
Dynamic Label Binding at Run-time
Yolanta Beres, Chris I Dalton

Hewlett-Packard Laboratones
Filton Road, Stoke Gifford

Bnstol BS34 8QZ, UK

yolanta, beres, chris.i.dalton
@hp.com

ABSTRACT
Information flow control allows enforcement of end-to-end
confidentiality policies but has been difficult to put in practice.
This paper introduces a pragmatic new approach for tracking
information flow while the process is running at the same time
applying dynamic label binding. The underlying implementation
mechanism uses machine code instruction stream modification to
track individual data movements and manipulations within the
address space of an application. This gives the ability to
precisely determine all information flow causing operations and
apply controls that do not overly restrict what computations can
be performed.

Keywords
Information flow control, labels, data labeling

1. INTRODUCTION
Protecting confidentiality of data manipulated in computer

systems, especially in distributed systems, is an increasingly
complex challenge. While business level security policies def'me
protection requirements in terms of data, the actual enforcement
of these policies is done through applications and through system
and network configurations. Though they are important security
building blocks, these standard techniques alone fail to adequately
guarantee end-to-end data confidentiality. Standard techniques
such as access control check that only authorized processes are
able to access the confidential data. The controls are placed on the
release of data but no checks are placed on its propagation. This
fails to guarantee that confidential information will not be
misused once it is released to authorized processes and users.
Since no restrictions are placed on the propagation of the
information once data is read from a file, for example, an
authorized process may, through error or malice, improperly write
data from that file to other, non-authorized, locations.

New Security Paradigms Workshop 2003 Ascona Switzerland
© 2004 ACM 1-58113-880.6/04/04....$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

It is unrealistic to assume that all the applications in a
computer system are trustworthy; applications are rarely bug-free,
may contain logic errors in their design, and are increasingly hard
to configure correctly. This means that either confidential
information cannot be entrusted to applications or additional
security mechanisms have to be introduced. To ensure that
confidentiality of data is maintained protection mechanisms are
necessary to track how information flows within the processes
using it. This is expressed by information flow control. In this
framework, it is assumed that computation using confidential
information is possible, and that it is important to prevent the data
from flowing to inappropriate destinations.

Information flow control is usually based on a notion of
labels that allow information owners to express confidentiality
requirements. In addition there are rules that must be followed to
propagate labels as computation proceeds in order to avoid
information leaks. Finally, flow policies dictate where and how
information should flow in a system. Any approach for enforcing
information flow control has therefore to address the following
main questions: how labels should be bound and propagated on
data and how data labeling together with flow policies should be
integrated into a functional system.

Multilevel data labeling models that have been used in
military environments to enforce mandatory access control,
support mostly static label binding where the security label of the
object is constant 1. A system build only around this type of
binding ends up unduly restricting how contents of the objects can
be changed. In many practical systems the fixed labeling of many
objects is a unrealistic requirement to comply with as it drastically
restricts what type of computations can be performed in
applications, resulting in only a limited number of applications
allowed to run or requiting applications being highly customized.

In this paper we introduce the mechanisms that allow to track
information flow within the application at runfime by analyzing
the machine code of the running process. The mechanisms
support dynamic binding where the security label of the object
varies with its contents. With dynamic binding the labels are
updated dynamically in the course of execution. We propose an
implementation approach that uses machine code instruction
stream modification to track individual data movements and
manipulations within the address space of an application. This
allows to precisely determining the origin of data as it flows
within the executing process. We show that this approach does

I Ill some models [1.5] the label change may be permitted under certain,
highly constrained conditions, and this mostly comes from the subjects
requesting change of label on the objects that they have access to.

39

not unduly restrict the application behavior and being such, we
believe, are thus more applicable to commercial environments.

The remainder of the paper is organized as follows. In
Section 2 we describe previous related work in the area of
information flow control. Dynamic label binding model is
introduced in Section 3 that also describes the approach proposed
for tracking information flows that occur indirectly through
conditional structures. The challenges of implementing run-time
data flow tracking mechanisms are discussed in Section 4. Finally,
in Section 5 we describe the security architecture of our proposed
implementation based on an application level instruction stream
re-writing of machine code combined with enhanced operating
system kernel functionality.

2. RELATED WORK
There has been much work on the information flow control,

mostly on the static analysis of the program code, but in practical
systems control over data propagation across domains hasn't been
widely applied, except probably in military environments.

The majority of early implementations of information flow
control type systems were based on the multilevel security model
proposed by Bell and LaPadula [4], [5]. In this approach, each
data item and each process is labeled with a corresponding
security level that reflects a hierarchical confidentiality policy.
The information flow control policy is enforced by a run-time
mechanism that permits read access only if the security level of
the process is higher or equal to the security level of the data item
(no read up rule). Once the process has read data at one level, it
cannot write data with a lower label (no write down rule). The
mechanism works by augmenting the ordinary computation of
data within a running program with a simultaneous computation
of the corresponding label. This approach has been implemented
in military environments and is prescribed by the U.S. Department
of Defense "orange book" [12]. However it has proved to be too
restrictive for general use since the results of computation usually
end up to be labeled too sensitively for their intended use.

Fenton [14] proposed a run-time enforcement based on a
finite state machine extended to include marks or labels on data
items. The mechanism supported dynamic label binding but
required enforcing memory-less execution property, where
confidential inputs to a process should not remembered upon
execution termination, which is not feasible in practice. In
addition, the mechanism was only considered within an abstract
computer model and has never been implemented although the
idea of changing the process security label depending on the
labels of the processed objects has been used within high [19] and
low [16] watermark mechanisms.

Most of the later work concentrated on compile time
mechanisms for information flow policy enforcement, first
initiated by Denning's [10, 11] work. This approach tries to
establish that an application is safe (i.e. would not violate the
information flow policies) before deciding to run it by statically
analyzing and amending the application source code. The
information flow policies are specified and enforced using an
enhanced type system at the programming language level (e.g. [3,
17, 23, 26, 29]). This allows creation of security-typed languages
[25], where the types of program variables and expressions are
augmented with annotations that specify either a security level or
a security policy on the use of the typed data. The flow policies
are then enforced by compile-time type checking. The major

advantage of this approach is the ability to perform a rigorous
analysis and to accurately track all possible information flows
within an application by adding little or no run-time overhead.
However in order to do so the method requires either access to the
application source code (not always practically possible) or all
applications be written in a secure-typed language (often too
strong a requirement). Another potential weakness of using a
compiler to validate information flows is that it places beth the
type checker and the code generator of the compiler into the
trusted computed base (TCB) of the system. In addition, this
approach does not work that well when labels need to be
dynamically bound to data items. Source code analysis assumes
that once statically checked the applications cannot be subverted,
but it is not always a case as have been proved by Appel and
Govindavajhala [1[.

3. DYNAMIC LABEL BINDING MODEL
The aim of this work is to show that it should be possible to

build a security system in practice that will track information flow
within applications at run-time. We chose to work at the level of
the machine code for a targeted application, both to minimize the
size of the TCB and to affect as little as possible the application
behavior. Most applications are not designed to manipulate the
information labels and, therefore, we need to introduce the
mechanisms that track information flows and calculate the labels
as processes execute. In this section we present the dynamic
label-binding model that specifies how labels should be changed
as data is manipulated within applications.

In this approach we say that any object that can store
arbitrary information has a label. The security labels are
commonly used to describe how the information encoded into the
object must be protected. They can specify the desired security
level of an object or even encode data owner's policies on data
handling [24]. For example, the label may indicate that
information should never be sent over a public channel
unencrypted. In this paper, however, we deliberately do not
prescribe any meaning to labels, but briefly discuss the issue at the
end of the paper.

With dynamic label binding the label of the object must be
correctly updated each time information flows into it. Here the
flows of concern are those that result from execution of sequence
of operations that cause information to be directly transferred
from one object to another, for example, assignment and copying.
As the value of the object's label is not fixed, it must be changed
in response to every data movemem amongst the objects during
the process execution. Whenever a new value is assigned to an
object the object's current label is forgotten; instead it acquires
the label of that value. When an operation is executed that causes
information flow to an object from more than one other object, the
labels of all the objects are combined and the object acquires the
label that is result of that combination. This is in effect a
restriction as the new label must be the same as or more restrictive
than the old one. We can define this type of label change more
precisely.

Given that {a,b,c,...} is a set of logical data storage

objects, which are containers of information and that {~,b,~, . . .}

is a set of security labels, the following re-labeling rule is valid:

4-0

I f a value f (a 1 an) f lows to an object b then the

security label orb is changed to b ' := al (~ ... ~ an ~ b .

Here the operator " ~ " is a label combining operator that is
used in computing the security label of the result of a binary
function on a pair of operands. For example, the label of the result

of a binary function on objects a and b is ~ ' ~ b . Extending this

to an n-ary function f (a 1 an) the label of the result is

~, ¢ . . . e ~ . .
Giving a confidential data to an untrusted process does not

create an information leak as long as the labels of objects
manipulated during process execution are computed according to
the defined re-labeling rule. We say that information can be
leaked only when it leaves the process through the write
operation, so only at that point security policies should be
enforced to prevent leaks.

3.1 Implicit Information Flows
The defined re-labeling rule is not sufficient to guarantee that

labels are correctly updated under all flow causing operations.
The operations of concern are conditional statements such as if,
while, for, and do while. They transfer information from objects in
the conditionals implicitly to other objects. This type of
information flow is easily traceable at the well structured
programming language level, as was demonstrated by previous
work [3, I1]. However, at run-time only traces of executed
machine code can be analyzed, This examination will not reveal
the full program flow, and so it is nearly impossible to detect all
data dependent on the conditionals while the process executes. As
conditional structures can be fairly easily detected from program
flow graphs in this section we propose to use the same technique
for machine code by analyzing the flow graph of application's
code at the time it is loaded.

We first describe implicit information flow by considering
the following simple example:

b=O;c=O;

if (a==O) {
c=c+l ;

)
if (c==O) {

b=b+ 1 ;
}

Assuming that value of a can be 0 or 1 at the end of this
code b's value will always be equal to the value of a. Although
there is no direct copying of a to b there is an indirect flow of the
information through the two conditionals. Information from a to b
would leak both through executing and not-executing operations
c=c+l and b=b+l.

Given that labels of objects involved are correspondingly

~ , b and ~, it is easily seen that these labels would stay the same
by the end of this code because all operations are performed on a
single operand. If a contains information labeled as "secret" and b
is labeled as "public", then the "secret" value of a will be leaked
through "public" b.

In this example the comparison expressions also carry away
some information, but previous re-labeling rule does not take into
account such flows. This type of flow occurred not as a result of

direct transfer of value to an object, but as a result of executing or
not executing an operation when that operation is conditioned on
some value. We will call the flow of information that occurs
through execution of operation as direct implicit flow, and the one
that occurs through non-execution as indirect implicit flow.

To insure the correct label binding in the given example the
label of c should have been updated to ~ ' : = ~ f f
independently whether c:=c+l or a:=a-1 is executed. Similarly on
the second conditional b's label must be updated to

b ' := b ~ ~", giving the final label of b ' ~ f f .

3.1.1 Static code analysis
In order to know what objects are affected by implicit flows

we need to have information about all possible execution paths of
the program, but it is clearly infeasible to create and evaluate that
at run time. The most appropriate solution would be to analyze
control flow transfers of the program prior to execution to
determine what code blocks follow (or precede, as for the do
while structure) the conditional statement. This information can
then be used at runtime to update the labels once the memory and
register locations of the affected objects are known. Binary code
disassembly techniques [8, 9] can be used to construct a control
flow graph (CFG) that represents abstract execution structure of
machine code. Once the control flow graphs have been
constructed the basic blocks can be analyzed for conditional
jumps and loops.

The flow graphs for conditional structures such as if and
while have a useful property of having a single beginning point at
which the control starts and a single exit point at which the
control leaves. For example, the code in figure 1 has two such
structures, one nested within another. We exploit this property to
identify the set of operations, values of which are implicitly
affected by the conditionals on the entry point. All branches
following a conditional have an implicit flow of information from
the conditional. At the machine code level this is the value of a
particular memory or register location. Therefore, when
calculating the labels for branches following a conditional we
need to take into account the label of the location in that
conditional.

Figure 1. A control flow graph with two highlighted
conditional structures.

41

In order to implement these schemes we need to add
additional instrumentation code to the binary so that we can trace
its actual control flow at runtime. We use the CFG to identify
which code blocks are affected by the conditional and also to
determine when we no longer have to take into account the label
of a particular conditional branch, i.e. when that conditional can
no longer cause an implicit flow.

During the static analysis the code is instrumented to provide
additional information about the execution path taken 2. This
includes identifiers for entry and exit points of conditional
structures, as well as of the blocks within the conditional
branches. We say that the label of a particular conditional is no
longer relevant when flow reaches the immediate forward
dominator node of that conditional branch node in the CFG.

The construction of the control flow graph and static code
instrumentation can be performed ahead of time or at least at load
time thus reducing run-time performance overheads. It must be
said that extracting accurate CFGs for certain binary code can
prove challenging, particularly so for IA-32 binaries since code
and data can be mixed together as well as the problem of indirect
conditional jumps. Exceptions and signals also add to the
problems of accurate CFG generation. Potentially if we can't
determine the CFG for a particular binary we can choose to either
not run it or assume worst case and apply the conservative
approach of overly restrictive controls that we briefly describe at
the end of the next section.

3.1.2 Updated Re- label ing Rule
The re-labeling rule defined previously at the start of the

section 3 has to change so that labels in the conditionals are taken
into account when the new labels are computed. At runtime, we
can implement this by introducing the notion of the program
counter (PC) of a process p and associate label ff with that

counter. This label reflects the current execution structure of the
process and represents the labels of the entries to conditional
structures. The value is determined by using a simple stack-based
mechanism.

Whenever a conditional or loop entry point is detected the
current label ff is pushed further on the stack and the label of a

conditional expression c is added, resulting in a new tag f i F E .

If a statement is conditioned on the values of n expressions
Cl,...,c n then the labels of these locations are first combined

E l ~ ... ~ E n and the end result is combined with ft.

During all operations from the entry point the labels of the
locations in branching expressions are updated by taking into
account the current label of the program counter. The re-labeling
rule introduced previously now takes the following form:

I f a value f (a I an) flows to an object b and the

current label of the process counter is ff then the security label

ofb is changed to b ' := b ~ al ~ "" ~ an ~ P .

2 In cases where we encounter back arrows in the CFG such as
during do while loops and back-forwarding gore structures we
also include support for back-tracking.

The labels are updated accordingly for all memory and
register locations that are encountered after the conditional. When
the node is reached that, according to the CFG, is the immediate
forward dominator of the conditional branch node, the current PC
label is popped off the stack and hence its value is restored to
what it was before the conditional was encountered.

Consider the following simple example:
i f (x==7) y = z; during the assignment to y in the
conditional branch, the memory location of y will get the label of
z together with the program counter label that in this case includes
(amongst possible others depending upon the structure and flow
of the program) the tag of x. By doing this, the tag of y reflects
both the direct assignment to it from z but also the implicit flow
from the conditional on x.

Figure 2 shows the CFG corresponding to this simple
example. The machine code basic block BBi contains the
instructions that cause the conditional branch based on the value
ofx. BBj conta/ns the machine instructions for the assignment to y
and BBk contains the code directly after the end of the if-
conditional.

BBi

pc . pc $ bbi

~ = pc~bb~

Figure 2. The program counter label.

The described program counter approach is similar to the
theoretical model of data mark machine proposed by Fanton [10].
It takes into account the labels of locations in the comparisons and
correctly propagates them across all operations that arc executed
after the comparison until the exit is reached. However, the
approach does not capture indirect implicit flows that occur by not
executing conditional branches. This is due to the fact that at run
time the knowledge of the expressions that are not executed is
losL

Going back to the example introduced at the start of the
section 3.1 we can see that based on this approach after entering
the first conditional the program counter label is updated to
p = a (we assume it's empty when this code first starts). If

a = 0 , then the first branch is executed and the label of c is

42

updated correctly: F' = F ~ ~ . However, during the next branch,

if c equals 0 then b's value becomes 1. If c does not equal 0 then
no assignment happens. Thus, in this case the value of a is leaked
through b, but its label still remains the same.

A potential solution is to revert to a more restrictive
approach, as taken by the compile-time type-checking systems, as
well as Aries project [6]. In this approach a w r i t e to a particular
location within a branch is completely disallowed when the label
associated with that location is equal or less restrictive than the
label of the PC during that branch. This ensures that nothing is
written within the branch that could not be written to outside of
the branch - the fact that the branch is entered or not entered then
gives no information away. In doing so, of course, one has to
decide how to communicate the failure of the w r i t e operation so
that no information is leaked through this communication as well.

We believe that taking the overly restrictive approach would
preclude many applications from executing correctly, and might
potentially still leak some information through other covert
channels such as debugging errors, or failures to terminate.
Therefore, in practice when running real applications it is
acceptable to ignore certain information leaks. We discuss this
and other covert channels in section '7.

4, I N T E R P R E T I N G T H E M O D E L
As we have previously stated, our aim is to show that it

should be possible to build a security system in practice that will
support dynamic label binding and possible enforcement of
information flow policies based on these labels. The resulting
system has also to satisfy the pragmatic need to work on real
applications without access to the source code of those
applications or dependence on the code certification prior to
execution, and to demonstrate an acceptable performance.

In attempting to build this system, we found that the primary
difficulty with run time information flow analysis lies in detecting
and monitoring all information flow causing operations in a
running process.

a targeted process and can halt it whenever it is about to violate a
defined security policy. Most operating systems already fulfill the
function of a reference monitor for such purposes as access
control. For example, when a process attempts to access a file, an
operating system intervenes to check that the process has
necessary access rights before it is granted access.

The range of security properties that can be enforced using a
reference monitor implemented in the operating system are
limited, however, to the amount of events that are visible and
traceable at this level while processes are running. Rules that
govern system calls, for example, are feasible because the
operating system can easily monitor them. But system calls are not
used for all operations carried out by a process. When operations
are executed within the processes own address space the operating
system has no control over them.

Whilst it is true that all system resource access and all input
and output operations that a process performs have to go through
the operating system via the system call interface, any
manipulation and copying of objects within a process's own
memory space is largely invisible to the operating system. This
leads to blind spots in the process behavior that cannot be
monitored. It is possible to provide limited software watch points
at the kernel level using a technique of memory watch point
trisgers. In this approach the features in the machine CPU
hardware are exploited to set watch points over arbitrary memory
locations and to trigger a trap on reads or writes to those areas that
the OS can intercept. However, typically hardware only supports a
few watch points of limited address range and these are shared

3
across all processes.

An alternative to placing the monitoring mechanisms in the
operating system is to merge them with the targeted application.
The technique of machine code re-writing can be used to modify
the original the machine code of an application / process either on
the fly via dynamic instruction stream modification or statically by
modifying the application object code before runtime. The SASI
[27] prototype demonstrates the latter approach by embedding

0 8
Kernel

Monttora
dampow

Eesmrts all appllcat~oxs are
moxttormd

I (proeHI) (pro©e.)

~:- . ¢ox~olJ syatGm cal~ Molgtora

l
½; ½ ½

Hxfo~'¢Ga labcb

USER SPACE

KERNEL SPACE

£¢.rJ atatt .eca~mry /or lab.I
proralnOoa

~ ~ pera~teacy ox
disk

Ptopalat tJ

xrn~ort

Figure 3. The security architecture o f the proposed
implementation system.

A desirable proposition is to use the operating system where
processes run as a reference monitor to apply object re-labeling
rules and to potentially enforce policies that would be associated
with the labels. A reference monitor can observe the execution of

3 IA-32 is fairly basic in this respect; IA-64 and UtraSpare offer
much better support.

43

security automatons between each of the original machine code
instructions of an application.

Dynamic labeling, however, can only be accurately
interpreted and tracked at runtime, thus influencing us to choose
the dynamic instruction stream modification approach. At the
individual machine code instruction level we do have access to
the points where a process reads and writes memory locations and
registers and where we can insert additional instructions for
propagating the labels. The dynamic instruction stream
modification has been successfully used in the past for dynamic
optimization [2, 20] and to provide virtualization support on non-
naturally virtualizable platforms (VMware / Plex86 for IA-32
[28]).

5. PROPOSED IMPLEMENTATION
FRAMEWORK

The basic security architecture of our implementation
prototype where dynamic instruction stream modification is used
to track information flows and to compute the labels is outlined in
figure 2. In this framework it is possible to associate a security
label with each byte of data in the various data sources on the
system, such as files or network packets. When a process copies
some data from a data source into its memory space, by doing a
r e a d system call for example, the label is bound to the copy of
the data item that is now within the memory space of that process.
As the process manipulates the data around its memory space the
corresponding labels are also copied and combined based on the
dynamic re-labeling rule defined previously.

5.1 Re-labeling with Machine Code Re-
writing

The main component in this system is the tagging/modaling
module responsible for making sure labels are injected into the
memory space of a process and to also ensure that they are
propagated around the address space of that process as that
process uses the data.

At process load time we allocate, in shared memory, a sparse
array that can potentially hold a label value a for each addressable
byte in the memory regions assigned to that process. We also label
registers so that a copy from one memory location to another
location via the use of an intermediate register (as is often the
case) also maintains the correct label.

The labels are updated only at the point where a process tries
to export data from its address space, e.g. via a 'write' system call.
Between the system calls we record what memory and register
writes a process makes, and based on this we model the effect of
those writes at a system call boundary - this allows us to lessen
some of the performance impact.

Figure 4 shows a more detailed low-level architecture for
machine code instrumentation and for computation of labels. As
described previously, before run-time a process has to be statically
instrumented so that it produces a trace of any memory and
register write operations it carries out This also informs what the
program counter label should be as the write operations are
carried out.

4

~l~f/mkmmm

!
2

Figure 4. A low-level architecture

At runtime, the instrumented machine code is run under the
dynamic instruction stream modification framework

(DynamoRIO) s. This again involves re-writing the machine code
but this time it is done dynamically, in order to ensure that the
instrumentations are not bypassed.

When a process reads bytes from a data source (such as a
file) into its address space via a system call, we add machine code
to make it run an additional system call to determine the kernel
maintained label values for those particular bytes in the data
source. These label values are loaded into the sparse array for the
locations within the process address space that the data was read
into.

At a certain point, usually at the time of a system call, the
tagging/modeling module is invoked to update the label values of
the memory and register locations within the process. Given
previously known labels for these locations and given a trace of
machine code instructions (such as mov B,A) that cause a write
from one area of the process address space (or register) to another
area of the address space (or register) as well as instructions (such
as add or sub) that cause data to be combined we are able to
compute the new label values according to the previously
described re-labeling rules.

When a process attempts to write data outside of its address
space (via a system call) we re-write the operation so that the
process first makes a system call to the kernel passing the label
values of the data it is trying to write. At this point the kernel can
be instrumented to check whether any particular policy, such as
access control, applies on the passed label values. In cases when
the policy prohibits writes to the intended destination the original
system call is skipped over and an error call is returned to the
process.

4 Currently label values are 1 byte long.
s Readers are directed to [13] for full description of the

DynamoRIO system.

44

5.2 Kernel Support
In this framework, the mechanisms of application level

instruction stream re-writing are combined with enhanced
operating system kernel features to provide the necessary
functionality.

One of the mechanisms that are provided at the kernel level
assures initial data source labeling. The functionality used is
similar to that already provided in implementations of multilevel
security (MLS) systems that support file and network labeling
[18]. In our case the mechanisms are able to provide support for
individual labels per byte within data objects such as files. Our
current prototype of data source labeling is based on the Linux
operating system. For file system objects we have added label
structures to the in-memory l-node kernel structures. For
persistence and recovery there is a non-visible backing file stored
on disk. We have not needed to change the on disk I-node
structure - currently we support EFS2 and EFS3 file systems. The
curremt prototype requires modifications to the Linux kernel
source, but we believe that by making use of the Linux Security
Module (LSM) [30] interface we can avoid the need for kernel
source modifications in the future.

6. D I S C U S S I O N

6 .1 S e c u r i t y Policies
The system as presented in the previous sections has no

built-in security policy model. Having a general-purpose
information flow tracking mechanism is advantageous as it can be
re-used to enforce different types of security policies.

The policies should dictate what information protection rules
govern the labeled data. These rules are then applied on the
system call as the process tries to transfer the labeled data out of
its address space. Based on the label value and the applicable
policy the operation is either permitted or denied. Having tracked
the information flow whilst the application executes, the tagging
module is able to communicate the accurate information label to
the OS.

The label type and combining function, such as " ~ "
operator, should also be defined as part of the security policy
model. For example, a user could apply a Bell and LaPadula style
policy and then the label and function would define a lattice. This
requires the operator to be defined as a comparison function that
is reflexive, transitive, and anti-symmetric.

McHugh and Good [21] have taken a similar general-purpose
approach by creating a simple information flow tool that can be
used to verify information flow properties. However, their tool
works only on the programs written in Gypsy programming
language. In our approach we have gone one step further in
attempting to create the tool for analysis of an arbitrary machine
code without requiring changes at the programming language
level.

6.2 Covert C h a n n e l s
The dynamic label binding approach may not be sufficient to

guarantee security of data in certain cases with very strong
requirements, as it can be exploited for covert channels. We
believe, that in order for a runtime information flow tracking
mechanism to be used in a computer system to protect the

information, the strength of guarantee must be sufficient to
counter perceived threats. Therefore, the justification for ignoring
certain potential information leaks must be a risk assessment,
which has determined that the vulnerabilities present an
acceptable risk. In many commercial organizations the acceptable
risk value might be very different from what is acceptable in
military environments, for example. As John McHugh correctly
observed [22] "with a few exceptions, mostly dealing with small,
very sensitive, information objects (such as long lived encryption
keys), small information leakages are not of much concern today;
after all, most systems are so vulnerable that it is far easier to take
ownership of the system via a simple exploit than it is to attempt
to signal information through the protection state". For many
computations, some amount of information leakage is also both
necessary and acceptable. For other computations, mostly
operating on a highly sensitive data, information theory
techniques can be used to estimate the amount of the information
that would be leaked [7].

7. C O N C L U S I O N S
In this paper we have described a novel approach to run-time

information flow mtonitoring within applications. This approach
is based on dynamic label binding where the security label of the
object is updated in the course of execution and varies dependent
on its contents. We also propose an implementation approach that
uses machine code instruction stream modification to track
individual data movements and manipulations within the address
space of an application.

In this approach the information is considered to be leaked
only when it leaves the system where process runs, through write
system call for example. The mere manipulation of data during the
process execution is not considered to be release of information.
The defined re-labeling rule ensures that as information flows the
labels on data are updated to correctly reflect these flows.

8 . R E F E R E N C E S
[1] A. Appel and S. Govindavajhala. "Using Memory Errors to

Attack a Virtual Machine". In Proe. oflEEE Symposium on
Security and Privacy, 2003.

[2] V. Bala, E. Duesterwald, and S. Banerjia. "Dynamo: A
transparent runfime optimization system?" In Proe. of ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI '00), June 2000.

[3] J.-P. Ban^atre, C. Bryce, and D. Le M'etayer. "Compile-time
detection of information flow in sequential programs". In
Proc. of European Symposium on Research in Computer
Security, 1994.

[4] D.E. Bell and L. J. LaPadula, "Secure computer systems: A
mathematical model." Teeh, Rep. MTR-2547, Vol. 2,
MITRE Corp., Bedford, MA, 1973.

[5] D.E. Bell and L. J. LaPadula, "Secure computer systems:
Mathematical foundations." Tech. Rep. MTR-2547, Vol. 1,
MITRE Corp., Bedford, MA, 1973.

[6] J. Brown, T.F. Knight, Jr. " A Minimal Trusted Computing
Base for Dynamically Ensuring Secure Information Flow".
Project Aries Technical Memo ARIES-TM-015, MIT,
November 2001.

4 5

[7] D. Clark, S. Hunt, and P. Malacaria, "Quantitative Analysis
of the Leakage of Confidential Data.." Electronic Notes in
Theoretical Computer Science, vol. 59, no. 3, 2001.

[8] C Cifuentes, D Simon and A Fraboulet, "Assembly to High-
Level Language Translation". In Proc. of the International
Conference on Software Maintenance, November 1998.

[9] C Cifuentes and A Fraboulet, "Interprocedural Data Flow
Recovery of High-level Language Code from Assembly".
Technical Report 421, Department of Computer Science and
Electrical Engineering, The University of Queensland,
December 1997.

[10] D. E. Denning, "A Lattice Model of Secure Execution." In
Communications of the ACM, vol. 19, no. 5, May 1976.

[11] D. E. Denning and P. J. Denning, "Certification of programs
for secure information flow." Communications of the ACM,
vol. 20, no. 7, July 1977.

[12] Department of Defense, Department of Defense Trusted
Computer System Evaluation Criteria, DOD 5200.28-STD
(The Orange Book) edition, Dec. 1985.

[13] DynamoRIO System Overview.
http:llwww.cae.lcs.mit.eduldynamorioldoclDynamoRIO.htm

[14] J. S. Fenton, "Memoryless subsystems." Computing Journal,
vol. 17, no. 2, pp. 143--147, May 1974.

[15] S. N. Foley, Li Gong, and X. Qian, "A Security Model of
Dynamic Labeling Providing a Tiered Approach to
Verification", In Proc. of lEEE Symposium on Security and
Privacy, 1996.

[16] T. Fraser, "LOMAC: Low Water-Mark Integrity Protection
for COTS Environments." Ill Proc. of lEEE Symposium on
Security and Privacy, May 2000.

[17] P. Herrmann, "Information Flow Analysis of Component-
Structured Applications." In Proc. of l 7th Annual Computer
Security Applications Conference (ACSAC'01), December
2001.

[18] Hewlett-Paekard Co. (1996) HP-UX 10.16 CMW Security
Features Guide.

[19] A.K. Jones and R. J. Lipton, "The enforcement of security
policies for computation." la Proc. of 5th Symposium on
Operating Systems Principles, November 1975.

[20] V. Kiriansky, D. Bruening, arid S. Amarasinghe, "Secure
Execution Via Program Shepherding." In Proc. of llth
USENIX Security Symposium, August 2002.

[21] J. McHugh, D. I. Good, "An Information Flow Tool for
Gypsy". In Proc. of lEEE Symposium on Security and
Privacy, 1985.

[22] J. McHugh, "An Information Flow Tool for Gypsy: An
Extended Abstract Revisited". In Proc. of Annaal Computer
Security Applications Conference, December 2001.

[23] C. Myers, "JFlow: Practical mostly-static information flow
control." In Proc. of ACM Symposium on Principles of
Programming Languages, January 1999.

[24] C. Myers and B. Liskov, "A decentralized model for
information flow control." In Proc. of ACM Symposium on
Operating System Principles, October 1997.

[25] A. Sabelfeld and A. C. Myers, "Language-Based
Information-Flow Security." IEEE Journal on Selected Areas
in Communications, vol. 21, no. 1, January 20033.

[26] A. Sabelfeld and D. Sands, "Probabilistic noninterference for
multithreaded programs." In Proc. of lEEE Computer
Security Foundations Worl~hop, July 2000.

[27] F. B. Schneider and U. Edingsson, "SASI Enforcement of
Security Policies: a Retrospective." In Proc. of New Security
Paradigms Workshop, 1999.

[28] J. Sugerman, G. Vankitachalam, and Beng-Hong Lim,
"Virtualizing I/O Devices on VMware Workstafion's Hosted
Virtual Machine Monitor." In Proc. of USENIX Annual
Technical Conference, June 2001.

[29] D. Volpano, G. Smith, and C. Irvine, "A sound type system
for secure flow analysis." Journal of Computer Security, vol,
4, no. 3, pp. 167-187, 1996.

[30] C. Wright and C. Cowan, J. Morris, S. Smalley, and G.
Kroah-Hartman, "Linux Security Modules:
General Security Support for the Linux Kernel." In Proc. of
11 th SEN1X Security Symposium, August 2002.

46

