stanford.edu/ibe). Work is
ongoing in our group and others to take advantage of IBE's
usability properties to enable secure networking (IPSEC),
and extend its use in email.

3.2 Authentication for Ad Hoc Networks
An increasingly common problem faced by users is that
many of the devices and individuals they wish to securely
communicate with are not part of their own infrastructure or
security domain. Existing security technology concentrates
primarily on making authentication and access control deci-
sions about users and activities within that domain, and as-
sumes that no interaction will occur with entities outside the
domain without much prior infrastructure arrangement [8,
25]. Cryptographic approaches allow users to exchange data
securely with anyone with whom they can exchange an au-
thenticated public key, but current applications don't pro-
vide easy ways to let users take advantage of this fact. This
means that users have no tools to use to perform secure
operations that target or "name" entities outside of their
existing security domain, and that non-infrastructure users

86

(e.g., home users or smal l organizat ions) m u s t pu t in the
effort to build an inf ras t ruc ture before they can secure any
of their communica t ions .

A se t t ing where th is is par t icular ly i mpor t an t is t h a t of wire-
less ad-hoc networking: secure communica t ion between ar-
b i t rary co-located devices t ha t share no a priori t ru s t infor-
ma t ion o ther t h a n t h a t their owners wish t h e m to commu-
nicate with each other. In par t icular , we want to cap ture
the user in tui t ion t ha t t hey want their device to commu-
nicate (only) wi th that par t icular communica t ion pa r tne r -
to have the act of poin t ing out who you want to talk to
also implicitly indicate to the software who was au thent i -
cated to communica t e with you. T he devices in quest ion
are typically mobile and commun i ca t i ng pr imari ly over an
unsecured wireless network, so are at great risk for man- in-
the-middle at tacks.

Our solution involves combining sen~ing a small a m o u n t of
au then t ica t ion informat ion over a privileged, physically con-
s t ra ined channel , wi th a key exchange performed over the
ma in wireless link [4]. T he au then t i ca t ion informat ion is
comprised of a c o m m i t m e n t to a public key, and "helper"
informat ion like the source 's cur ren t IP address and desired
contact port . Th i s au then t ica t ion informat ion is t r ansmi t -
ted over a channel such as infrared or contact t ha t has the
proper ty t ha t it is difficult for an a t tacker to t r an smi t their
own d a t a in t ha t channel wi thou t being detected. The proto-
col is i m m u n e to eavesdropping at tackers who s imply listen
in on ei ther the privileged channel or the main wireless link;
they don ' t know the appropr ia te pr ivate keys to be able to
impersona te a legi t imate conversant .

Th i s approach has m a n y advantages (see [4] for complete de-
tails): from the user ' s point of view, they are s imply "point-
ing out" the printer, laptop, or o ther device wi th which they
want to exchange informat ion us ing contact or IR; the sys-
t em steps in to make sure t ha t t hey are only exchanging
informat ion wi th t ha t desired ta rget device. 2 Any s tan-
dard, t rus ted , public-key-based key exchange protocol (e.g.,
SSL) m a y be used over the wireless link to secure the bulk
of communica t ion . Devices m a y use single-use ephemeral
keys to ma in ta in their privacy, or long- term keys to allow
th is one au then t ica t ion event requir ing physical proximity
to boo t s t r ap secure communica t ion from arb i t ra ry locations
in the future. Devices need no pre-exis t ing t rus t infrastruc-
ture or resolvable "names," bu t can take advan tage of t h e m
if t hey have t h e m - e.g., an employee from a corporation, X,
t ha t has an es tabl ished PKI , can use th is approach to easily
identify the particular Corpora t ion X employee he wishes
to communica te wi th now. His software can bo th e n s u r e
t ha t he can only ta lk to Corpora t ion X employees and use
the t a rge t ' s keying informat ion to index into the company
da tabase to present addi t ional informat ion about the tar-
get (e.g., name, photo) to the user. Addi t ional privileged
channel types with broadcast capability, e.g., an audio chan-
nel, can be used to securely boo t s t r ap group key exchange

2Tha t device may. be malicious, bu t t ha t is the risk of choos-
ing to' talk to s t rangers . We believe t h a t it should be possi~
ble for the user to a s s u m e the risk of ta lking to a par t icular
unknown device wi thout forcing t h e m also to expose them-
selves and t ha t communica t ion to every o ther device able to
l isten to the wireless network.

protocols, for ins tance in a conference set t ing.

This s imple solut ion to a cons t ra ined problem has become a
bui lding block, like SSL, t h a t we find useful in an increasing
n u m b e r of applicat ions. We th ink t ha t t he development
of such "usable securi ty" pr imit ives will great ly ease future
development of secure applicat ions.

3.3 Application Tasks with Implicit Security
In Section 2.1 we sugges ted t ha t when possible applicat ions
be designed us ing implici t security - when a user takes an
act ion in applicat ion terms, s / h e also takes a securi ty act ion
- the act ions are coupled, and canno t be separated. This
reduces the requi rements on t he user, and helps to prevent
the problems of "dangl ing securi ty s ta te" - where the sys-
t e m ' s securi ty configurat ion is no t in s tep with wha t the
user sees, because s / h e has forgot ten to take one of the ex-
plicit mirror ing act ions necessary to keep the two in sync.
Appl icat ions t h a t take th i s approach can much more easily
make bo th appl icat ion and securi ty s t a t e visible to the user
at all t imes - such reflection makes it much easier for the
user to avoid mis takes and make effective securi ty (and even
privacy) decisions [27, 29 ,28 , 14].

An applicat ion we are current ly developing [14] takes th is
approach to le t t ing users share not only files, bu t services -
access to printers, projectors, etc. In th is application, users
who wish to share th ings wi th each o ther set u p a shared
"space." Users invited to join t he space can see the objects
and services in the "space," and know when other users are
added to the space. To share a file or a service wi th the
other members of a space, a user s imply drops the object
onto t h a t space; it t h en becomes visible to bo th t h e m and
the other space members . Th i s interface conflates visibility
with access - if you can see it, you can u s e it, and if you
can ' t use it, you don ' t even know i t ' s there. Similarly, the
applicat ion makes it immedia te ly visible to the user what
they are mak ing accessible to o thers - all d a t a and services
t ha t are shared with any space are listed explic!tly in a des-
ignated panel of the applicat ion, m a k i n g it easy for t h e m to
rapidly remove any shared object f rom all 'spaces. In some
sense, securi ty is p r imary in th is app l ica t ion , as the concept
of a "space" is basically an access concept.

At the same t ime this access informat ion is visible to the
user, t he details of how it is implemented are not. Security-
related tasks happe n seamless ly as par t of user act ions di-
rected toward explicitly appl icat ion goals. Crea t ing a space
causes the creat ion of root credentials t ha t will be used to
secure access to t h a t space. Add ing someone to the space
involves in par t genera t ing credentials for them, t ha t they
will later use to prove to o ther m e m b e r s of the space t h a t
t hey belong to the space. These credentials are created by
the user t h a t chose to add t h e m to the space (by t ha t user ' s
software, wi thout their direct involvement) . These creden-
t ials (essentially public key certificates) allow all members of
the space to au then t i ca te o ther m e m b e r s of the space, even
if t hey were invited in by different people, and m a p onto
the X509 certificates expected by s t a n d a r d SSL implemen-
ta t ions, so provide an easy m e a n s to encrypt and protect
the integri ty of all communica t ion between devices involved
in the space. Fu tu re user t es t ing wi th th is applicat ion will
m a k e it clear whe the r we have met our goal of ma t c h in g

87

application goals and security actions.

4. CONCLUSIONS
Ubiquitous computing makes usability a critical challenge
for security. What has not been clear is the right way to
address this problem. We propose a more extreme view
than has previously been taken: tha t underlying security
technology must change, and must be redesigned from the
beginning with usability in mind. We have provided several
examples of cryptographic and security technologies devel-
oped using such an approach, and are currently embarking
on a research program to develop systems using these tech-
nologies and test them with users. We believe that this will
require collaboration between the human-computer interac-
tion and security research communities (as is already begin-
ning at this workshop) to ensure tha t systems are usable
and secure. It will be a combination of these interactions
tha t will make security useful for end-users.

5. REFERENCES
[1] A. Adams and M. A. Sasse. Users axe not the enemy:

Why users compromise computer computer security
mechanisms and how to take remedial measures.
Communications of the A CM, 42:40-46, December
1999.

[2] R. Anderson. Why information security is hard - an
economic perspective. In Proceedings of the 17th
Annual Computer Security Applications Conference,
2001.

[3] R. J. Anderson. Security Engineering: A Guide to
Building Dependable Distributed Systems. John Wiley
and Sons, 2001.

[4] D. Balfanz, D. K. Smetters, P. Stewart, and H. C.
Wong. Talking to strangers: Authentication in ad-hoc
wireless networks. In Proceedings of Network and
Distributed System Security Symposium 2002
(NDSS'02), San Diego, CA, February 2002.

[5] D. J. Barret t and R. E. Silverman. SSH The Secure
Shell. O'Reilly, 2001.

[6] T. A. Berson. Cryptographic abundance. Technology
Review, 105:90-93, 2002.

[7] H. Beyer and K. Holtzblatt. Contextual Design: A
Customer-Centered Approach to Systems Design.
Morgan Kaufmann, San Francisco, CA, 1997.

[8] R. Blakely. The emperor's old armor. In C. Meadows,
editor, New Security Paradigms Workshop. ACM,
1996.

[9] R. Blakley. Security design patterns.
http:/ /www.opengroup.org/security/gsp.htm.

[10] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. In Proc. CRYPTO 01, pages
213-229. Springer-Verlag, 2001. LNCS 2139.

[11] R. Dhamija and A. Perrig. Dejh vu: A user s tudy
using images for authentication. In Proceedings of the
9th USENIX Security Symposium, 2000.

[12] T. Dierks and C. Allen. The TLS Protocol Version
1.0. IETF - Network Working Group, The Internet
Society, January 1999. RFC 2246.

[13] W. K. Edwards and R. E. Grinter. At home with
ubiquitous computing: Seven challenges. In UbiComp
'01, Atlanta, September 2001. Springer-Verlag. LNCS
2201.

[14] W. K. Edwards, M. Newman, T. F. Smith, J. Sedivy,
D. Balfanz, D. K. Smetters, H. C. Wong, and S. Izadi.
Speakeasy: an extensible framework for peer-to-peer
collaboration. In Proceedings of the Conference on
Computer-Supported Cooperative Work. ACM Press,
2002.

[15] C. M. Ellison. Establishing identity without
certification authorities. In Proceedings of the 6th
USENIX Security Symposium, San Jose, July 1996.

[16] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[18] R. E. Grinter. Supporting articulation work using
configuration management systems. Computer
Supported Cooperative Work: The Journal of
Collaborative Computing, 5(4):447-465, 1996.

[19] J. Grudin. Why CSCW applications fail: problems in
the design and evaluation of organization of
organizational interfaces. In Proceedings of the
Conference on Computer-Supported Cooperative Work,
pages 85-93. ACM Press, 1988.

[20] U. HolmstrSm. User-centered design of security
software. In Human Factors in Telecommunications,
Copenhagen, Denmark, May 1999.

[21] U. Jendricke and D. G. tom Markotten. Usability
meets security - the identity-manager as your personal
security assistant for the internet. In Proceedings of
the 16th Annual Computer Security Applications
Conference, 2000.

[22] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and
A. D. Rubin. The design and analysis of graphical
passwords. In Proceedings of the 8th USENIX Security
Symposium, Washington DC, 1999.

[23] D. Povey. Optimistic security: a new access control
paradigm. In New Security Paradigms Workshop,
Arlington, VA, 1999. ACM.

[24] M. A. Sasse, S. Brostoff, and D. Weirich.
Transforming the 'weakest link' - a human/computer
interaction approach to usable and effective security.
BT Technology Journal, 19(3):122-131, July 2001.

[25] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos:
An authentication service for open network systems.
In USENIX Association, editor, USENIX Conference
Proceedings (Dallas, TX, USA), pages 191-202,
Berkeley, CA, USA, Winter 1988. USENIX
Association.

88

[26] D. Weirich and M. A. Sasse. Pretty good persuasion:
A first step towards effective password security for the
real world. In New Security Paradigms Workshop,
pages 137-143, Cloudcroft, NM, 2001. ACM.

[27] A. Whitten and J. D. Tygar. Why Johnny can't
encrypt: A usability evaluation of PGP 5.0. In
Proceedings of/the 8th USENIX Security Symposium,
Washington, DC, August 1999.

[28] M. E. Zurko, R. Simon, and T. Sanfilippo. A
user-centered, modular authorization service built on
an RBAC foundation. In IEEE Symposium on
Security and Privacy, pages 57-71, 1999.

[29] M. E. Zurko and R. T. Simon. User-centered security.
In C. Meadows, editor, New Security Paradigms
Workshop. ACM, 1996.

89

