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ABSTRACT 
The ability to analyze and modify binaries is often very useful from 
a security viewpoint. Security operations one would like to per- 
form on binaries include the ability to extract models of program 
behavior and insert inline reference monitors. Unfortunately, the 
existing manner in which binary code is packaged prevents even 
the simplest of analyses, such as distinguishing code from data, 
from succeeding 100 percent of the time, In this paper, we propose 
SELE a security-enhanced ELF (Executable and Linking Format), 
which is simply ELF with an extra section added. The extra sec- 
tion contains information about (among other things) the address, 
size, and alignment requirements of each code and static data item 
in the program. This information is somewhat similar to traditional 
debugging information, but contains additional information specif- 
ically needed for binary analysis that debugging information lacks. 
It is also smaller, compatible with optimization, and less likely to 
facilitate reverse engineering, which we believe makes it practical 
for use with commercial software products. SELF approach has 
three key benefits. First, the information for the extra section is 
easy for compilers to provide, so little work is required on behalf 
of compiler vendors. Second, the extra section is ignored by de- 
fault, so SELF binaries will run perfectly on all systems, includ- 
ing ones not interested in leveraging the extra information. Thud, 
the extra section provides sufficient information to perform many 
security-related operations on the binary code. We believe SELF 
to be a practical approach, allowing many security analyses to be 
performed while not requiring major changes to the existing com- 
piler infrastructure. An application example of the utility of SELF 
to perform address obfuscation (in which the addresses of all code 
and data items are randomized to defeat memory-error exploits) is 
presented. 

1. INTRODUCTION 
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Attacks which exploit programming errors, such as buffer overflow 
and format-string attacks, are one of today's most serious security 
threats. Security advisories from the CERT coordination center in- 
dicate that such exploits constitute a majority of the attacks on the 
Intemet, and the number of these attacks continues to grow rapidly. 
Several techniques have been developed to address the problem of 
finding vulnerabilities in systems and ensuring the safe execution 
thereof. 

We briefly describe the most common techniques below: 

• Run time monitoring. In this approach, whenever an oper- 
ation is performed, an interceptor is invoked which decides 
whether the particular operation is safe or not. The intercep- 
tor looks at the run-time state of the system and blocks any 
unsafe operation. Examples of this include modem intrusion 
detection systems, the Java runtime system, inline reference 
monitors, and so on. 

• Static analysis. The program of interest is statically ana- 
lyzed by a system which checks the program for security 
vulnerabilities before it is executed. Once certified by the 
analyzer, the code is usually subjected to no run-time check- 
ing, and is guaranteed to be safe. Proof-carrying code [30] 
and the JVM byte-code verifier adopt this approach to verify 
memory-safety properties. 

• Program transformation. In this approach, an application 
to be executed is transformed into a program which has in- 
lined security checks. Naccio [16] and SASI [14] use code 
transformation to ensure security. 

All these techniques have been used successfully to ensure secure 
execution of programs. However, all of them require access to the 
program's source code, with the lone exception of SASI, which is 
dependent on the code-generation strategy of a particular compiler 
(gcc). Having access to source code is not practical for consumers 
of commercial applications outside of the open-source community, 
yet these are the largest group of users, and hence any security 
paradigm which ignores them is bound to fail. What is needed is 
the ability to take the security techniques mentioned above and em- 
laower users to apply them directly to binary code in a turnkey fash- 
Ion. Furthermore, the new approach must not overburden producers 
of code with a host of restrictions and/or difficult tasks which must 
be performed, or it is unlikely to be adopted. Finally, the new ap- 
proach must be sufficiently powerful enough to provide the ability 
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to perform many useful security-related operations, such as the in- 
sertion of monitor code. 

Unfortunately, existing binary formats offer very little support for 
analysis (and modification) for security vulnerabilities. Although 
binary files typically have less program structural information than 
source programs, this does not preclude binaries from being suc- 
cessfully analyzed for security vulnerabilities. For any kind of 
analysis or transfo~ation on binaries, it is important to be able 
to retrieve information from binaries and also to manipulate them. 
However, many practical difficulties arise in statically analyzing a 
binary file. 

1.1 Problems with existing formats 
Some of the difficulties encountered with current binary formats 
are :  

• Distinguishing code from data: The fundamental problem in 
decoding machine instructions is that of distinguishing code 
(i.e, instructions) from data within an executable. Machine 
code in the text segment often contains data embedded be- 
tween machine instructions. For example, in the C program- 
ming language, typical compilers generate code for c a se  
statements as an indirect jump to an address loaded from 
some location in a jump table. This table, which contains 
the target addresses, is also placed along the instructions in 
the text segment. Another example is that of the data in- 
serted in instructions for alignment purpose, presumably to 
improve instruction-fetch hit rates. Such data causes disas- 
sembly problems in architectures such as Intel x86, which 
has dense instruction set. Thus, most data bytes are likely 
to appear as valid beginning bytes of instructions. This is 
a major source of problem for disassembly based on linear 
sweep algorithm [37], which in the process of decoding bytes 
sequentially misinterprets the embedded data as instructions. 

• Indirect jumps/calls: One of the ways to avoid misinterpreta- 
tion of data as instructions is to use recursive traversal disas- 
sembly algorithm [37] in which disassembly starts from the 
entry point of the program, and whenever there is a jump in- 
strucrion, it continues along the control-flow successors of 
the instruction. However, this approach fails to obtain com- 
plete disassembly in presence of indirect jumps because of 
the difficulty involved in identifying the targets of the instruc- 
tions. A similar difficulty to statically predicting the targets 
of function calls is presented by indirect call instructions. 

• Variable-length instruction sets: Unlike RISC architectures, 
in which all instructions are fixed-sized, CISC architectures 
(such as x86) often have variable-length instructions, which 
complicates their disassembly. In presence of variable-length 
instructions, a single disassembly error increases the like- 
lihood of errors in disassembly of many of the subsequent 
instructions. On the other hand, a disassembly error in fixed- 
length instructions does not propagate to subsequent instruc- 
tions. 

• Distinguishing address and non-address constants: It is dif- 
ficult to distinguish between addresses and non-address con- 
stants. Making the distinction is necessary in order to per- 
form any modification to a binary which causes code or data 
to be relocated. For existing binary formats, there is no gen- 
eral mechanism to correctly make this distinction in every 
case .  

• Instructions generated through non-standard mechanisms: 
Sometimes executables contain instructions generated through 
non-standard mechanisms (such as hand-written assembly 
code). Such instruction sequences may violate high-level in- 
variants that one normally assumes hold true for compiler 
generated code. For example, in many mathematical libraries 
it not uncommon for control to branch from one function into 
middle of another, or fall through from one function into an- 
other, instead of using a function call. This kind of code 
complicates analysis of binaries considerably. 

1.2 Security applications 
The ability to perform analyses on binaries is very useful from a 
security viewpoint. Some of the applications for which binary anal- 
yses could be useful are: 

• Intrusion Detection. The ability to derive program behavior 
models from binaries is useful for detection of anomalous be- 
havior of programs. Such models have been generated from 
the program source [43], or from runtime traces [17, 39]. 
However, the application of binary analysis techniques in in- 
trusion detection has been limited due to the difficulties cited 
above. 

• Retrofitting binaries for memory safety. To prevent mem- 
ory related errors in programs written in type-unsafe lan- 
guages like C/C++, source transformation techniques have 
been proposed [31]. Similar techniques for rewriting bina- 
ries are desirable. 

• Static verification of binaries. Binaries could be statically 
checked for temporal safety properties. In fact, proofs of 
such temporal safety properties (and memory and type safety 
properties) could be generated if a sound analyses of binaries 
is possible. 

From this discussion, it is clear that the analysis of binaries is 
needed for various security analyses, however, in their current form 
it is not practical. Hence, there is a clear need for a mechanism 
that can address the above-mentioned problems and enable a sound 
analysis of binaries. However, proposing a standard that is radi- 
cally different from existing standards will only make the job of 
transitioning to the new standard difficult, and unlikely to have a 
broad impact. 

Several attempts have been made to perform analysis and transfer- 
marion of binaries (see Section 2 for more details). Unfortunately, 
due to the difficulties involved, the resulting analyses are incom- 
plete and do not provide the strong guarantees required for security. 

To summarize, the ideal standard for a security-enhanced binary 
framework must possess the following properties: 

• Suitability for analyses. It should clearly address all the prob- 
lems listed above, thereby making the binary suitable for 
sound analysis, such as generation of models of security rel- 
evant behavior of the code for static chccking. 

• Compatibility with existing formats. It should be scamlessly 
inter-operable with existing binary standards. This way the 
format will allow an easy and gradual migration from exist- 
ing standards. 
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• Less stress on existing compiler infrastructure. The new for- 
mat should introduce very little work on the part of compiler 
infrastructure so that it is easily adaptable by existing com- 
piler developers. 

The standard we propose in this paper is a first-step towards achiev- 
ing these objectives. 

2. RELATED WORK 
There has also been a significant amount of work done in the area 
of tools to support binary editing. Of these, QPT [25], alto [29] and 
OM [42] and EEL [24] target RISC architectures. PLTO [12], and 
LEEL [46] target x86 ELF binaries. For the Windows environment, 
Etch [36] is a tool that targets x86 binaries and Vulcan [13] works 
with x86, IA64 and MSIL binaries. 

Dyninst [4] supports analysis and instrumentation of code at run- 
time. UQBT [11] is an architecture-independent binary translation 
framework. Unfortunately, neither of these tools can distinguish 
code from data in all cases, so they are not guaranteed to work for 
every binary. This latter restriction applies to all the existing work, 
in particular for the xg6 architecture, it is not possible to distinguish 
code from data unless the compiler obeys certain code generation 
restrictions, or provides some auxiliary information. 

Typed Assembly Language (TAL) [27] adds type annotations and 
typing rules to assembly language. While TAL is an extensive body 
of work that produces verifiably safe code, it is an entirely different 
target platform, that requires whole scale rewriting of existing com- 
piler infrastructure. On the other hand, we target existing systems 
and target platforms to trade-off between practicality and strong 
verifiable guarantees. 

There are also a number of other approaches to preventing low level 
memory related programming error exploits. Static analysis has 
been used to detect memory errors at compile-time. Work in this 
area includes Splint [23, 15], CQual [41] and BOON [44]. Most of 
these techniques are limited by the availability of source code for 
the programs that are analyzed. 

In addition, static analysis and verification have been used to prove 
safety properties of programs. Proof carrying code [30], MOPS [6], 
and metacompilation [20] are all examples of techniques that en- 
sure program properties through static analysis and verification. 
Most of these approaches depend on availability of source code 
or using a type safe language. Model carrying code [40] could be 
used to verify program properties by generating models from bi- 
naries, but the accuracy of such models depends very much on the 
auxiliary information that is provided along with SELE 

Runtime checking uses inserted checks to detect memory errors be- 
fore they can be exploited. Work in this area for low level memory 
safety includes bcc [8], Purify [21], Safe-C [2], CCured [31] and 
runtime type checking [26]. Also in this category is the CodeCen- 
ter interpretive debugger [22]. These approaches all introduce high 
runtime overheads of at least 100%, making them useful for debug- 
ging and testing, but not for incorporating into production binary 
releases. 

In addition, runtime monitoring for safety has been used to en- 
sure access control, resource access and temporal safety properties. 
Java [19], Naccio [16], and SASI [14] are all examples of systems 

that perform runtime checks. SASI operates on binaries and per- 
forms code transformation. However, as mentioned earlier, its suc- 
cess is largely dependent on the presence of invariants obeyed by 
the code generation strategy of the g c c  compiler. The modifica- 
tions we suggest to ELF would be beneficial to SASI and similar 
techniques, as they could leverage the information in the extra sec- 
tion while performing the analysis for the transformation. 

3. SELF - AN ENHANCEMENT TO ELF 
In this section, we describe the enhancement to the ELF binary 
file format which will enable the analysis and transformation of 
binary code. The extension is simple; yet, it enables a wide range 
of sound program analyses to be performed simply by addressing 
the drawbacks that were presented in Section 1. 

Our discussion is centered around the ELF file format and we shall 
exclusively describe it in the context of the x86 architecture. How- 
ever, the general pnnciples behind this discussion are applicable to 
other formats and architectures. 

Before describing our extension, we shall briefly describe the ELF 
format. (See [32] for a detailed discussion.) 

3.1 ELF format 
ELF files fall into the following three types: 

Executable files containing code and data suitable for execu- 
tion. This specifies the memory layout of the process image 
of program. 

Relocatable (object)files containing code and data suitable 
for linking with other object files to create an executable or a 
shared object file. 

Shared object files (shared library) containing code and data 
suitable for the link editor (2d) at the link-time and the dy- 
namic linker (id. so) at runtime. 

A binary file typically contains various headers that describe the 
organization of the file, and a number of sections which hold vari- 
ous information about the program such as instructions, data, read- 
only-data, symbol table, relocation tables and so on. 

Executable and shared object files (as shown in the execution view 
of Figure 1) are used to build a process image during execution. 
These files must have aprogram header table, which is an array of 
structures, each describing a segment or other information needed 
to prepare the program for execution. An object fde segment con- 
tains one or more sections. Typically, a program has two segments: 
(1) a code segment comprised of sections such a s .  t e x t  (instruc- 
tions) and . r o d a  t a  (read-only data) (2) a data segment holding 
sections such as . d a t a  (initialized data) and . b s s  (uninitialized 
data). The code segment is mapped into virtual memory as a read- 
only and executable segment so that multiple processes can use the 
code. The data segment has both read and write permission and is 
mapped exclusively for each process into the address space of that 
process. 

A relocatable file (as shown in the linking view of Figure 1) does 
not need a program header table as the file is not used for program 
execution. A relocatable file has sufficient relocation information 
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in order to link with other similar relocatable files. Also, every relo- 
eatable file must have a section header table containing information 
about the various sections in the file. 

By default, an ELF executable file or a shared object file does 
not contain relocation information because it is not needed by the 
loader to map the program into process memory. Relocation infor- 
marion identifies address dependent byte-streams in the binary that 
need modification (relocation) when the linker re-maps the binary 
to different addresses. A single entry in a relocation table usually 
contains the following: (1) an offset corresponding to either the 
byte-offset from the beginning of the section in a relocatable file, or 
the virtual address of the storage unit in an executable file, and (2) 
information about the type of relocation (which is processor spe- 
cific) and symbol table index with respect to which the relocation 
will be applied. For example, a call instruction's relocation entry 
would hold the symbol table index of the function being called. 

Many binary tools rely on relocation information for analysis and 
transformation of binaries. Transformation of a binary file often 
requires modifications in which the subsequences of the machine 
code are moved around. When this is done, the data referenced 
by relocation entries must be updated to reflect the new position 
of corresponding code in the executable• In the absence of reloca- 
tion information, binary tools resort to nontrivial program analysis 
techniques [24, 11, 46, 34]• These techniques are inadequate and 
hence the tools adopt conservative strategies, thereby restricting the 
tools' efficacy in performing various transformations. Also, due the 
fact that relocation information is not required for execution, many 
linkers do not have option flags to retain the information in the 
executables. In addition, even the presence of relocation informa- 
tion does not help in certain kinds of binary transformations. In 
particular, the relocation table does not give sufficient information 
about the data and instructions used in the machine code. Hence, 
certain transformations which require complete disassembly of in- 
structions and modification of data are not possible. Our SELF 
extension is specifically intended to deal with this problem. The 
exension will reside in a section named,  s e l  f which will be indi- 
cated by the section head table in both execution and linking views 
as shown the Figure 1. 

Code segment I 

Data segment I 

Other information { 
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Program header table 
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a typical SELF object file. 

3.2 SELF extension 
The purpose of the SELF extension is to provide additional infor- 
mation about instructions and data used in various sections. As 
discussed before, much of the information is available in relocation 
tables and symbol table. An object file compiled with debug flag 
option, contains debug information which can also provide useful 
information such as type and size of data, addresses of functions, 
etc. However, in a typical software distribution model, binary files 
are compiled with optimization which renders debug information 
incorrect. Also, binaries are stripped, which means that they do not 
have a symbol table. Here, the objective is to distribute shm and 
efficient binaries containing no superfluous information and which 
are not easy to reverse engineeer. The SELF extenstion is designed 
with these objectives in mind. It concisely captures only the rel- 
evant information required to perform post-link-time transforma- 
tions of binary code. This information is described in the form of a 
table of memory block descriptors, A memory block is a contigu- 
ous sequence of bytes within a program's memory. Each memory 
block descriptor has four fields, as shown in Figure 2. The fields 
are interpreted as follows: 

1. Memory Tag - type of the block of memory. This includes 
various kinds of data and code and their pointers. Also in- 
cludes a bit which indicated whether or not it is safe to relo- 
cate the block. 

2. Address - the virtual address of a block of memory within 
the data or code of the shared object/executable. This field is 
meaningful only for executable or shared object files where 
locations of code and data of the program have been final- 
ized. 

3. Alignment - this indicates alignment constraints for certain 
type of data or instructions. 

4. W~dth - size of data for the entries that correspond to certain 
data related memory tag. 

During code generation, the compiler adds entries to the table de- 
pending upon the memory tag of data or instructions. The memory 
tags fall into the following categories: 
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I Tag I Address I Alignment [ Width I 

Field Meaning 
Tag Summary of block contents 
Address Starting address of block 
Alignment Alignment requirements of block 
Width Block size in bytes 

Figure 2: Layout and interpretation of a SELF memory block descriptor. 

• Data stored between instructions. This memory tag corre- 
sponds to data used in the code, either in the form of jump 
tables or padding bytes which are used to enforce alignment 
restrictions. This helps to identify and disassemble all of the 
machine instructions in the program. 

• Code address. Code addresses appear in the program mainly 
in the form of operands corresponding to targets of jump or 
call instructions. The addresses could be used in instruc- 
tions either as relative displacements or as absolute values 
stored in register or memory. Also, there could be other types 
of instructions which use code addresses. Typical examples 
are (1) a PUSH instruction used to pass a constant function- 
address as a parameter to a callback function and (2) code 
addresses contained in jump tables. During transformation 
of binaries, the code at these addresses might be relocated. 
Therefore, such operands or locations must be changed to 
point to the new address. 

• Data address constant. Static data in the program is refer- 
enced using data address constants in the instructions. En- 
tries of these types are required if the data segment of the 
binary undergoes reorganization. 

• Offset from GOT (global offset table). This corresponds to 
the constant offsets which are used to access static data in 
position independent code (PIC). Such offsets will be modi- 
fied if the GOT or the data is relocated. 

• Offset used to obtain base address o f  GOT. This pertains 
mainly to x86-specific position independent code generated 
for shared objects. For this purpose, the code is generated 
in such a way that the ~EBX register is assigned the value of 
the GOT's base address. During the generation of this code, 
a constant value is used which corresponds to the relative 
offset of the program counter from the GOT. This constant 
requires modification if the GOT or the code containing the 
program counter undergoes relocation during binary trans- 
formation. 

• PLT(procedure linkage table) entry address. In an executable 
or a shared library, a position-independent function call (e.g., 
a shared library function) is directed to a PLT entry. The PLT 
entry in turn redirects it to its absolute location, which is re- 
solved by dynamic linker at run time. Code addresses associ- 
ated with these function calls need different memory tags as 
some binary transformation may require relocation of only 
the PLT. 

• Offset from frame pointer. This memory tag identifies the lo- 
cations of constant offsets from the frame pointer (~EBP) that 
are used by instructions which access stack-allocated objects. 
These constants have to be changed if there is a binary trans- 
formation that relocates stack-allocated objects. 

• Routine entry point. This memory tag identifies the entry 
points of all the routines in the code segment. 

• Stack data. Stack data is mainly associated with the local 
variables of functions in the program. Memory for such data 
is allocated on the stack dynamically during function invoca- 
tions. Therefore, the virtual memory addresses of stack data 
can not be determined statically. However, each stack datum 
is allocated on the stack at a fixed constant negative offset 
from the flame pointer.The address field in an entry of this 
tag contains this offset instead of the virtual memory address. 

• Static data. Static data corresponds to different storage units 
allocated in the code segment for global or static variables 
used by the program. This memory tag is used to identify the 
locations of each such storage unit in the code segment. 

Apart from these, there are other memory locations which contain 
data required for dynamic linking. The entries of these types are 
retained in the binary file and hence we do not require to save them 
separately. The above types are all that is needed to effectively 
disassemble the executable and thereby make program analysis and 
transformation of the executable possible. 

For static or stack-allocated data, additional information is avail- 
able through the fields alignment and width of the entries. A com- 
piler generates the memory layout of program data depending on 
their types. Data could either have scalar or aggregate types. A 
datum of a scalar type holds a single value, such as an integer, a 
character, a float value, etc. An aggregate type, such as an array, 
structure, or union, consists of one or more scalar data type ob- 
jects. The ABI of a processor architecture specifies different align- 
ment constraints for different data types in order to access the data 
in an optimum way. Scalar types align according to their natural 
architectural alignment, e.g., in the Intel IA-32 architecture, the in- 
teger type requires word (4 byte) alignment. The alignment of an 
aggregate type depends on how much space it occupies and how 
efficiently the processor can access the individual scalar members 
objects within it. The data entries hold alignment and width of only 
the scalar and aggregate objects and not for the members inside the 
aggregate objects. Thus, relocation can be performed only on the 
scalar or on the aggregate objects as a whole. 

4. SELF GENERATION 
Figure 3 shows the distribution model for SELF binaries. Notice 
that there are two paths in the distribution mechanism. The shorter 
path represents the case where a modified compiler is used to gen- 
erate SELF binaries at compile-time, directly from the source code. 
The longer path refers to the binaries generated through a standard 
(i.e., not modified) compiler, as occurs when a provider is unable 
or unwilling to use an augmented compiler, and the source code 
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Figure 3: Model for the distribution of SELF binaries. 

is not available at the consumer end. In this case, binary analysis 
techniques are used to generate the SELF section. There are three 
primary reasons for the dual-path approach: 

• It allows externally supplied and pre-existing legacy binaries 
to be supported to as great a degree as possible. 

• It allows for complete support of SELF-compiled binaries. 

• The SELF-analysis and generation is decoupled from the bi- 
nary transformation, resulting in better performance in cases 
where programs are transformed multiple times (e.g., as is 
the case with address obfuscation, discussed in Section 5). 

The rest of this section describes these two paths in greater detail. 

repeating this process until the transitive closure is reached. As 
mentioned earlier, on the x86 architecture this analysis is actually 
somewhat difficult, due to primarily to indirect calls and jumps, 
the use of runtime-generated code on the stack, and variable-length 
instructions. 

One tool which already does a fairly good job of distinguishing 
code from data is LEEL [46], although there is still some room for 
improvement. In particular, in cases where some branches and/or 
entry points are uncertain, the set of feasible disassemblies can be 
computed (i.e., those disassemblies which don't branch out of the 
address space or collide with a known data value). If more than 
one disassembly is feasible, then each byte can be marked based on 
how it is utilized in each disassembly, according to the following 
rules: 

4.1 Compile-time SELF generation 
Generating SELF from within a compiler is a straightforward pro- 
cess, as most of the information required can be gleaned directly 
from the compiler's internal symbol tables. Also required will be 
a . r e ] . . s e l £  section, which will contain the relocation entries 
used by the linker to update t he .  se] .  f section when the program 
layout is finalized. A good implementation strategy for adding a 
SELF generation option to a typical compiler is to modify the code 
used to generate debugging information, since there is much over- 
lap between the debugging information and SELF. The .  s e l f  sec- 
tion contents can be viewed as a copy of the debugging informa- 
tion with unneeded information removed, such as variable names 
and types, and extra information added, such as information about 
pointers embedded within machine instructions. 

• A byte is definitely code if it can be executed under every 
feasible disassembly. 

• A byte is definitely data if it cannot be executed under every 
feasible disassembly. 

• A byte is indeterminate (either data or code) if exactly one 
of the above two conditions does not hold. 

This approach yields the most information possible without making 
any assumptions about the behavior of the code generator, given the 
difficulties inherent in disassembling x86 machine code. 

4.2 Post-compilation SELF generation 
Post-compilation SELF generation poses a much greater challenge, 
since the binary file must be analyzed. In particular, the analysis 
must identify the following: 

• Data embedded within the code segment 

• Pointer values (within both the data and code segments) 

• The size of each data object 

4.2.1 Identifying data within the code segment 
Data embedded within the code segment is identified by starting 
with a set of known instructions (i.e., the set of known entry points), 
analyzing each known instruction to find its set of successor(s), and 

4.2.2 Identifying pointer values 
Identifying pointer values within the code and data segments is 
done by flow analysis. Instructions which dereference pointer val- 
ues are traced backwards to discover the origin of the pointer value. 
This process can essentially be viewed as a type inference problem. 
Values which loaded from code or text segment and then used as 
pointers along every execution path can be inferred to definitely 
be pointers; and similarly values which are used solely as data 
along every execution path can be marked as definitely data. Val- 
ues which propagate only through static memory and registers are 
easy to correctly type using this approach; values which propagate 
through the stack are slightly harder; and values which propagate 
through the heap are rather difficult. The end result of the analysis 
is that every data value is typed as being either a definite pointer, 
definite scalar, or indeterminate/both. 
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4.2.3 Identifying data size 
Upper bounds on the size of each data object are computed by ana- 
lyzing the instructions which access them. The challenge is to dis- 
tinguish structure fields from atomic variables. This can be done 
by first analyzing pointer arguments in a call-path-insensitive man- 
ner to all routines to determine what range of offsets are accessed 
via the pointer. The second step is to use the function argument 
information in an analysis to determine the potential range of each 
pointer. 

Values stored over the access range of a pointer are likely part of 
the same array or stracture (since it's highly unlikely that any linked 
data structures would be stored in static memory) and should not be 
relocated except as a block. On the other hand, even if a value is 
an array or structure, as long as its components are accessed indi- 
vidually and not via pointer arithmetic, then it's okay to split up the 
aggregate into separate components. The problem lies with pointer 
dereferences whose range can't be determined. To help with this, 
for each pointer dereference operation, the range of the values that 
could be accessed is expressed as one or more of the following: 

• H e a p  - the pointer points somewhere on the heap. 

• S tack  : ( l o w . . .  high) - the pointer points to some range of 
local (stack) storage. 

• S ta t i c  : ( l o w . . .  h igh)  - the pointer points to some range 
of static (data or code) storage. 

This approach allows pointers which point only to stack and/or 
heap locations to be identified and safely ignored. Greater preci- 
sion can be achieved by making the analysis call-path sensitive, 
and/or incorporate additional constraint analysis, which would al- 
low for discovering properties such as the fact that b z e r o  (x,  n) 
overwrites values from x to x + n - ! .  A reasonable compro- 
mise is to encode such constraints for known l i b c  calls such as 
bzero. 

5. EXAMPLE: ADDRESS OBFUSCATION 
Memory-error exploits, such as buffer overflow, and format-string 
attacks, are the one of the most common classes of attack on the 
Internet today. The prevalence of these attacks is due to several 
factors. First, memory errors are commonplace, due to the preva- 
lence of non-memory safe languages (primarily C and C++). These 
languages are popular to due the fine-grained control they give the 
programmer over a system's memory, but unfortunately, they also 
leave the burden of performing safety checks on pointer and ar- 
ray accesses up to the programmer. Second, memory errors such 
as unchecked array accesses often result in security vulnerabilities 
which enable an attack to be remotely launched from across a net- 
work. For example, it is common for a fixed size, stack-allocated 
buffer to be used to hold data transmitted from the network. If 
the programmer forgets to include runtime checks to ensure that 
incoming data is not larger than the array, then the incoming data 
may overflow the buffer, going past the end of the array and even- 
tually reaching the stored return address of the current function. 
This is the mechanism by which the infamous buffer overflow at- 
tack works [33, 28]. 

An observation that one can make about the buffer overflow attack 
is that it is absolute address-dependent: the attacker must know the 
absolute address at which the injected code will reside (typically 

the starting address of the buffer), and then overwrite the return 
address with the injected code address. 

An additional observation that is important to keep in mind is that 
buffer overflows are not the only possible memory-error exploit. In 
fact, there are many other possible attacks, which can target any 
region of a program's memory, and may in some cases only depend 
on the relative distances between two items. Some examples of 
these include: 

Overflowing from a buffer onto a string which will be passed 
to an e x e c v e  system call. This only depends on knowing 
the distance between the string and the buffer, and is hence 
called relative address-dependent. Such attacks could poten- 
tially occur on the stack, on the heap, or in static storage. 

Using a format-string attack to replace the address stored in 
a function pointer [38, 35]. The attack is absolute address- 
dependent, since it requires knowing the absolute address of 
the function pointer and the called code. The function pointer 
itself could be stored in any of the program's data regions, 
and the code could be library code, program code, or injected 
code. 

Due to the lack of adequate checking done by m a l l o c  on 
the validity of blocks being freed, code which frees the same 
block twice corrupts the list of free blocks maintained by 
m a l l o c .  In the case where the doubly-freed block contains 
an input buffer, this corruption can be exploited to overwrite 
an arbitrary word of memory with an arbitrary value [1]. This 
attack is absolute-address dependent. 

The point of these examples is to illustrate that the classic buffer 
overflow attack is just one of many possible attacks, and that solu- 
tions which only protect against a limited number of exploits, such 
as overflowing onto the return address [10, 9] are only partial so- 
lutions which will simply force attackers to be more resourceful in 
their search for other memory errors to exploit [5]. Instead what is 
needed is an approach which protects against the full spectrum of 
potential memory-error exploits. 

One way of achieving something close to full-spectrum protection 
from memory error exploits is to make it impossible for an at- 
tacker to reliably know any absolute or relative address within a 
program, thereby thwarting attacks which are absolute or relative 
address-dependent. That is the essential idea behind address ob- 
fuscation [3], a technique in which the memory locations of the 
data and code of a program are randomly relocated prior-to and 
during each execution. The only available option address obfusca- 
tion leaves attackers with is to make random guesses. Furthermore, 
it has been shown in [3] that address obfuscation can be imple- 
mented in a fairly lightweight manner (requiring no compiler or 
kernel modifications), while requiring an attacker to make of the 
order of 10 4 attempts before success is likely to occur, with failed 
attempts resulting in conspicuous program crashes, making intru- 
sion detection fairly easy. 

The largest obstacle towards the wide adoption of address obfus- 
cation is the difficulty of applying it to sfirink-wrapped binaries. 
Work to date has either required source code access [18], or has 
been restricted from performing the full subset of possible obfus- 
cations due to the intractability of analyzing binary code [3, 45, 
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7]. However, with SELF binaries, complete address obfuscation of 
binaries is feasible, providing the following benefits: 

All attacks which exploit memory errors will become non- 
deterministic, with a small chance of success (dependent on 
availability of virtual address space, but 1 in 104 can be eas- 
ily achieved [3]). Failed attacks will typically result in sys- 
tem crashes which, will make the attack attempts easily de- 
tectable. 

In addition to buffer overflows, attacks which target other 
regions of memory will be prevented, including many attacks 
which haven't been discovered yet, but are likely to become 
popular as the techniques which prevent the return address 
from being overwritten [ 10] become widely adopted. 

For additional security, the obfuscation can be combined with 
other runtime security techniques, such as stackguard [10]. 

The runtime overhead will be low, requiting an initial startup 
cost, but very little cost after that. In cases where the startup 
cost is unacceptable, the obfuscation can be done once stati- 
cally on the binary file, and the file can be re-obfuscated on 
a regular basis to deter attacks. 

Minimal changes to existing compilers are required. All that 
is needed is that the compiler create the extra .self section 
containing information similar to what is already provided to 
the linker; no changes in code generation are required. 

The augmented SELF binaries will execute transparently on 
systems which don't support obfuscation (since they are backwards- 
compatible with ELF binaries). 

The degree of obfuscation can be tailored according to the 
desires of the user, as can the time when the obfuscation oc- 
curs (load time or statically prior to execution). Statically 
obfuscated binaries can be re-obfuscated as often as desired. 

The obfuscation can be done by a special loader which runs 
on top of the kernel, so no kernel modifications are required; 
however, integration with the kernel is still possibility for 
those who desire it. 

The obfuscation is achieved as follows. First, the organization that 
produces and/or distributes a program (henceforth the code pro- 
ducer) uses an augmented compiler to generate a SELF binary. The 
SELF binary is now ready for widespread distribution. 

Next, the host/person using the program (henceforth referred to 
as the code consumer), downloads the SELF binary and runs it 
through the obfuscator. The obfuscator reads the . se3. f section 
and randomly relocates the program's data while inserting code to 
perform additional relocations as the program executes. The con- 
sumer may run the software through the obfuscator as often as de- 
sired to deter persistent attackers (this might be setup as a regular 
job via the c r o n  daemon). 

5.1 The obfuscator 
The obfuscator first reads the . se]_£ section. It then performs the 
following transformations: 

Stack base address randomization. This transformation is 
done by inserting code before ma±n is called which subtracts 
a large random value from the stack pointer at runtime. This 
consumes virtual address space, but not much actual mem- 
ory. Additionally, the inserted code pushes a read-only blank 
page onto the stack in order to prevent very large buffer over- 
flows (see [3] for details as to why such overflows are a con- 
cem). 

Stack relative address randomization. This transformation is 
done by increasing the size of each stack frame (by simply 
changing the constant added to the stack pointer in the func- 
tion preamble), then randomly moving all variables within 
the frame. Furthermore, arrays are located to addresses higher 
than non-arrays, to reduce the number of potential targets of 
an overflow. All instructions which fetch and store values to 
the stack are patched to reflect the new offsets of each vari- 
able within the frame. 

Code base address randomization. This transformation is 
done by changing the virtual address at which the code is 
loaded, then relocating all absolute addresses within the code 
to reflect the new base address. 

Data address randomization. This transformation is done by 
changing the address at which the the data segment is loaded, 
then randomly reordering the variables, and finally introduc- 
ing a random amount of padding between variables. All in- 
structions which access a static datum are patched to use the 
new address of that datum. 

Heap address randomization. This transformation is achieved 
as a side-effect of the data segment base address randomiza- 
tion, since the heap's starting address follows the end of data 
segment on Linux systems. Additionally, code is inserted to 
increase heap allocation requests by a small random amount, 
thereby randomizing relative addresses within the heap. 

The effect of these transformations is to make the absolute address 
of all code and data objects unpredictable. Furthermore, the rela- 
tive distance between any two data items is unpredictable as well, 
regardless of which region the data is stored in. As explained ear- 
lier in this section, the unpredictability provides protection from 
absolute- or relative-address dependent attacks, such as buffer over- 
flows. 

5.2 Other techniques 
In addition to address obfuscation, a number of other analyses and 
transformations are possible with SELF binaries. These include the 
ability to extract control-flow graphs, call graphs and other models 
of program behavior; the ability to correctly insert inline reference 
monitors, such as monitors which use a finite-state automaton to 
enforce restrictions on temporal orderings of system calls; the abil- 
ity to perform post-compilation optimizafions; and translation into 
other languages/architectures, such as converting x8 6 code into 
SPARC code. All of these techniques require the ability to dis- 
finguish a program's code from its data, and hence cannot be done 
soundly on ordinary binary files, but with SELF binaries they are 
tractable. 

6. CONCLUSION 
As we have shown, SELF is a relatively simple extension to the 
existing ELF binary distribution format which enables a number of 
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security techniques to be performed in the absence of source code. 
Previous work on program security has almost exclusively focused 
on the analysis and transformation of  program source code; this has 
been due to the impossibility of  soundly analyzing existing binary 
file formats. Rather than accepting this limitation, SELF provides 
the information required to apply many of the existing techniques 
to binaries, thereby allowing them to have a much broader impact. 
Our hope is that this approach will allow advanced language-based 
security techniques to be applied in the real-world user environ- 
ment, where source code is unavailable. 
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