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ABSTRACT 
Information flow control allows enforcement of end-to-end 
confidentiality policies but has been difficult to put in practice. 
This paper introduces a pragmatic new approach for tracking 
information flow while the process is running at the same time 
applying dynamic label binding. The underlying implementation 
mechanism uses machine code instruction stream modification to 
track individual data movements and manipulations within the 
address space of an application. This gives the ability to 
precisely determine all information flow causing operations and 
apply controls that do not overly restrict what computations can 
be performed. 

Keywords 
Information flow control, labels, data labeling 

1. INTRODUCTION 
Protecting confidentiality of data manipulated in computer 

systems, especially in distributed systems, is an increasingly 
complex challenge. While business level security policies def'me 
protection requirements in terms of data, the actual enforcement 
of these policies is done through applications and through system 
and network configurations. Though they are important security 
building blocks, these standard techniques alone fail to adequately 
guarantee end-to-end data confidentiality. Standard techniques 
such as access control check that only authorized processes are 
able to access the confidential data. The controls are placed on the 
release of data but no checks are placed on its propagation. This 
fails to guarantee that confidential information will not be 
misused once it is released to authorized processes and users. 
Since no restrictions are placed on the propagation of the 
information once data is read from a file, for example, an 
authorized process may, through error or malice, improperly write 
data from that file to other, non-authorized, locations. 
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It is unrealistic to assume that all the applications in a 
computer system are trustworthy; applications are rarely bug-free, 
may contain logic errors in their design, and are increasingly hard 
to configure correctly. This means that either confidential 
information cannot be entrusted to applications or additional 
security mechanisms have to be introduced. To ensure that 
confidentiality of data is maintained protection mechanisms are 
necessary to track how information flows within the processes 
using it. This is expressed by information flow control. In this 
framework, it is assumed that computation using confidential 
information is possible, and that it is important to prevent the data 
from flowing to inappropriate destinations. 

Information flow control is usually based on a notion of 
labels that allow information owners to express confidentiality 
requirements. In addition there are rules that must be followed to 
propagate labels as computation proceeds in order to avoid 
information leaks. Finally, flow policies dictate where and how 
information should flow in a system. Any approach for enforcing 
information flow control has therefore to address the following 
main questions: how labels should be bound and propagated on 
data and how data labeling together with flow policies should be 
integrated into a functional system. 

Multilevel data labeling models that have been used in 
military environments to enforce mandatory access control, 
support mostly static label binding where the security label of the 
object is constant 1. A system build only around this type of 
binding ends up unduly restricting how contents of the objects can 
be changed. In many practical systems the fixed labeling of many 
objects is a unrealistic requirement to comply with as it drastically 
restricts what type of computations can be performed in 
applications, resulting in only a limited number of applications 
allowed to run or requiting applications being highly customized. 

In this paper we introduce the mechanisms that allow to track 
information flow within the application at runfime by analyzing 
the machine code of the running process. The mechanisms 
support dynamic binding where the security label of the object 
varies with its contents. With dynamic binding the labels are 
updated dynamically in the course of execution. We propose an 
implementation approach that uses machine code instruction 
stream modification to track individual data movements and 
manipulations within the address space of an application. This 
allows to precisely determining the origin of data as it flows 
within the executing process. We show that this approach does 

I Ill some models [1.5] the label change may be permitted under certain, 
highly constrained conditions, and this mostly comes from the subjects 
requesting change of label on the objects that they have access to. 
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not unduly restrict the application behavior and being such, we 
believe, are thus more applicable to commercial environments. 

The remainder of the paper is organized as follows. In 
Section 2 we describe previous related work in the area of 
information flow control. Dynamic label binding model is 
introduced in Section 3 that also describes the approach proposed 
for tracking information flows that occur indirectly through 
conditional structures. The challenges of implementing run-time 
data flow tracking mechanisms are discussed in Section 4. Finally, 
in Section 5 we describe the security architecture of our proposed 
implementation based on an application level instruction stream 
re-writing of machine code combined with enhanced operating 
system kernel functionality. 

2. RELATED WORK 
There has been much work on the information flow control, 

mostly on the static analysis of the program code, but in practical 
systems control over data propagation across domains hasn't been 
widely applied, except probably in military environments. 

The majority of early implementations of information flow 
control type systems were based on the multilevel security model 
proposed by Bell and LaPadula [4], [5]. In this approach, each 
data item and each process is labeled with a corresponding 
security level that reflects a hierarchical confidentiality policy. 
The information flow control policy is enforced by a run-time 
mechanism that permits read access only if the security level of 
the process is higher or equal to the security level of the data item 
(no read up rule). Once the process has read data at one level, it 
cannot write data with a lower label (no write down rule). The 
mechanism works by augmenting the ordinary computation of 
data within a running program with a simultaneous computation 
of the corresponding label. This approach has been implemented 
in military environments and is prescribed by the U.S. Department 
of Defense "orange book" [12]. However it has proved to be too 
restrictive for general use since the results of computation usually 
end up to be labeled too sensitively for their intended use. 

Fenton [14] proposed a run-time enforcement based on a 
finite state machine extended to include marks or labels on data 
items. The mechanism supported dynamic label binding but 
required enforcing memory-less execution property, where 
confidential inputs to a process should not remembered upon 
execution termination, which is not feasible in practice. In 
addition, the mechanism was only considered within an abstract 
computer model and has never been implemented although the 
idea of changing the process security label depending on the 
labels of the processed objects has been used within high [19] and 
low [ 16] watermark mechanisms. 

Most of the later work concentrated on compile time 
mechanisms for information flow policy enforcement, first 
initiated by Denning's [10, 11] work. This approach tries to 
establish that an application is safe (i.e. would not violate the 
information flow policies) before deciding to run it by statically 
analyzing and amending the application source code. The 
information flow policies are specified and enforced using an 
enhanced type system at the programming language level (e.g. [3, 
17, 23, 26, 29]). This allows creation of security-typed languages 
[25], where the types of program variables and expressions are 
augmented with annotations that specify either a security level or 
a security policy on the use of the typed data. The flow policies 
are then enforced by compile-time type checking. The major 

advantage of this approach is the ability to perform a rigorous 
analysis and to accurately track all possible information flows 
within an application by adding little or no run-time overhead. 
However in order to do so the method requires either access to the 
application source code (not always practically possible) or all 
applications be written in a secure-typed language (often too 
strong a requirement). Another potential weakness of using a 
compiler to validate information flows is that it places beth the 
type checker and the code generator of the compiler into the 
trusted computed base (TCB) of the system. In addition, this 
approach does not work that well when labels need to be 
dynamically bound to data items. Source code analysis assumes 
that once statically checked the applications cannot be subverted, 
but it is not always a case as have been proved by Appel and 
Govindavajhala [1[. 

3. DYNAMIC LABEL BINDING MODEL 
The aim of this work is to show that it should be possible to 

build a security system in practice that will track information flow 
within applications at run-time. We chose to work at the level of 
the machine code for a targeted application, both to minimize the 
size of the TCB and to affect as little as possible the application 
behavior. Most applications are not designed to manipulate the 
information labels and, therefore, we need to introduce the 
mechanisms that track information flows and calculate the labels 
as processes execute. In this section we present the dynamic 
label-binding model that specifies how labels should be changed 
as data is manipulated within applications. 

In this approach we say that any object that can store 
arbitrary information has a label. The security labels are 
commonly used to describe how the information encoded into the 
object must be protected. They can specify the desired security 
level of an object or even encode data owner's policies on data 
handling [24]. For example, the label may indicate that 
information should never be sent over a public channel 
unencrypted. In this paper, however, we deliberately do not 
prescribe any meaning to labels, but briefly discuss the issue at the 
end of the paper. 

With dynamic label binding the label of the object must be 
correctly updated each time information flows into it. Here the 
flows of concern are those that result from execution of sequence 
of operations that cause information to be directly transferred 
from one object to another, for example, assignment and copying. 
As the value of the object's label is not fixed, it must be changed 
in response to every data movemem amongst the objects during 
the process execution. Whenever a new value is assigned to an 
object the object's current label is forgotten; instead it acquires 
the label of that value. When an operation is executed that causes 
information flow to an object from more than one other object, the 
labels of all the objects are combined and the object acquires the 
label that is result of that combination. This is in effect a 
restriction as the new label must be the same as or more restrictive 
than the old one. We can define this type of label change more 
precisely. 

Given that {a,b,c,...} is a set of logical data storage 

objects, which are containers of information and that {~,b,~, . . .}  

is a set of security labels, the following re-labeling rule is valid: 
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I f  a value f ( a  1 ..... an) f lows to an object b then the 

security label orb is changed to b ' := al (~ ... ~ an ~ b . 

Here the operator " ~ "  is a label combining operator that is 
used in computing the security label of the result of a binary 
function on a pair of operands. For example, the label of the result 

of a binary function on objects a and b is ~ ' ~ b .  Extending this 

to an n-ary function f ( a  1 ..... an) the label of the result is 

~, ¢ . . . e ~ . .  
Giving a confidential data to an untrusted process does not 

create an information leak as long as the labels of objects 
manipulated during process execution are computed according to 
the defined re-labeling rule. We say that information can be 
leaked only when it leaves the process through the write 
operation, so only at that point security policies should be 
enforced to prevent leaks. 

3.1 Implicit Information Flows 
The defined re-labeling rule is not sufficient to guarantee that 

labels are correctly updated under all flow causing operations. 
The operations of concern are conditional statements such as if, 
while, for, and do while. They transfer information from objects in 
the conditionals implicitly to other objects. This type of 
information flow is easily traceable at the well structured 
programming language level, as was demonstrated by previous 
work [3, I1]. However, at run-time only traces of executed 
machine code can be analyzed, This examination will not reveal 
the full program flow, and so it is nearly impossible to detect all 
data dependent on the conditionals while the process executes. As 
conditional structures can be fairly easily detected from program 
flow graphs in this section we propose to use the same technique 
for machine code by analyzing the flow graph of application's 
code at the time it is loaded. 

We first describe implicit information flow by considering 
the following simple example: 

b=O;c=O; 

if (a==O) { 
c=c+l ; 

) 
if (c==O) { 

b=b+ 1 ; 
} 

Assuming that value of a can be 0 or 1 at the end of this 
code b's value will always be equal to the value of a. Although 
there is no direct copying of a to b there is an indirect flow of the 
information through the two conditionals. Information from a to b 
would leak both through executing and not-executing operations 
c=c+l and b=b+l. 

Given that labels of objects involved are correspondingly 

~ , b  and ~,  it is easily seen that these labels would stay the same 
by the end of this code because all operations are performed on a 
single operand. If a contains information labeled as "secret" and b 
is labeled as "public", then the "secret" value of a will be leaked 
through "public" b. 

In this example the comparison expressions also carry away 
some information, but previous re-labeling rule does not take into 
account such flows. This type of flow occurred not as a result of 

direct transfer of value to an object, but as a result of executing or 
not executing an operation when that operation is conditioned on 
some value. We will call the flow of information that occurs 
through execution of operation as direct implicit flow, and the one 
that occurs through non-execution as indirect implicit flow. 

To insure the correct label binding in the given example the 
label of c should have been updated to ~ ' : = ~ f f  
independently whether c:=c+l or a:=a-1 is executed. Similarly on 
the second conditional b's label must be updated to 

b '  := b ~  ~", giving the final label of b ' ~ f f .  

3.1.1 Static code analysis 
In order to know what objects are affected by implicit flows 

we need to have information about all possible execution paths of 
the program, but it is clearly infeasible to create and evaluate that 
at run time. The most appropriate solution would be to analyze 
control flow transfers of the program prior to execution to 
determine what code blocks follow (or precede, as for the do 
while structure) the conditional statement. This information can 
then be used at runtime to update the labels once the memory and 
register locations of the affected objects are known. Binary code 
disassembly techniques [8, 9] can be used to construct a control 
flow graph (CFG) that represents abstract execution structure of 
machine code. Once the control flow graphs have been 
constructed the basic blocks can be analyzed for conditional 
jumps and loops. 

The flow graphs for conditional structures such as if  and 
while have a useful property of having a single beginning point at 
which the control starts and a single exit point at which the 
control leaves. For example, the code in figure 1 has two such 
structures, one nested within another. We exploit this property to 
identify the set of operations, values of which are implicitly 
affected by the conditionals on the entry point. All branches 
following a conditional have an implicit flow of information from 
the conditional. At the machine code level this is the value of a 
particular memory or register location. Therefore, when 
calculating the labels for branches following a conditional we 
need to take into account the label of the location in that 
conditional. 

Figure 1. A control flow graph with two highlighted 
conditional structures. 
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In order to implement these schemes we need to add 
additional instrumentation code to the binary so that we can trace 
its actual control flow at runtime. We use the CFG to identify 
which code blocks are affected by the conditional and also to 
determine when we no longer have to take into account the label 
of a particular conditional branch, i.e. when that conditional can 
no longer cause an implicit flow. 

During the static analysis the code is instrumented to provide 
additional information about the execution path taken 2. This 
includes identifiers for entry and exit points of conditional 
structures, as well as of the blocks within the conditional 
branches. We say that the label of a particular conditional is no 
longer relevant when flow reaches the immediate forward 
dominator node of that conditional branch node in the CFG. 

The construction of the control flow graph and static code 
instrumentation can be performed ahead of time or at least at load 
time thus reducing run-time performance overheads. It must be 
said that extracting accurate CFGs for certain binary code can 
prove challenging, particularly so for IA-32 binaries since code 
and data can be mixed together as well as the problem of indirect 
conditional jumps. Exceptions and signals also add to the 
problems of accurate CFG generation. Potentially if we can't 
determine the CFG for a particular binary we can choose to either 
not run it or assume worst case and apply the conservative 
approach of overly restrictive controls that we briefly describe at 
the end of the next section. 

3.1.2 Updated  Re- label ing Rule  
The re-labeling rule defined previously at the start of the 

section 3 has to change so that labels in the conditionals are taken 
into account when the new labels are computed. At runtime, we 
can implement this by introducing the notion of the program 
counter (PC) of a process p and associate label ff with that 

counter. This label reflects the current execution structure of the 
process and represents the labels of the entries to conditional 
structures. The value is determined by using a simple stack-based 
mechanism. 

Whenever a conditional or loop entry point is detected the 
current label ff is pushed further on the stack and the label of a 

conditional expression c is added, resulting in a new tag f i F E .  

If a statement is conditioned on the values of n expressions 
Cl,...,c n then the labels of these locations are first combined 

E l ~ ... ~ E n and the end result is combined with ft. 

During all operations from the entry point the labels of the 
locations in branching expressions are updated by taking into 
account the current label of the program counter. The re-labeling 
rule introduced previously now takes the following form: 

I f  a value f ( a  I ..... an) flows to an object b and the 

current label of  the process counter is ff then the security label 

ofb  is changed to b ' := b ~ al ~ "" ~ an ~ P . 

2 In cases where we encounter back arrows in the CFG such as 
during do while loops and back-forwarding gore structures we 
also include support for back-tracking. 

The labels are updated accordingly for all memory and 
register locations that are encountered after the conditional. When 
the node is reached that, according to the CFG, is the immediate 
forward dominator of the conditional branch node, the current PC 
label is popped off the stack and hence its value is restored to 
what it was before the conditional was encountered. 

Consider the following simple example: 
i f  (x==7) y = z;  during the assignment to y in the 
conditional branch, the memory location of y will get the label of 
z together with the program counter label that in this case includes 
(amongst possible others depending upon the structure and flow 
of the program) the tag of x. By doing this, the tag of y reflects 
both the direct assignment to it from z but also the implicit flow 
from the conditional on x. 

Figure 2 shows the CFG corresponding to this simple 
example. The machine code basic block BBi contains the 
instructions that cause the conditional branch based on the value 
ofx. BBj conta/ns the machine instructions for the assignment to y 
and BBk contains the code directly after the end of the if- 
conditional. 

BBi 

pc . pc $ bbi 

~ =  pc~bb~ 

Figure 2. The program counter label. 

The described program counter approach is similar to the 
theoretical model of data mark machine proposed by Fanton [10]. 
It takes into account the labels of locations in the comparisons and 
correctly propagates them across all operations that arc executed 
after the comparison until the exit is reached. However, the 
approach does not capture indirect implicit flows that occur by not 
executing conditional branches. This is due to the fact that at run 
time the knowledge of the expressions that are not executed is 
losL 

Going back to the example introduced at the start of the 
section 3.1 we can see that based on this approach after entering 
the first conditional the program counter label is updated to 
p = a (we assume it's empty when this code first starts). If 

a = 0 ,  then the first branch is executed and the label of c is 
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updated correctly: F' = F ~ ~ .  However, during the next branch, 

if c equals 0 then b's value becomes 1. If c does not equal 0 then 
no assignment happens. Thus, in this case the value of a is leaked 
through b, but its label still remains the same. 

A potential solution is to revert to a more restrictive 
approach, as taken by the compile-time type-checking systems, as 
well as Aries project [6]. In this approach a w r i t e  to a particular 
location within a branch is completely disallowed when the label 
associated with that location is equal or less restrictive than the 
label of the PC during that branch. This ensures that nothing is 
written within the branch that could not be written to outside of 
the branch - the fact that the branch is entered or not entered then 
gives no information away. In doing so, of course, one has to 
decide how to communicate the failure of the w r i t e  operation so 
that no information is leaked through this communication as well. 

We believe that taking the overly restrictive approach would 
preclude many applications from executing correctly, and might 
potentially still leak some information through other covert 
channels such as debugging errors, or failures to terminate. 
Therefore, in practice when running real applications it is 
acceptable to ignore certain information leaks. We discuss this 
and other covert channels in section '7. 

4,  I N T E R P R E T I N G  T H E  M O D E L  
As we have previously stated, our aim is to show that it 

should be possible to build a security system in practice that will 
support dynamic label binding and possible enforcement of 
information flow policies based on these labels. The resulting 
system has also to satisfy the pragmatic need to work on real 
applications without access to the source code of those 
applications or dependence on the code certification prior to 
execution, and to demonstrate an acceptable performance. 

In attempting to build this system, we found that the primary 
difficulty with run time information flow analysis lies in detecting 
and monitoring all information flow causing operations in a 
running process. 

a targeted process and can halt it whenever it is about to violate a 
defined security policy. Most operating systems already fulfill the 
function of a reference monitor for such purposes as access 
control. For example, when a process attempts to access a file, an 
operating system intervenes to check that the process has 
necessary access rights before it is granted access. 

The range of security properties that can be enforced using a 
reference monitor implemented in the operating system are 
limited, however, to the amount of events that are visible and 
traceable at this level while processes are running. Rules that 
govern system calls, for example, are feasible because the 
operating system can easily monitor them. But system calls are not 
used for all operations carried out by a process. When operations 
are executed within the processes own address space the operating 
system has no control over them. 

Whilst it is true that all system resource access and all input 
and output operations that a process performs have to go through 
the operating system via the system call interface, any 
manipulation and copying of objects within a process's own 
memory space is largely invisible to the operating system. This 
leads to blind spots in the process behavior that cannot be 
monitored. It is possible to provide limited software watch points 
at the kernel level using a technique of memory watch point 
trisgers. In this approach the features in the machine CPU 
hardware are exploited to set watch points over arbitrary memory 
locations and to trigger a trap on reads or writes to those areas that 
the OS can intercept. However, typically hardware only supports a 
few watch points of limited address range and these are shared 

3 
across all processes. 

An alternative to placing the monitoring mechanisms in the 
operating system is to merge them with the targeted application. 
The technique of machine code re-writing can be used to modify 
the original the machine code of an application / process either on 
the fly via dynamic instruction stream modification or statically by 
modifying the application object code before runtime. The SASI 
[27] prototype demonstrates the latter approach by embedding 
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Figure 3. The security architecture o f  the  proposed 
implementation system. 

A desirable proposition is to use the operating system where 
processes run as a reference monitor to apply object re-labeling 
rules and to potentially enforce policies that would be associated 
with the labels. A reference monitor can observe the execution of 

3 IA-32 is fairly basic in this respect; IA-64 and UtraSpare offer 
much better support. 
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security automatons between each of the original machine code 
instructions of an application. 

Dynamic labeling, however, can only be accurately 
interpreted and tracked at runtime, thus influencing us to choose 
the dynamic instruction stream modification approach. At the 
individual machine code instruction level we do have access to 
the points where a process reads and writes memory locations and 
registers and where we can insert additional instructions for 
propagating the labels. The dynamic instruction stream 
modification has been successfully used in the past for dynamic 
optimization [2, 20] and to provide virtualization support on non- 
naturally virtualizable platforms (VMware / Plex86 for IA-32 
[28]). 

5. PROPOSED IMPLEMENTATION 
FRAMEWORK 

The basic security architecture of our implementation 
prototype where dynamic instruction stream modification is used 
to track information flows and to compute the labels is outlined in 
figure 2. In this framework it is possible to associate a security 
label with each byte of data in the various data sources on the 
system, such as files or network packets. When a process copies 
some data from a data source into its memory space, by doing a 
r e a d  system call for example, the label is bound to the copy of 
the data item that is now within the memory space of that process. 
As the process manipulates the data around its memory space the 
corresponding labels are also copied and combined based on the 
dynamic re-labeling rule defined previously. 

5.1 Re-labeling with Machine Code Re- 
writing 

The main component in this system is the tagging/modaling 
module responsible for making sure labels are injected into the 
memory space of a process and to also ensure that they are 
propagated around the address space of that process as that 
process uses the data. 

At process load time we allocate, in shared memory, a sparse 
array that can potentially hold a label value a for each addressable 
byte in the memory regions assigned to that process. We also label 
registers so that a copy from one memory location to another 
location via the use of an intermediate register (as is often the 
case) also maintains the correct label. 

The labels are updated only at the point where a process tries 
to export data from its address space, e.g. via a 'write' system call. 
Between the system calls we record what memory and register 
writes a process makes, and based on this we model the effect of 
those writes at a system call boundary - this allows us to lessen 
some of the performance impact. 

Figure 4 shows a more detailed low-level architecture for 
machine code instrumentation and for computation of labels. As 
described previously, before run-time a process has to be statically 
instrumented so that it produces a trace of any memory and 
register write operations it carries out This also informs what the 
program counter label should be as the write operations are 
carried out. 

4 

~l~f/mkmmm 

! 
2 

Figure 4. A low-level architecture 

At runtime, the instrumented machine code is run under the 
dynamic instruction stream modification framework 

(DynamoRIO) s. This again involves re-writing the machine code 
but this time it is done dynamically, in order to ensure that the 
instrumentations are not bypassed. 

When a process reads bytes from a data source (such as a 
file) into its address space via a system call, we add machine code 
to make it run an additional system call to determine the kernel 
maintained label values for those particular bytes in the data 
source. These label values are loaded into the sparse array for the 
locations within the process address space that the data was read 
into. 

At a certain point, usually at the time of a system call, the 
tagging/modeling module is invoked to update the label values of 
the memory and register locations within the process. Given 
previously known labels for these locations and given a trace of 
machine code instructions (such as mov B,A) that cause a write 
from one area of the process address space (or register) to another 
area of the address space (or register) as well as instructions (such 
as add or sub)  that cause data to be combined we are able to 
compute the new label values according to the previously 
described re-labeling rules. 

When a process attempts to write data outside of its address 
space (via a system call) we re-write the operation so that the 
process first makes a system call to the kernel passing the label 
values of the data it is trying to write. At this point the kernel can 
be instrumented to check whether any particular policy, such as 
access control, applies on the passed label values. In cases when 
the policy prohibits writes to the intended destination the original 
system call is skipped over and an error call is returned to the 
process. 

4 Currently label values are 1 byte long. 
s Readers are directed to [13] for full description of the 

DynamoRIO system. 
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5.2 Kernel Support 
In this framework, the mechanisms of application level 

instruction stream re-writing are combined with enhanced 
operating system kernel features to provide the necessary 
functionality. 

One of the mechanisms that are provided at the kernel level 
assures initial data source labeling. The functionality used is 
similar to that already provided in implementations of multilevel 
security (MLS) systems that support file and network labeling 
[18]. In our case the mechanisms are able to provide support for 
individual labels per byte within data objects such as files. Our 
current prototype of data source labeling is based on the Linux 
operating system. For file system objects we have added label 
structures to the in-memory l-node kernel structures. For 
persistence and recovery there is a non-visible backing file stored 
on disk. We have not needed to change the on disk I-node 
structure - currently we support EFS2 and EFS3 file systems. The 
curremt prototype requires modifications to the Linux kernel 
source, but we believe that by making use of the Linux Security 
Module (LSM) [30] interface we can avoid the need for kernel 
source modifications in the future. 

6.  D I S C U S S I O N  

6 .1  S e c u r i t y  Policies 
The system as presented in the previous sections has no 

built-in security policy model. Having a general-purpose 
information flow tracking mechanism is advantageous as it can be 
re-used to enforce different types of security policies. 

The policies should dictate what information protection rules 
govern the labeled data. These rules are then applied on the 
system call as the process tries to transfer the labeled data out of 
its address space. Based on the label value and the applicable 
policy the operation is either permitted or denied. Having tracked 
the information flow whilst the application executes, the tagging 
module is able to communicate the accurate information label to 
the OS. 

The label type and combining function, such as " ~ "  
operator, should also be defined as part of the security policy 
model. For example, a user could apply a Bell and LaPadula style 
policy and then the label and function would define a lattice. This 
requires the operator to be defined as a comparison function that 
is reflexive, transitive, and anti-symmetric. 

McHugh and Good [21] have taken a similar general-purpose 
approach by creating a simple information flow tool that can be 
used to verify information flow properties. However, their tool 
works only on the programs written in Gypsy programming 
language. In our approach we have gone one step further in 
attempting to create the tool for analysis of an arbitrary machine 
code without requiring changes at the programming language 
level. 

6.2 Covert C h a n n e l s  
The dynamic label binding approach may not be sufficient to 

guarantee security of data in certain cases with very strong 
requirements, as it can be exploited for covert channels. We 
believe, that in order for a runtime information flow tracking 
mechanism to be used in a computer system to protect the 

information, the strength of guarantee must be sufficient to 
counter perceived threats. Therefore, the justification for ignoring 
certain potential information leaks must be a risk assessment, 
which has determined that the vulnerabilities present an 
acceptable risk. In many commercial organizations the acceptable 
risk value might be very different from what is acceptable in 
military environments, for example. As John McHugh correctly 
observed [22] "with a few exceptions, mostly dealing with small, 
very sensitive, information objects (such as long lived encryption 
keys), small information leakages are not of much concern today; 
after all, most systems are so vulnerable that it is far easier to take 
ownership of the system via a simple exploit than it is to attempt 
to signal information through the protection state". For many 
computations, some amount of information leakage is also both 
necessary and acceptable. For other computations, mostly 
operating on a highly sensitive data, information theory 
techniques can be used to estimate the amount of the information 
that would be leaked [7]. 

7.  C O N C L U S I O N S  
In this paper we have described a novel approach to run-time 

information flow mtonitoring within applications. This approach 
is based on dynamic label binding where the security label of the 
object is updated in the course of execution and varies dependent 
on its contents. We also propose an implementation approach that 
uses machine code instruction stream modification to track 
individual data movements and manipulations within the address 
space of an application. 

In this approach the information is considered to be leaked 
only when it leaves the system where process runs, through write 
system call for example. The mere manipulation of data during the 
process execution is not considered to be release of information. 
The defined re-labeling rule ensures that as information flows the 
labels on data are updated to correctly reflect these flows. 
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