
Empowering Mobile Code
Using Expressive Security Policies*

V.N. Venkatakrishnan
venkat @ cs.sunysb.edu

Ram Perit
ramp @ cs.sunysb.edu

Department of Computer Science
Stony Brook University

NY, 11794

R. Sekar
sekar@ cs.sunysb.edu

ABSTRACT
Existing approaches for mobile code security tend to take a conser-
vative view that mobile code is inherently risky, and hence focus
on confining it. Such confinement is usually achieved using access
control policies that restrict mobile code from taking any action
that can potentially be used to harm the host system. While such
policies can be helpful in keeping "bad applets" in check, they pre-
clude a large number of useful applets. We therefore take an alter-
native view of mobile code security, one that is focused on empow-
ering mobile code rather than disabling it. We propose an approach
wherein highly expressive security policies provide the basis for
such empowerment, while greatly mitigating the risks posed to the
host system by such code. Our policies are represented as extended
finite state automata, (a generalization of the finite-state automata
to permit the use of variables) that can enforce these policies effi-
ciently. We have built a prototype implementation of our approach
for Java. Our implementation is based on rewriting Java byte code
so that security-relevant events are intercepted and forwarded to the
policy enforcement automata before they are executed. Early ex-
perimental results indicate that such expressive, enabling policies
can be supported with low overheads.

General Terms
Security

Keywords
Mobile code security, security policies, code transformation

1. INTRODUCTION
With the growth of distributed computer network systems and the
Internet, there has been an increasing demand to support mobile
code - - code that is downloaded from remote, possibly untrusted

tAuthor's current email is rperi@bloomberg, net.
*This research is supported in part by a ONR University Research
Initiative grant N000140110967 and NSF grants CCR-0098154,
CCR-0208877 and CCR-0205376.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice a~d the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
New Security Paradigms Workshop "02, September 23-26, 2002,
Virginia Beach, Virginia.
Copyright 2002 ACM ISBN 1-58113-598-X10210009 . -$5.00

systems. The best known examples of this are Java applets, but
there are also several other examples such as agent based systems,
document/email attachments, and executable content such as Post-
script files. Usually, code that is downloaded is executed with the
privileges of the user who downloads it. This introduces a number
of serious security and safety issues.

Existing approaches for mobile code security tend to take a con-
servative view that mobile code is inherently risky. Consequently,
the primary goal of these approaches is to confine mobile code so
as to ensure that it can do no harm. This goal is achieved by en-
forcing stringent access control policies that prevent mobile code
from executing any action that can potentially compromise the se-
curity of the host system running the code. For instance, Java ap-
plets are denied access to read or write any files resident on their
host computer, since malicious applets may be able to use such ac-
cess to corrupt user data or reveal it to unauthorized parties. While
such access control policies are helpful in keeping "bad applets" in
check, they have the unfortunate side effect of precluding a large
number of useful applications of mobile code.

We take an alternative view of mobile code security, one that is fo-
cused on empowering mobile code rather than disabling it. In our
approach, expressive security policies provide the basis for such
empowerment, while greatly mitigating the risks posed to the host
system by such code. For instance, we can allow some local file
access to applets without incurring significant risks using a pol-
icy such as "an applet can create new files in / trap directory, but
cannot delete files except those created by the application itself."
Such policies cannot be expressed or enforced using existing mo-
bile code security frameworks.

A policy in our language is specified using an extended finite state
automata (EFSA), a generalization of the finite-state automata to
permit the use of variables. An EFSA can enforce these policies
efficiently via runtime monitoring of mobile code. The transitions
of these automata are over an alphabet of events such as function
calls, method invocations and exceptions. We have built a proto-
type implementation of our approach for Java: Our implementation
is based on rewriting Java byte code so that security-relevant events
are intercepted and forwarded to the policy enforcement automata
before they are performe d . Early experimental results indicate that
such expressive, enabling policies can be supported with low over-
heads.

The rest of this paPer is organized as follows: We begin with sev-
eral example scenarios in Section 2 that illustrate the weaknesses
of existing frameworks for mobile code security and motivate the
development of more expressive policy frameworks. In Section 3,
we present an overview of our policy language and describe our

61

implementation approach for enforcing these policies. Preliminary
performance measurements are presented in Section 4. We sum-
marize the related work in Section 5. Finally, concluding remarks
appear in Section 6.

2. MOTIVATING EXAMPLES
In general, a security policy needs to address the concerns of con-
fidentiality, integrity and availability. Confidentiality is typically
achieved by limiting the information that mobile code can access
and/or limiting how the code may use this information. Thus, a se-
curity policy needs to define acceptable ways of processing, storing
and transmitting sensitive information. To ensure integrity, security
policies need to control operations performed by mobile code that
modify system state. To ensure availability, security policies need
to address resource usage by mobile code.

Previous work on mobile code security, such as Java security, has
focused on simple access control policies. Subsequent work of
Evans et al [6] extended these policies to address resource usage,
whereas the work of Erlingsson et al [4] allowed policies on opera-
tion sequences.. While these extensions address some of the weak-
nesses of simple access control mechanisms, we illustrate in this
section how they are still not able to express security policies that
are adequate for a number of applications of mobile code. Our ap-
proach for mobile code security policies and their enforcement is
very much motivated by this discussion.

2.1 Ability to manipulate temporary files.
Consider a piece of mobile code that needs to create or modify files
on a local file system for its internal book-keeping operations. It
is perfectly reasonable to allow even untrusted mobile code to do
this, as long as the files created/manipulated are unrelated to other
applications. This can be ensured using a policy that enforces the
following properties:

• Writes are allowed only to certain directories. The untrusted
code should not be allowed to create files in arbitrary directo-
ries. Directories where this code can write may include such
directories as / Imp.

• Overwriting ordeletion ofafile is notpermittedexceptforfiles
created by the same mobile code. This ensures that untrusted
mobile code does not remove files created by other applica-
tions.

While it is possible to use simple access control policies to enforce
the first property, more expressive notations are needed for the sec-
ond property. In particular, we need a policy language that can refer
to the history of operations carried out in the past, as well as the ar-
guments of these operations. Most existing work in mobile code
security policies do not allow such history-sensitive properties. AI~
though the work of Erlingsson [4] allows for history-sensitive poli-
cies, their language does not allow argument values for past opera-
tions (such as file names) to be remembered for later use.

We point out that the second property is particularly useful, as it
allows us to include more directories in which writes are allowed.
This way, even mobile applications that create files in arbitrary di-
rectories (e.g., current working directory) can be permitted to run
without harming the rest of the system. On the other hand, if we
are restricted to using only simple access control policies, then the
application would have to be further restricted in order that it not
destroy files pertaining to other applications. In particnlar, the un-
trusted application must be limited to creating files in a special
directory that is created explicitly for the purpose of running that

code. Although it is possible to write the untrusted application in
this manner, it requires advance planning on the part of the person
implementing this code. The advantage offered by more expressive
policies is that it provides sufficient flexibility to the code consumer
so that mobile applications could be run safely, even when the code
producer had not anticipated all the possible uses of their code or
their potential security implications.

2.2 Access via trusted intermediaries.
Often we encounter situations where a piece of untrusted code needs
to access a certain resource. However, permitting direct access
to the resource may be risky. One way to deal with this prob-
lem is to constrain the mobile application to access the resource
through certain operations that are provided by code from a trusted
source. From the code consumer's point of view, this code serves
as a trusted intermediary. Use of this approach can allow untrusted
applications to access resources in many contexts such as:

• Adding an entry to syslog. To prevent a malicious application
from truncating the log or writing bogus entries, we may use a
trusted intermediary that provides an operation to log messages
to syslog, but ensures that (a) sufficient information to identify
the source of the log entry is included, say, in the form of a
header prepended to the log message and (b) limiting the num-
ber of entries that can be written by an untrusted application

• Access to local data. Consider a situation when we have to
give a piece of mobile cod e (e.g., code executing on a browser's
space) access to some (chosen) file on the local disk. It would
be risky to grant access to the directory in which the files that
are needed are present, as this will allow accesses to all files
under that directory. Instead, we can allow access through a
trusted method that presents a file access dialog box to a user,
and gets explicit user approval before granting controlled ac-
cess. (Note that one cannot trust the file dialog if it is part of
the mobile code).

We briefly discuss how a policy such as this is difficult to express
with the current Java framework. Note that the Java approach is
based on the assumption that when multiple code sources are in-
volved in a resource request, the access is allowed only if such ac-
cess is permitted individually for each of the code sources. In this
example, since we do not want to provide access to the resource for
the untrusted code, it will be prevented' from accessing the resource.
A way around this problem in Java is for the trusted library to sur-
round the resource access operations within a d o P r i v S . l e g e d
block, but this requires'advance planning by the code producer of
the library to anticipate what resource accesses are potentially sen-
sitive and to enclose each such access within a c l o P r S . v i l e g e d

block. On the other hand, the language proposed in this paper a l-
lows such decisions to be deferred until much later, and provides
the flexibility to conceive and enforce such policies.

2.3 Limiting information flow
In many contexts, we are interested in limiting malicious applica-
tions from leaking sensitive information. While a comprehensive
treatment of information flow requires approaches such as [11],
that need to reason about internal structure of a program (such as
assignment statements in a program), we can still express many
useful policies that limit information flow in terms of operations
made by a program. Examples of such policies include:

• No access to nonlocal networks after reading sensitive files.
Consider the case of a untrusted freeware web log analyzer. In

62

this case, we may not want to permit access to arbitrary net-
work sites after a mobile application reads the web server log
files (this is to prevent leaking of sensitive information). How-
ever, we still permit access to local network sites (say, for the
purpose of resolving domain names). Moreover, we may per-
mit network access after reading files that are not considered
particularly sensitive, e.g., icon files or fonts.

• No access to create arbitrary files after reading confidential
data. Consider a freeware security scanner program that is
downloaded from an untrusted site. In order to perform its task,
the scanner will need to examine the permission settings on all
files and contents of various files such as password files, boot-
time scripts and configuration files. We can grant this access
to the application provided we can ensure that any confidential
information read by the application cannot leave the applica-
tion in any manner (including, for instance, core dumps). We
still want it to produce an output, so we may permit it to output
information on the console and/or a specific log file.

This class of policies requires a language that can refer to sequences
of operations and their arguments. Although Schneider's security
automata based approach [4] allows operation sequencing, the ar-
guments operations are not made available, so it becomes difficult
to capture these policies.

2.4 Context-dependent policies
Finally, it may be necessary to include the application context while
granting permissions to perform certain operations.

• Allow access to certain operations only in the context of an-
other operation. For instance, consider the example of a web
browser. We may be interested in giving permissions to some
scripts/applets based on the domain of the URL being visited.
Such permissions may include reading system properties and
displaying popup windows. For example, we may only want
allow scripts only from www. r e d h a t , corn to read our oper-
ating system version.

Note that, while some of these operations could be done in cur-
rent browsers through signed applets, we are still limited by fact
that we could allow an applet to perform all these operations in all
cases of webpages and operations, or not at all. Using the exist-
ing models, we cannot parametrize the policy specific to some web
pages/specific operations.

2.5 Desirable Features of a Policy Framework
Based on our discussion of policy examples, we state some desir-
able features of a policy specification and enforcement framework.

• Flexibility to state policies in terms of any externally observ-
able operation and its arguments.

• Ability to expresspolicies involving temporal sequencing ofop-
erations. The examples in the earlier section illustrate the im-
portanceof policies that specify temporal sequencing of opera-
tions. The need for this is seen in history-sensitive policies.

• Modular specifications with precise and simple semantics. The
semantics must b~ .straightforward and intuitive, matching the,
intention of the policy developer. There must be a way to mod'-
ularize large policy specifications.

• Efficient enforcement. The language design must facilitate gen-
eration of efficient engines for enforcement of policies.

Currently existing policy frameworks do not offer all of these fea-
tures.

3. OUR APPROACH

3.1 Overview
In our approach, security policies are represented using extended
finite state automata (EFSA) are specified using a textual language
based on regular expressions. Once a security policy is specified
through this textual language, a policy compiler translates this poli-
cies to a EFSA based policy engine. The code that delivers security
relevant relevant events to this engine constitutes the runtime envi-
ronment. It is introduced in appropriate security relevant points of
the piece of untrusted code through a bytecode transformer. When
the transformed application violates the security policy, the policy
engine takes appropriate remedial action like throwing a security
exception.

Figure 1 illustrates our approach. The offline component consists
of the policy compiler that generates policy engines from security
policies. It also provides additional (runtime interception) informa-
tion that is used to determine which of these operations (and which
arguments to those operations) are relevant to the security policies.
This additional information also specifies whether the security pol-
icy requires auxiliary information such as code source and thread
id. The load time component consists of a bytecode transformer.
It takes as input the untrusted code source and additional runtime
interception information (from th6 policy compiler). It transforms
the untrusted application such that code for the runtime environ-
ment is introduced at various points in the bytecode. Finally, the
runtime component consists of the policy engine and the runtime
environment. The runtime environment provides the mechanism
for intercepting security relevant events and delivering them to the
policy engine. The policy engine decides whether this event cor-
responds to a security violation, and if so, throws an appropriate
exception.

3.2 Language for describing policies
Our policy language is based on our previous work in developing
languages for expressing security-relevant behaviors of systems, in
our language, security-relevant behavior of a program is modeled
in terms of sequences of externally observable actions performed
by the program. In the context of Java, such actions, called events,
include method entries and exits, as well as exceptions. A security
policy specifies constraints on the sequence of events that may be
produced by a program. These constraints are captured by extended
finite state automata (EFSAs). These automata, like conventional
finite state automata, have states and transitions on pairs of states,
and in addition, are augmented with variables along the transitions
to store event arguments. In this section, we first illustrate the use
of EFSAs in security policy descriptions of some of the examples
that were introduced in Section 2. Following this, we provide a
description of a text-based specification language for such policies.

Ability tO create and manipulate temporary files. In this exam-
ple, shown in Figure 2, FileCreateOps refers to operations that are

used to create files, and FileDeleteops refers to file-deletion oper-
ations. In this automaton, the state S0 records the files that have
been created into the state variable FileList. Any operation that at-
tempts to delete a file that is not present in FileList, involves the
transition to state S1, where an appropriate exception is thrown.

Limiting information flow. As illustrated in Figure 3, this EFSA
describes a information flow policy. Once the application reads

63

Offiine . ~"

Component
:" l I =II compiler [/ ~......7..,~t,.b-.-.-~--'------.--.._ ~#,o~ ~Uo o

. °-"

\ r e w r i t e r

, - J

... :::::::::::::::::::::::::::::::::

""] bytecode I

Policy - . ~ i l Transf°rmed
engine " ~ ~ " '

i f

: _ secure ~"-~. Runfime
',, /' Component

- , . , - - . .° , -"

Figure 1: Our code transformation framework

PlleCrea~eops(f). #

.->

/ \
r l l e l ~ l ~ l (f) I

z~we(~Filelise)

F i l e B e l O ~ z (f) *

f hOG ~: r i Z e l g z e .®
fEm=epelon {"... "}

Figure 2: Temporary file handle poficy

sensitive files and/or (the symbol II stands for disjunction) stands
for system properties, the transition to state $1 is taken. From state
$1, if the application performs network operations, the transition
to state $2 is taken, where an exception is thrown.

Access to resources via trusted intermediaries. This policy is il-
lustrated in Figure 4. (This policy illustrates the "trusted dialog
boxes" example). Whenever the application accesses a local file, it
is allowed to only do so through a trusted dialog box. After per-
forming the initial action through the dialog-box, the transition to
state $ 1 is taken. In $ 1 , operations to access local files are per-
mitted. A transition back to state S0 is made when the call to the
trusted dialog box function returns. At this point, any access to .lo-
cal files will result in a transition to state $2, where an exception

rea~'am:ieiv~sgg 1el 0 / /
z ~ a c l S y s P z . o j ~ r e l es () & c c e g l ~ l e ~ w o = k ()

OeherwlJe O t h e r w l z e " {Exce~tlon (".. "))

Figure 3: Policy on limiting information flow

will be raised.

o ~ : : T z ~ a m t e d D l a l o g _ e x l t : (• •)

{ J g z ~ e p ~ l c m (• • • ") }

Figure 4: Trusted intermediary poficy

Overview of Language. We use a textual language to specify
policies, and these specifications are automatically transformed into
EFSA based policies by a compiler. The constraints in our textual
language are captured using a combination of constructs that re-
semble regular-expression based patterns and finite state machines.
The key components of specifying rules in our language are de-
scribed below. A more detailed description of the language may be
found in [15].

Events. Events may be further classified as follows:

• Primitive events: In the context of Java, each method invoca-
tion corresponds to two events: one that corresponds to the in-
vocation of the method, and another to return from the method.
The arguments of the entry event include all of the method's
arguments at the point of call. The arguments to exit event in-
clude all of the method arguments at the'point of return, plus
the value of the return code from th,e method. In addition, there
can be an event corresponding to each possible exception.

• Abstract events: Abstract events can be used to denote classes
of primitive events, e.g., we may define a f i l e M o d i f i c a t i o n -
Ops as an event that corresponds to a set of events that modify
file attributes. More generally, abstract events may denote any

64

event pattern, and defined using the notation even t (a rgs) =
pat . Event patterns are further described below.

Patterns. The simplest form of patterns, called a primitive pat-
terns, capture the occurrence of a single event. It is of the form
e(x 1,..., x~) lcond, where eond is a boolean-valued expression on
the event arguments z l , ..., Zn, and state variables (which are fur-
ther described below). Complex patterns capture sequencing rela-
tionships among events by using sequencing operators. Sequenc-
ing operators are similar to those used in regular expressions, but
operate on events with arguments. We refer to our pattern language
as regular expressions over events (REE) to indicate this relation-
ship. The meaning of event patterns and the sequencing operators
is best explained by the following definition of what it means for
an event history H (a sequence of events observed at runtime) to
match a pattern:

• event occurrence: e (z l , ..., z ,Olcond is satisfied by the event
history e(vl , ..., v,~) if ccond evaluates to t r u e when variables
xl , ..., xn are replaced by the values v l , ..., Vn.

• sequencing: pa t , .pata is satisfied by an event history H of the
form HiHa provided H1 satisfies pa t , and Ha satisfies pata.

• repetition: pa t* is satisfied by H 1 H a . . . Hn iff Hi satisfies
pat , \/ l < i < n.

• alternation: pa t , Ilpata is satisfied by H if either pat1 or pata
is satisfied by H.

• conjunction: pa t , A pata is satisfied by H iff both pa t l and
pata are satisfied by H.

When a variable occurs multiple times within a pattern, an event
history satisfies the pattern only if the history instantiates all occur-
rences of the variable with the same value. For instance, the pattern
e l (x) , ca(x) is not satisfied by the event history el(a)ea(b), but is
satisfied by e, (a)ea(a).

We use !elcond to denote the nonoccurrence of an event e, or the
occurrence of e where the condition cond is violated.

Rules. Our policy language allows response actions to be asso-
ciated with policies using rules of the form pa t ~ act ion. The
ac t ion component is executed whenever a suffix o f the event his-
tory matches pat. In general, the reaction component consists of a
sequence of statements, each of which is either an assignment to a
state variable, or invocation of a support function provided by the
runtime system. Such support functions may be used for a variety
of purposes such as denying resource access, throwing security-
related exceptions or terminating programs or threads.

3.3 Implementation
We describe the implementation of the three components of our
framework in the following section.

Compilation of Security Policies. Efficient matching of security
policy rules is critical for the performance of our runtime engines.
Our approach for solving this problem is based on compiling the
patterns into an EFSA, in a mfinner analogous to compiling regular
expressions into finite-state automata. EFSA are simply standard
finite state automata (FSA) that are augmented with a fixed num-
ber of state variables, each capable of storing values such as inte-
gers, strings, etc. Every transition in the EFSA is associated with
an event, an enabling'c'Ondition involving the event arguments and
state variables, and a set of assignments to state variables. The fi-
nal states of the EFSA may be annotated with actions, which, in our
system, correspond to the reactions given in our rules. For a transi-

void network_write(FileOutputSteream f){
byte[] b;

monitor.deliver_event(write_entry,
f.getClass(), f, b);

f.write(b);
monitor.deliver_event(write_exit,

f.getClass(), f, b);
}

Figure 5: Caller modification

tion to be taken, the associated event must occur and the enabling
condition must hold. When the transition is taken, the assignments
associated with the transition are performed.

An EFSA is normally nondeterministic. The notion of acceptance
by a nondeterministic EFSA (NEFA) is similar to that of an NFA.
A deterministic EFSA (DEFA) is an EFSA in which at most one of
the transitions is enabled in any state of the EFSA.

We have shown that translating a NEFA to a DEFA can result in an
unacceptable increase in the size of the automaton. Therefore we
have developed a new approach that is based on translating NEFA
into a quasi-deterministic extended finite state automata (QEFA).
QEFA eliminates most of the sources of nondeterminism that are
present in the NEFA, while still ensuring that their sizes are accept-
able. A complete treatment of QEFA and the compilation algorithm
can be found in [15].

Runtime Environment. The runtime environment is responsible
for intercepting and forwarding events to the policy engine. There
are two basic approaches for implementing the runtime system.
One approach is to modify the JVM implementation so that rel-
evant method calls are forwarded to the policy engine. This ap-
proach has the benefit of low overhead for interception, but has the
drawback that it is highly dependent on the internals of the JVM.
This makes the approach hard to implement and potentially error-
prone. Moreover, the internals may change across JVM versions,
thus requiring the runtime environment to be reimplemented for
each JVM release.

An alternative approach is to integrate the code for method inter-
ception right into the program to be monitored 1. Note that the
class file format is standardized and does not change across JVM
releases. This factor decouples the runtime implementation from
JVM releases, and hence makes it portable across different JVM
versions. The drawback is that the overhead for method intercep-
tion will be somewhat higher than the JVM modification approach,
due to the fact that the interception code itself would be imple-
mented using several JVM instructions. In additions there is a addi-
tional cost involved in byte code rewriting. Given that there are
already significant startup costs associated with starting up Java
programs, such class loading, byte-code verification and Just-In-
Time compilation, we believe that the additional byte code rewrit-
ing overhead will not substantially alter the overall loading time.
Thus, portability is the more important concern for our project, and
hence we have chosen byte-code rewriting approach.

3.4 Byte-code Rewriting.
In our approach, events are delivered to the policy engine using a
deliver_event method. If monitor denotes the policy en-

1Such an approach is difficult in a type unsafe language such as C
due to the fact that a malicious piece of code has several ways to
circumvent the checking code integrated within itself. This is not a
problem in a type-safe language such as Java.

65

Class X{
void network_write[BufferedOutputSteream f){

byte[] b;

f.write(b); // No transformation here
)

}
class BufferedOutputStream{

public void write(byte[] b){
monitor.dellver_event(write_entry,

BufferedOutputStream, this, b);
this.original_write(b);
monitor.deliver_event(write_exit,

BufferedOutputStream, this, b);
}

)

Figure 6: Callee modification

gine, the effect of introducing these calls at the source code level
is shown in Figures 5 and 6. In these figures, a function named
n e t w o r k _ w r i l : e is being transformed. In Figure 5, the transfor-
mation is done on the caller code, whereas in Figure 6, the trans-
formation takes place in the callee code.

In the caller transformation, some preliminary analysis of the byte-
code is needed to ensure that security checks are indeed performed
before every security-sensitive method call. This requires, for in-
stance, that there be no control transfer statements that can skip the
d e l i v e r _ e v e n t : statement. On the other hand, no such analysis
is required for callee transformation. Another difficulty with caller
transformation is that exact type information is unavailable at the
call site, and it hence requires us to use expensive runtime oper-
ations such as g e t : C l a s s to get this information. In the callee
transformation case, we know the exact type information at rewrit-
ing time.

There are also some benefits to caller transformation. First, it is
possible to incorporate information about calling context - - for in-
stance, if we wanted to use the codebase information (which identi-
fies the principal that originated a piece of mobile code) in security
checks, this information can be passed in as an additional argument
to d e l i v e r _ e v e n t : . In the callee transformation, we no longer
have the codebase information about the caller, but only about the
callee. However, the cailee codebase information is not very useful
for making such access control decisions - - for instance, the callee
in the example corresponds to system codebase, which is usually
given unlimited privileges. A second difficulty concerns modifica-
tion of system classes. JVM implementation prohibits overriding
of the class loader for system classes. Therefore, in practice, the
system classes have to be rewritten through an offline process, and
the results stored on the disk. Since we do not want to store many
different versions of the system libraries, it becomes impractical
to try to tailor the system classes with respect to different security
policies. The net result would be a rewrite that results in every sys-
tem method to be intercepted, thereby increasing overheads. For
this reason, we have currently chosen to use caller transformation.
It may turn out later that this cost is not any higher than the savings
achieved by avoiding class lookup operations required in the caller
transformation. In that case, our implementation choice will likely
change.

The following issues need to be addressed in byte-code rewriting:

• Exceptions: As mentioned earlier, we would like to treat Java
exceptions as events, in much the same way that we treat method
invocations and exits. However, one has to be careful when ex:
ceptions arise in the code. Note that when exceptions arise in
a method, the method invocation is not completed. The policy

engine has to be notified that such method entry events will not
have corresponding method exit events. We do this by associat-
ing an additional parameter to method invocations that capture
the call-depth information. When an entry event at dept k is
followed by an exception event at depth k' < k with no inter-
vening entry or exit events, then the policy engine knows that
all of the recent entry events with depth _> k have been aborted
due to the exception. The call depth information can be sent in
as an additional piece of information to the d e l i v e r _ e v e n t
function.

Native methods: Java supports running of native methods via
the Java Native interface. While native methods are a conve-
nient mechanism for running platform specific code, and for
increasing overall system performance, they make security pol-
icy enforcement very difficult. One can address security in the
presence of native methods by interception of system calls as
done in [14], but we do not address this problem in this paper.

Threads: Our current (preliminary) implementation does not
handle multi-threaded programs. To handle them, one needs to
change deliver_event: so that the id of the current thread
is passed along as an additional parameter. The thread id can
be used in policies, which would enable us to express a range
of policies that handle threads well. For instance, we can have
policies that treat each thread uniformly, enforcing properties
on each one independent of the actions taken by other threads.
It is also possible to ignore a thread altogether, and treat all of
the events as a single sequence. Finally, it is possible to capture
properties that involve multiple threads simultaneously - - this
would enable us to express security policies that address aspects
such as synchronization and race conditions.

4. PERFORMANCE RESULTS
In this section, we discuss our experimental results obtained from
our prototype implementation. All the results presented in this sec-
tion were obtained on a machine running on a 1.4GHz Pentium 4
processor with 512 MB of RAM. The JVM used for these experi-
ments was SUN Microsystem's Java Development Kit (JDK) ver-
sion 1.3.1 running on Linux operating system with the 2.4 kernel.
The main objective of our experiments was to measure the follow-
ing costs:

, Interception overhead: This is ehe cost associated with intro-
duction of additional method calls that wrap the original method
calls in the application.

• Bytecode modification overhead: An overhead cost is incurred
as part of parsing the classfile and rewriting it.

• Monitoring code overhead: This is the cost associated with the
execution of the code that is part of the monitoring automaton.

We separate the costs into these categories for closer inspection of
the costs incurred in these stages. We briefly discuss these costs
and show the total overhead of enforcing some example policies.

4.1 Interception overhead
The interception overhead is the additional time introduced in the
application execution time through the additional bytecode method
wrappers. For every method call M that is of interest to the security
policy, the calling sequence makes two more calls. The first call
is made before the execution of the method call of interest, and
the other call is made after the method exit. These calls are iased
to make transitions in the automaton corresponding to the policy

66

Application LimitWfite

BigLoop 7% (56.5s)
Jtar 5% (2.01s)

DeleteOnlyOwned FileOpens TarSpecific

17% (18.45s) 10% (11.5s) NA
7% (2.01s) 5% (2.01) 10.5%(2.01s)

Figure 7: Policy enforcement costs

engine.

To measure the interception overhead we constructed a program
that performed a method call in a loop iterating 107 times. We
compiled it along with a policy specifications that contained null
action statements, and no state variables, thus leaving the monitor
with just the interception capability. We obtained an overhead of
less than 5% of the program running time.

4.2 Bytecode modification overhead
Currently, we use the Byte Code Engineering Library (BCEL) [2,
1] to do the lxansforrnations. This tool is meant for offline transfor-
mation of bytecodes. The toolkit offers convenience and flexibility
in transforming bytecodes, but is particularly not efficient. For in-
stance we incur an overhead of .650s for transforming a 4800 byte
classfile. We are currently developing a hand-crafted program to
do the bytecode rewriting. The bytecode transformation is straight-
forward, and has to make a linear pass on the classfile to insert the
event delivery instructions. We do not anticipate the overheads of
this operation to be significant, especially in comparison to class-
loading process and bytecode verification.

4.3 Overhead on various policies
The following policies were implemented and we measured the per-
formance results for implementing these policies.

• LimitWrite. This is a policy that enforces a constraint on
filesystem usage. In this policy, we impose a 10MB limit on
the amount of data that could be written by an application on
the filesystem.

• DeleteOnlyOwned. This policy states that an application can
overwrite/delete only those files created by the application.

• TarSpecitie. This is a policy on the jtar (description of this
application is given below) application and enforces file access
permissions and enforces a disk space usage limit on the files
written by the application.

• FileOpens. This is a conventional access check policy where
the application is checked for access rights.

We have implemented and have tested these policies on the follow-
ing programs.

• BigLoop, a toy application that repeats one of the following
operations about 10 o times: (a) open a new file in the / rmap di-
rectory and write 100 bytes to it, (b) open three files and delete
files from previous iterations, or (c) write 100 bytes to a file.

• Jtar, an application that We downloaded from www. i c e . c o b
that is a Java clone of the conventional Unix tar facility. We
tested this application against all the policies mentioned above.
The program used a filesystem that consisted of about 3800
small files (of size less than 1000 bytes).

Figure 7 illustrates the overheads we incur in enforcing the policies
listed above on the BigLoop and Jtar applications. The results are
shown as percentage overheads to the cost without enforcing these
policies, which is given in parentheses (in seconds).

Comparison with Java Security. We tested the performance of
Java enabled with the Security Manager for the FileOpens policy.
(This is the only policy that could be implemented in the security
manager without any modification to Java.) The experiment re-
snlted in an significant overhead of over 120%, as the stack inspec-
tion operation is relatively an expensive operation.

We note, however, that a direct comparison of our results with Java
is not very meaningful - - Java security policy is capable of dealing
with multiple codebases, whereas our policy, as implemented, deals
with only one codebase. The comparison is presented to establish
two points. First, our policies incur acceptable overheads. Second,
Java's approach of predefining all of the security-relevant opera-
tions makes it difficult to perform optimizations based on security
policies of interest. For instance, although we may be interested
only in file open operations, we still incur interception overhead on
many other operations such as network operations and other run-
time operations. The predefinition also means that we cannot im-
plement policies that require interception of other operations, e.g.,
the LimitWrite policy cannot be captured as it requires interception
of write operations.

Comparison with Naccio. Evans [6], in describing their experi-
mental results, describes the LimitWrite experiment with an earlier
version of the same Jtar program. They present a performance
penalty of close to 25%. We have to be careful in direct compar-
ison of results as the Java VM has passed through a few revisions
since the publication of their results. The only thing we can in-
fer from the results is that our performance is competitive to the
performance of their approach.

5. RELATED WORK
Model carrying code (MCC) [13], presented in NSPW 2001, is our
general framework for ensuring the security of mobile code. This
approach enables a mobile-code consumer to understand and for-
mally reason about what a piece of mobile code can do; check if the
actions of the code are compatible with his/her security policies and
if so, execute that code. This framework has several components in-
chiding model generation, security policies, consistency resolution
and runtime monitoring. Our research in expressive security poli-
cies for ~ the MCC framework has yielded the results presented in
this paper.

In Java [7, 8], the permissions available for programs from a code
source are specified through a security policy. The security pol-
icy assigns permissions to various code sources. At runtime, pro-
grams are checked for compliance with the security policy through
runtime monitoring. The implementation of security checking is
done by a technique known as stack inspection [16]. When a piece
of code performs a security relevant operation, the effective set of
permissions that corresPOnd to the code sources that are in the exe-
cution sequence is computed by inspecting the runtime stack. The
operation is allowed only if it is implied by this set of permissions.

The security policy i sa list of entries mapping code sources to per-
missions. There are some disadvantages with having such a simple
policy language and enforcement scheme. The policy language is
not very expressive, and this precludes specification of some inter-

67

esting classes of policies, that have been described earlier in this
paper. In addition, security checks are scattered all over the Java
API implementation which is of the order of several thousand lines,
rather than for only those classes which are of interest to the policy.
Also, the set of attributes that could be inspected in the security
checks are fixed by the policy specification language and the JDK
implementation, and is rigid and does not offer flexibility.

Naccio [6] is an interesting example of a system that allows con-
venient specifications of security policies as abstract resource ma-
nipulations. The system then generates new system libraries that
includes code checking necessary to enforce the security policy. In
this sense, our model is closer to the Naccio model than the Java
model. The main difference between the approach presented in
Naccio and our approach is in the policy language. Our language
supports specification of policies that check not just invariant prop-
erties, but several other interesting classes as well.

Schneider [12] presents a formal treatment of runtime monitoring
mechanisms that work by monitoring steps of a target and termi-
nating execution that would violate the policy being enforced. This
class of mechanisms is termed (Execution Monitoring) EM. [4]
presents in-line reference monitors as part of the Security Automata
based Software Isolation (SASI) approach. The main difference be-
tween their approach and ours is that our approach has the ability to
capture and remember argument values to events. This ability, as il-
lustrated in the examples section, makes an important difference in
the classes of policies that could be enforced. In [5] they implement
Java stack inspection based approach based on bytecode rewriting
and show performance measurements. Although our work adopts
a similar bytecode modification approach for implementation, our
focus is mainly on specifying expressive policies.

Edjlali et al. [3] describe a history-based access control mechanism
for Java and provide several motivating examples for the use of
such policies. The main contribution of their work is in providing
a framework for implementing such policies in Java. Their im-
plementation is related to the set of events that are identified by
system libraries. Our focus is on developing a high-level language
to declaratively specify such policies on events such as arbitrary
function calls. Interception of arbitrary function calls is crucial for
enforcing some of the policies (such as the trusted intermediary
policy) that were discussed in our examples section.

One area that we have not discussed in detail in this paper concerns
policies that control information flow. A policy which allows no
network operations after local file reads is an example of an infor-
mation flow policy. Other information flow policies discuss what
a third party observer can deduce about the system by noticing its
external behavior. Runtime monitoring approaches do not always
capture all cases of information flow [12]. Myers [11] discusses
a static analysis based approach to ensure safe information flow
through labels.

Complimentary to our approach, there has been a considerable
amount of work on policy languages that have focused on ease
of use in policy specifications. Hoagland [10] describes a simple
graphical policy description language that adds ease of use to secu-
rity policy specification. Hauswirth [9] describes a framework for
specifying policies that is focused on ease of use of specifications
through higher level abstractions and graphical tools.

6. C O N C L U S I O N
In this paper, we have presented our case for providing flexible
policy specifications that address the need for emPowering mobile
code, yet mitigating the security risks. We have presented a few ex-

ample scenarios that motivate this discussion. We also presented an
expressive policy language that supports fine grained policy speci-
fication based on observable event sequences. In addition, we have
presented an implementation in the context of Java and have dis-
cussed issues related to the implementation. Finally, we have pre-
sented preliminary results from our implementation.

7. REFERENCES
[1] BCEL APl Documentation available at

http://bcel.sourceforge.net/docs/index.html.

[2] M. Dahm. Byte code engineering. In In Proceedings of JIT
99, 1999.

[3] G. Edjlali, A. Acharya, and V. Chaudhary. History based
access control for mobile code. In Proceedings of ACM
Computer and Comunications Security conference, 1998.

[4] U. Erlingsson and E B. Schneider. Sasi enforcement of
security policies: A retrospective. In Proceedings of the New
Security Paradigm Workshop Ontario, Canada, 1999.

[5] U. Erlingsson and E B. Schneider. Irm enforcement of java
stack inspection. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, 2000.

[6] D. Evans and A. Tywman. Flexible policy directed code
safety. In Proceedings of the 1999 IEEE conference oil
Security and Privacy, 1999.

[7] L. Gong. Inside Java 2 Platform Security: Architecture, API
Design, and Implementation. Addison-Wesley, 1998.

[8] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going beyond the sandbox: An overview of the new security
architecture in the java development kit 1.2. In Proceedings
of the USENIX Symposium on lnternet Technologies and
Systems, 1997.

[9] M. Hauswirth, C. Kerer, and R. Kurmanowytsch. A secure
execution framework for java. In Proceedings of the 7th
ACM Conference on Computer and Communtications
Security, 2000.

[10] J. Hoagland, R. Pandey, and K. Levitt. Specifying security
policies using a graphical approach. Technical report,
University of California, 1999.

[11] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software
Engineering Methodology, 1999.

[12] E B. Schneider. Enforceable security polcies. Technical
report, Cornell University, 1999.

[13] R. Sekar, C. Ramakrishnan, I. Ramakrishnan, and S. Smolka.
Model carrying code: A new paradigm for mobile code
security. In Proceedings of the New Security Paradigms
Workshop, 2001.

[14] R. Sekar and P. Uppuluri. Synthesizing fast intrusion
prevention/detection systems from high-level specifications.
In Proceedings of the USENIX Security Symposium, 1999.

[15] P. Uppuluri. Pattern matching based intrusion detection
systems. Tech report, Computer Science, StonyBrook, 2001.

[16] D. S. Wallach and E. W. Felten. Understanding java stack
inspection. In 1998 IEEE Symposium on Security and
Privacy, 1998.

68

