
Securing Nomads: 
The Case for Quarantine, Examination, and 

Decontamination 
Kevin Eusticet Dr. Leonard Kleinrock Shane Markstrum 

kfe @cs.uda.edu Ik@cs.uda.edu smarkstr@cs.ucla.edu 

Dr. Gerald Popek 
popek@cs.uda.edu 

V. Ramalqishna 
vrama@cs.uda.edu 

Dr. Peter Reiher 
reiher@cs.uda.edu 

Laboratory  f o r A d v a n c e d  Sys tems  Research 

C o m p u t e r  Sc ience  Depar tmen t  

Un ivers i ty  o f  Cal i fomia, Los  A n g e l e s  
Los  Ange les ,  CA 9 0 0 9 5  

ABSTRACT 
The rapid growth and increasing pervasiveness of wireless 
networks raises serious security concerns. Client devices will 
migrate between numerous diverse wireless environments, 
bringing with them software vulnerabilities and possibly 
malicious code. Techniques are needed to protect wireless 
client devices and the next generation wireless infrastructure. 
We propose QED, a new security model for wireless networks 
that enables wireless environments to quarantine devices and 
then analyze and potentially update or "decontaminate" client 
nodes. The QED paradigm is presented here, as well as the 
design of a practical prototype. 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General- 
Security and protection (e.g.firewalls), Data communications 

D.4.6 [Operating Systems]: Security and Protection 
-Access controls, lnvasive software (e.g., viruses, worms, 
Trojan horses) 

General Terms 
Design, Human Factors, Security 

Keywords 
Decontamination, Examination, Mobile Computing, Nomadic 
Computing, Pervasive Computing, Quarantine, Security, 
Ubiquitous Computing, Wireless, Worm 

t Kevin Eustice was partly supported by The Aerospace 
Corporation, El Segundo, CA. 

New Security Paradigms Workshop 2003 Ascona Switzerland 
© 2004 ACM 1-58113-880-6/04/04....$5.00 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy otherwise, 
to republish, to post on servers or to redistdbute to lists, requires prior specific 
permission and/or a fee. 

1. INTRODUCTION 
During the last few years, we have seen an increasing trend 
towards nomadic computing, or nomadicity. Users migrate 
with their mobile computers from network to network, 
accessing a wide array of services and networks. This new 
emerging paradigm has come about partly as a result of cheap, 
mobile computers and also due to the recent explosive growth 
in wireless computing. Unfortunately, systems security has 
not kept pace with this nomadic trend. As a result, our existing 
security infrastructure is ill-equipped to deal with emerging 
threats. 

As millions of users migrate between home, office, coffee shop 
and bookstore, they take with them not only their computer, 
but also electronic hitchhikers they picked up in elsewhere. 
Continual migration from one access point to another with 
vulnerabilities threatens the integrity of  the other 
environments, as well as that of  other peers within the 
environments. A user may unwittingly bring in active threats 
such as viruses, worms, denial-of-service daemons, or even 
create a hole for a human intruder; alternately they may bring 
in more subtle threats such as vulnerable packages or poorly 
configured software. We must mitigate the impact and spread 
of these attack vectors. 

Unfortunately, existing security paradigms do not address this 
problem. Current wireless security research and proposed 
standards [3, 2] seek to add better security--however the 
approaches are primarily focused on better authentication, 
routing, and stronger eneryption. Such improvements are 
extremely desirable, but they do not address the core integrity 
issue. Authenticated but corrupted devices could still gain 
access to network resources and infect other networked 
devices. 

This problem will only be exacerbated as wireless coverage 
expands and nomadic behavior becomes more and more 
common. This is a fundamental security threat that must be 
addressed. Environments must be able to quarantine potential 
clients, examine and evaluate clients for potential threats or 
vulnerabilities, and if desired, provide facilities to assist users 
with securing or cleaning their machine. 

123 



This paper proposes a new paradigm that we refer to as 
QED--quarantine, examination, and decontamination--to 
deal with these integrity concerns. We are currently designing 
and building a QED prototype in our laboratory at UCLA. 
Further adoption of these techniques will provide a much 
needed layer of security to protect mobile computing in the 
local infrastructure and Internet. 

2. MOTIVATION 
Wireless networks have been rapidly growing in popularity, 
both in consumer and commercial arenas. Businesses have 
adopted wireless technologies as an easy mechanism to keep 
employees connected wherever they go; others have adopted 
wireless as a new proftable service provided to the public. 
These services are being deployed in many different public 
arenas, and are quickly growing in popularity. To the user, 
access is as simple as inserting a wireless network card and 
connecting to the appropriate network. Some networks may 
require a username and a password or some other registration 
and payment of a fee to access the service. Once a session is 
instantiated, typical security measures include authentication 
and encryption of data. 

Residential wireless networks are generally easier to access. 
Currently, there are thousands of residential access points, 
most with minimal or no security. Information regarding 
location, accessibility, network ID and deployed security for a 
great number of these access points is publicly available on 
the Internet. For the most part, these networks lack any 
reasonable access control and are thus extremely vulnerable to 
anyone who wishes to use them. 

There is a more serious issue than simple theft of service. 
Trusting users place their laptops, PDAs and other Internet- 
capable devices into these insecure networks expecting 
unrestricted and safe access to both local network resources 
and the Internet. Unknown to the users, their machines may 
also play host to malicious agents acquired accidentally while 
visiting some other public forum or attached to software of 
dubious origin. If given full access to the network's resources, 
these infected users then represent a clear threat to the network 
in the form of a lurking Trojan horse, a worm, denial-of-service 
daemon, or a tunnel to an outside attacker or freeloader, Other 
local devices also make easy targets for further exploitation, 
and may in turn carry malicious code into other possibly more 
secure environments. In other words, people may place their 
exploited machines on your network and behind your firewall, 
and by doing so expose your machines to crackers or 
malicious code. Those devices may then unwittingly be taken 
into other networks; the epidemic spreads in this manner. 

Widespread adoption of wireless technologies such as WiFi 
and Bluetooth exacerbates this problem by greatly increasing 
the nomadic population and the availability of wireless 
services. As corrupted machines move from network to 
network, they will be able to quickly spread offending code to 
network resources and users. Particularly resourceful worms 
could use nomadic trends to attack and quickly spread in 
dense urban centers, without resorting to the Internet. There is 
substantial evidence that recent worms, such as W32/Blaster- 
A, have been able to infect numerous networks protected by 
firewalls through infected users' laptops [9]. In a two week 
period from September 15 th 2003 to September 29 th 2003, more 
than 60+ Blaster and Blaster-variant infected laptops were 
introduced into the UCLA Computer Science network and 

attempted to spread the infection. Even more advanced worms 
may emerge that leverage nomadic trends to target normally 
disconnected or hard-to-reach installations. These types of 
worms could be extremely difficult to track or observe, as they 
would be able to avoid propagation through the Internet core. 

Based on this observation, it seems imperative that the local 
infrastructure be capable of automatically isolating, 
identifying, and potentially repairing vulnerable and corrupt 
machines. We believe that a transition must be made to a new 
paradigm of security that allows active, network-based 
integrity analysis of client machines with minimal user or 
administrative overhead. This type of infrastructure would 
strongly encourage active and timely patching of vulnerable 
and exploited systems, increasing overall network security. It 
would benefit users by protecting their systems, as well as 
keeping them up to date, and benefit local providers by 
protecting their infrastructure and reducing theft of service. 
Deployment would also protect the Internet as a whole by 
slowing the spread of worms, viruses, and dramatically 
reducing the available population of denial-of-service 
daemons. 

3. RELEVANT TECHNOLOGIES 
The security model that we are proposing contains many of the 
characteristics of virus scanners, firewalls, and intrusion 
detection systems. In addition to maintaining secure 
environments, our model enables easy software maintenance 
and patching. Tools for these are available in one form or the 
other, but a unified integrity analysis and maintenance model 
has yet to emerge. 

3.1 Virus Scanners 
Malicious code such as viruses, Trojan horses and logic 
bombs pose a serious threat to all computer users. Virus 
scanners are used to counter this threat. These scanners usually 
work by matching code with known patterns, or signatures, 
which are stored in a database. They run continuously in the 
background, monitoring system activity--especially network 
traffic and downloaded files such as potentially harmful email 
attachments--and are updated frequently to handle any new 
threats that may appear. The major drawbacks to virus scanners 
are that typically they are signature-based, which limits 
detection to well-known viruses, and they are usually installed 
on a per-machine basis, which puts the onus of maintenance 
and retrieving updates on the user's machine, subject to the 
user's preferences. 

In the QED model, virus scanning can be leveraged as part of 
the examination phase. Infrastructure-based security managers 
can keep themselves updated from online sources typically in 
a much timelier manner than mobile nodes, and then ensue that 
entering mobile nodes receive updated virus information as a 
condition of entrance. Benefits can be gained both in security 
and performance in the face of mobility. 

3.2 Firewalls 
Firewalls are systems that enforce boundaries between two or 
more networks. These systems are used primarily to filter out 
traffic from certain sources or those targeted at certain ports; 
this filtering is done usually on the basis of information 
stored in the packet IP header. Typically located at the 
network-centric entry point of a network, i.e., a gateway, they 
can also act as proxies for the machines within the network and 
perform various services on behalf of the local machines, such 

124 



as filtering out spare email. One capability in the QED model 
enables the local infrastructure to restrict outbound traffic to 
authorized hosts, preventing unauthorized local peers from 
communicating. This effectively serves as a personal firewall, 
operating at the device-centric entry points of the network, i.e., 
wireless access points, and other similar ingress points. 

3.3 Intrusion Detection Systems 
Intrusion detection systems (IDS) are used to detect attacks on 
a computer system or network based on traffic patterns, system 
logs, and periodic system integrity checks. Example systems 
include the Graph-based Intrusion Detection System [11], 
Emerald [5], Distributed Intrusion Detection System [I0] and 
AAFID [1]. 1DS techniques can also be used to defend against 
attacks generated by insiders [6]. The range of IDS responses 
to attacks varies from actively shutting down the attack to 
sending an alarm to the appropriate authority. The QED 
paradigm requires some IDS techniques to be used in the 
examination phase, to dynamically examine and perform 
integrity analysis of  potential clients; additionally, IDS 
techniques are used to monitor active local clients. 

3.4 Update and Patch Management Systems 
Many commercial  operat ing systems provide update 
management software that allows users or administrators to 
automatically download and apply system updates. For 
Microsoft Windows, this is done via both service packs and an 
automatic update tool that alerts users to new updates. Similar 
services are provided by the Ximian Red Carpet utility for 
Linux, and other UNIX and UNIX-like systems. 

In general, these mechanisms are valuable and useful; however 
we believe they are insufficient for the quickly approaching 
wireless world. The current model provides little incentive to 
users to patch or update their system; additionally, 
downloading packages can be extremely time-consuming over 
slow links. The QED model requires users to maintain their 
software to receive connectivity, as well as offering 
infrastructure-based assistance with updates, such as locally 
cached packages. 

4. QED: QUARANTINE, EXAMINATION, 
AND DECONTAMINATION 
Devices operating within a shared environment must meet 
high integrity standards; this implies that mechanisms are 
needed with which to evaluate and ensure the integrity of all 
devices entering that environment. While a complete general 
solution to this problem may not yet be feasible, mitigating 
engineering approaches can be extremely helpful. Our 
proposed model increases the security and integrity of the 
network by providing a framework that allows proaetive 
device examination and evaluation of  device security 
characteristics. Tradeoffs may have to be made between desired 
privacy and required integrity. In some environments, safety 
must take precedence over privacy. I f  users are unwilling to 
compromise their privacy for this safety, they might choose to 
forgo interaction with the environment in question, or reveal 
limited information in exchange for limited access. 

The model we are developing protects machines by logically 
isolating them, examining them for known vulnerabilities or 
malicious software, and then repairing, or otherwise 
mitigating, discovered problems. We refer to these processes 
as quarantine, examination, and decontamination. These 

processes are not necessarily mutually exclusive, and may 
overlap. 

4.1 Quarantine 
The goal of  the quarantine stage is to isolate potential clients 
until it can be determined that they meet the local integrity 
standards. Ideally, we enforce two types of  isolation. First, 
isolation from the outside world prevents possibly malicious 
code from spreading; additionally, it protects potentially 
vulnerable machines from outside attackers. In general, this 
type of isolation is fairly easy to enforce at the router level by 
employing routing rules that only forward packets for 
authorized machines. The second form of desired isolation is 
local isolat ion.  Separat ing local peers requires the 
infrastructure to assign extremely restrictive network settings 
to clients. Such restr ict ive settings require that all 
communications go directly through the security manager. 
Additionally, well-behaved client software can be instructed to 
drop all packets not sent through the router. This ensures that 
cooperative clients can only talk to the router, and are not 
susceptible to attacks, scans, or probes from local peers. 
Compromised hosts or malicious users can attempt to 
configure their own network settings to talk to other 
devices--however, this communication would be limited to 
similar rogue machines; well-behaved and non-compromised 
clients would not participate. 

Quarantine is not necessarily unilateral--the device itself can 
also quarantine the visited network, restricting access to local 
services according to device policy. In fact, the entire QED 
model may be applied from the perspective of  the 
device--however we believe that typically there will be a 
resource asymmetry. Devices will be in need of services (such 
as connectivity) that are provided by environments, and thus 
somewhat subservient to the environment. 

While quarantine is not a guaranteed protection, we believe 
that the model of providing an isolated network in which 
prospective client machines are examined is valuable. As 
trusted computing architectures such as TCPA [12] become 
more commonplace, it will be increasingly possible to make 
strong guarantees regarding machine cooperation in this, and 
other stages of QED. 

4.2 Examination 
The examination stage is where clients are analyzed and 
potential vulnerabilities and contaminants are identified. 
There are a large number of possible mechanisms that can be 
used to examine potential clients: traditional virus scanners, 
package management  tools,  network scanners,  and 
configuration analysis tools such as SATAN [13]. 

Once a device enters an environment and is quarantined, it is 
subjected to analysis by the infrastructure. There are a large set 
of  possible types of  analyses that could be performed, 
included external scans and probes of offered services, internal 
package analysis, virus scans, or behavior monitoring. For 
instance, a simple type of examination might determine the 
versions of  installed software and appropriate security 
patches, verifying checksums and signatures where applicable. 

The paradigm can allow both passive and active examinations 
modes. In the active mode, the device would have to undergo 
such an examination at the point of entry into a network; in 
the passive mode, the network might accept a signed certificate 

125 



indicating that such an examination had been successfully 
passed in the last environment the device passed through. 

The examination procedure would not have to stop after the 
wireless device entered the local environment. Using standard 
intrusion detection techniques, the local infrastructure could 
continuously examine network traffic to determine if  any 
entity is trying to launch an attack or take over other 
machines. 

4.3 Decontamination 
The third stage of the QED process is decontamination. Once a 
cl ient  machine has been examined,  and potential 
vulnerabilities or other problems have been found, the 
infrastructure can assist the user in updating vulnerable 
packages or cleaning up viruses or other potentially malicious 
code. Virus scanners can automatically remove or quarantine 
detected viruses. Package management  tools  could 
au tomat ica l ly  apply  new secur i ty  patches,  update 
software/firmware versions, or request that certain services be 
stopped. In the most extreme case, entire system images might 
be replaced from stored backups--obviously,  this would be 
something not to be undertaken lightly. 

Decontamination could be performed automatically, or in a 
user-assisted manner; in the latter, if vulnerabilities are found, 
the user is informed and given explicit instructions to clean 
up the device. The entities undergoing decontamination 
typically would remain quarantined until the infrastructure is 
able to verify that decontamination has completed. The degree 
of access allowed to the device would vary with the ability of  
the infrastructure to verify the success of the decontamination. 

5. DESIGN OF A QED PROTOTYPE 
We are designing and building a sample QED framework to 
provide secure service for Linux-based laptops and PDAs 
equipped with 802.11b wireless network cards. The framework 
is designed to provide wireless service and security updates to 
several dozen wireless clients. This is very simple QED system 
that is intended to illustrate the components. The prototype 
makes limiting assumptions, such as that participating 
devices are benign, and that there are no rogue QED nodes. 
This is reasonable within our lab, but in a real world 
environment, much more care and design work would be 
needed. The major components of our prototype are described 
below. 

5.1 Quarantine 
The quarantine phase of  our prototype uses routing 
restrictions in the security manager, and local firewall rules on 
participating devices to restrict data flow from unknown and 
potential malicious devices. 

A local Linux-based 802.11 gateway serves as the local 
security manager, as well as running a DNS and DHCP server. 
When a wireless device accesses the network, it issues a DHCP 
request for an address, enclosing its public key. The local 
DHCP server then hands an IP address to the wireless device. 
This process can be secured through the use of certificates for 
valid local DHCP servers. 

The device sets up the local network settings as provided by 
the DHCP server. This includes a local IPtables [4] DENY rule 
that drops all incoming traffic not originating at the local 
gateway; this ensures that local devices are unable to ini t ial ly 

communicate with each other without routing through the 
local gateway. Obviously, a malicious client will not drop this 
traffic, but well-behaved nodes will, providing some 
protection for themselves. 

Meanwhile, the DHCP server has taken the client's public key 
and done a secure dynamic DNS update to insert the public key 
in the local DNS database entry associated with the assigned IP 
address. The client then can initialize an IPsec security 
association with the wireless gateway using the public key for 
the gateway. The gateway performs a reverse DNS lookup on 
the client 's IP address and retrieves the client's public key 
from the local DNS database and uses it to create the security 
association on its end. A client application on the device then 
opens a connection to the security manager on the gateway and 
begins to negotiate for service, 

The end result is that each client has established a private and 
secure link to the local gateway. IPsec-based encryption 
prevents eavesdropping, and firewall rules in the gateway and 
well-behaved clients ensure that the outside world and local, 
well-behaved devices are separated from the local quarantined 
deviees. 

5.2 Examination 
The examination phase examines the incoming device to 
identify out-of-date packages, or possible vulnerabilities. 
There are essentially three subphases of examination: network 
profiling, package inspection, and scanning for viruses and 
w o r m s .  

Network profiling will be accomplished through the use of  
nmap [7]. Nmap allows users to examine open ports and 
available services on a remote host in a fairly nonintrusive 
manner. This analysis can identify anomalies and system 
vulnerabilities. For example, if  nmap were run and determined 
that a normally unused port, e.g., TCP port 1337, was open on a 
scanned host, a flag would be set indicating that the machine 
had been potentially exploited. This violation can then be 
noted for clean-up during the decontamination phase. Nmap 
also provides some basic information about the overall system 
and software versions which could potentially be used by the 
package inspector or during the decontamination stage. Nmap 
can also be used to detect the presence of services that are 
unnecessary or undesirable in the given environment. 

Package inspection is the most difficult phase of examination. 
The security manager would be required to query the device for 
package information, but in the absence of  trusted architecture, 
there would be no guarantee that the returned package list was 
complete and had not been tampered with. However, we can 
make the assumption that benign devices and benevolent 
users will not intentionally deceive the infrastructure, while 
malicious nodes very well may attempt to deceive the 
infrastructure. We are currently investigating techniques to 
identify lying nodes by examining ongoing behavior to detect 
discrepancies. We will definitely use recurring examinations 
to help us detect possible discrepancies. 

When a virus scan is requested, the device will be required to 
present proof, such as a certificate produced by running a virus 
scanner, that it has run a virus scan of the system within the 
last 24 hours, or since the last major virus alert, whichever is 
shorter. Requiring an immediate virus scan is the more secure 
option, but will add substantial overhead if  required at every 
transition between networks. We are considering the use of  

126 



local trust relationships between access points to help 
optimize the efficiency of high overhead examinat ions-- this  
is discussed in more detail below in section 6. 

5.3 Decontamination 
If  vulnerabilities in the client are noted during examination, 
the local infrastructure will initiate decontamination. The 
results of the prior nmap examination are used to identify the 
vulnerable service[s]. I f  a known compromised or vulnerable 
application is found to be running, the infrastructure will 
attempt to update the application. 

If the update is unavailable or the user is unwilling to accept 
the update or restriction, either the user must suspend the 
application, or other users must be prevented from accessing 
that service via the local firewall rules. Similarly, if  the service 
is not vulnerable but is not permitted within a given 
environment, (e.g., a peer-to-peer file sharing application,) the 
device would be told to deactivate the service. Additionally,  
this could be enforced by the local router blocking all traffic 
to or from the service in question. 

If device examination reveals that its virus scan is not up to 
date, ideally a virus scan is performed on the device and any 
viruses or worms are removed. This may not be feasible due to 
real-time constraints; it could take minutes to hours to scan a 
multi-gigabyte disk. Since a user would typically want to use 
only a few applications, the security manager will send a 
message to the user indicating that he should have those 
applications scanned. If  the user accepts, the manager performs 
the necessary scan. This will be done by communicating a 
signed piece of anti-virus software to the client, which will be 
authenticated and executed. In theory, it would also be 
extremely valuable to be able to scan the memory space of 
running applications, looking for vulnerabilities there as well. 
It should be possible to leverage existing work in this area [8]. 

In our prototype, all application information is derived from 
the local RedHat Package Manager (RPM) database. If  there are 
security alerts for any of  the installed packages, the 
appropriate update must be applied to the vulnerable device. If  
the necessary updates are cached, they are immediately 
applied, again by communicating with the user of the client 
device. As our environment includes custom configurations, 
users are involved in these updates; automated updates 
without user input could very well break things, for example, 
patching a system library could break dependent applications. 

6. CHALLENGES 
There are several challenges that must be overcome as we 
explore this paradigm. We have identified three major 
challenge areas: trust, privacy, and performance. 

6.1 Trust 
There are substantial trust issues in each of the stages of QED 
that need to be addressed. Ideally, to be most effective, QED 
would be able to execute code on visiting devices, and trust 
the results of any execution. Similarly, the device itself would 
like to trust that the environment will not attempt to subvert 
it. However, given current operating systems, this is not yet  
possible. 

We can categorize current operating environments into two 
major categories--public domains and private domains. A 
public domain is one in which a device is a transient visitor, 

lacking any long-term relationship; additionally the network 
has limited or no authority over visiting devices. Within such 
environments, QED must rely most heavily on external scans 
and perpetually maintain a limited form of  quarantine to 
restrict undesired access to local and remote services. Within 
private domains such as one's home or office, it is possible to 
mandate much more stringent restrictions on the types of  
examinations that must be carried out. The environment and 
the device will have a pre-existing trust relationship, as well as 
some a priori knowledge of  one another. Within such an 
environment users are likely to be much more willing to allow 
their devices to undergo thorough examinations. Privacy 
issues are still an issue however, and will be addressed in the 
next section. 

Our prototype is designed to operate within the private 
domain of our laboratory. It relies extensively on client 
participation to successfully accomplish all of its goals. If our 
assumption that there are no rogue QED nodes does not hold, 
then malicious or compromised nodes may lie or mislead, 
nearly undetectably. Despite this limitation, our prototype 
increases security by requiring that client devices placed on 
the network be kept up to date, and provides a mechanism for 
assisting with that process. In the lab, QED is a proactive 
security measure that helps ensure that our wireless devices are 
free from vulnerabilities. In general, a similarly deployed 
infrastructure would help slow the spread of viruses and 
worms, and reduce the viable population of denial-of-service 
daemons by helping keep well-behaved machines patched and 
secure. 

Future systems will greatly enhance the capabilities of QED. 
With a trusted computing architecture such as TCPA in place, 
it would be possible to strengthen all three phases. By running 
a verifiable trusted kernel on the device and security manager, 
both systems could verify the integrity of the other. 
Additionally, it would be possible to verify the scope of  the 
examination, and the outcome of  the examination and 
decontamination phases. Interoperation with TCPA trusted 
operating systems is a future piece of  research for this project. 

6.2 Privacy 
Privacy is a second challenge area for QED. There is a 
fundamental tradeoff here between the ability to examine 
machines and the privacy desired by the users. A direct 
relationship exists between the degree of invasiveness of  
examination and the overall accuracy of the analysis. 

Currently, if a device does not wish to be examined, it does not 
receive network connectivity; that will always be a choice. But 
it may be possible to offer a limited subset of services, or 
otherwise degraded service to a device that wishes to expose 
only l imited personal  information,  We are act ively 
investigating this issue in the context of our own prototype. 
One possibility that we are looking into is the use of verifiable 
examination modules that clients can analyze to determine the 
nature and extent of the desired examination. 

6.3 Performance 
Performance is a key issue that must be considered in the 
context of mobile systems. The model will not be adopted i f  
machines with no vulnerabilit ies spend substantial time 
offline upon entering a new environment; nor will it be 
adopted if users suffer unpredictable delays when entering new 
environments. We believe that examination time is the 

127 



principal bottleneck in QED for most devices. A pertinent 
question is, therefore, how much time can be spent examining 
the device for out-of-date packages, viruses, or possible 
malicious code? For devices with no vulnerabilities, we wish 
to be able to quickly authorize them and get them onto the 
network. One possible optimization for wide-area deployment 
is the use of  local trust between collaborating wireless access 
points. For instance, all of  the aceess points in the local 
bookstore might establish reciprocal relationships allowing 
another access point in the store to vouch for the status of a 
given client. This would allow clients to easily move around 
within an administrative domain, without going through 
repeated quarantine and examination processes. On the other 
hand, an increase in size of the network of trust also increases 
difficulty in revocation, if necessary. 

7. CONCLUSION 
Future computing environments will allow computing and 
communications wherever we work, live, and play. We can 
easily foresee a future in which connectivity is ubiquitous, 
provided by businesses who gain profit or other benefit by 
offering such connectivity. But providers will not offer such 
services if the networks are perpetually corrupted by infected 
devices and users will not use these services if their devices 
will be continually attacked and compromised. This vision 
cannot be fulfilled unless it is safe to provide and safe to use. 

QED offers a safety net to users and service providers. The 
service provider can use the model to ensure that infrastructure 
is safe from incautious or malicious users. The average user 
can rest assured that networks employing the paradigm are 
unlikely to corrupt machines, steal data, or abuse or deny 
services due to contamination. If QED had been available and 
deployed on laptops and other computers throughout the 
Internet in the last few years, there would have been a dramatic 
reduction in the spread of worms and other malicious code. 

We are implementing a sample QED framework that displays 
the feasibility and promise of  our approach. Adding further 
security services and leveraging the kinds of  secure 
architectures beginning to emerge in the market will allow for 
more powerful and reliable QED systems in the future. This, in 
turn, will enable safe use of ubiquitous networking for 
everyone. 

e 

[11 
REFERENCES 
J. Balasubramaniyan, J. Garcia-Fernandez, E. Spafford, D. 
Zamboni. An Architecture for Intrusion Detection using 
Autonomous Agents., COAST Technical Report 98/05, 
1998. 

[2] Extensible Authentication Protocol - RFC 2284 - 
http://www.ietf, org/internet-drafts/draft-ietf-eap- 
rfc2284bis-01.txt 

[3] Y, Hu, A. Perrig, D. Johnson Ariadne: A secure on-demand 
routing protocol for ad hoe networks. The 8th ACM 
International Conference on Mobile Computing and 
Networking, MobiCom 2002. 

[4] Iptables : http://www.netfilter.org/ 

[5] Peter G. Neumann, Phillip A. Porras, Experience with 
EMERALD To Date. First USENIX Workshop on Intrusion 
Detection and Network Monitoring, April 1999. 

Nam Nguyen, Peter Reiher, Geoff Kuenning, Detecting 
Insider Threats by Monitoring System Call Activity. 
Submitted to 4th Annual IEEE Information Assurance, 
West Point, New York, Mar 2003. 

[7] Nmap Network Mapper. http://www.insecure.org/nrnap/ 

[8] The Open Group's Common Data 
SecurityArchitecture(CDSA).http://www.opengroup.org/s 
ecurity/12-edsa.htm 

[9] Paul Roberts. Hackers find way to exploit latest Microsoft 
hole. IDG News Service, Sept. 16, 2003. 
http://www.infoworld.com/article/03/09/16/HNhackers_l 
.html 

[10] Steven R. Snapp et al. DIDS (Distributed Intrusion 
Detection System) - Motivation, Architecture, and An 
Early Prototype. Proc. 14th National Computer Security 
Conference. Washington, DC, Oct. 1991, pp. 167176. 

[I 1] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. 
Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D. Zerkle. 
GRIDS - A Graph Based Intrusion Detection System for 
Large Networks, in Proc. of  the 19th National Information 
Systems Security Conference. Baltimore, MD, Oct. 1996, 
361 - 370. 

[12] The Trusted Computing Platform Alliance 
http://www.trustedpe.org 

[13] W. Venema, W. and D. Farmer. Improving the Security of 
Your Site by Breaking Into It. 1993 Internet White paper. 
http://gd.tuwien.ac.at/infosys/security/wietse- 
archive/admin-guide-to-craeking. 101 .Z 

[6] 

128 


