
Bringing Security Home:
A process for developing secure and usable systems

Ivan Fle~ais
Depa)tment of Computer Sdence

University College London
GowerStreet

U K - L o n d o n WCIE 6BT
(+44)207 679 3642

i.flechais @ cs.u:;l.ac, uk

M. Angela Sasse
Department of Computer Sdence

University College London
GowerStreet

U K - L o n d o n WCIE 6BT
(+44)207 679 7212

a.sasse @cs.ud.ac.uk

Stephen M. V. Hailes
Department of Computer Sdence

University College London
GowerStreet

U K - L o n d o n WC1E 6BT
(+44)207 679 3432

s.hales@cs.ud.a~uk

ABSTRACT
The aim of this paper is to provide better support for the
development of secure systems. We argue that current
development practice suffers from two key problems:

1. Security requirements tend to be kept separate from
other system requirements, and not integrated into
any overall strategy.

2. The impact of security measures on users and the
operational cost of these measures on a day-to-day
basis are usually not considered.

Our new paradigm is the full integration of security and
usability concerns into the software development process,
thus enabling developers to build secure systems that work in
the real world. We present AEGIS, a secure software
engineering method which integrates asset identification, risk
and threat analysis and context of use, bound together through
the use of UML, and report its application to case studies on
Grid projects. An additional benefit of the method is that the
involvement of stakeholders in the high-level security
analysis improves their understanding of security, and
increases their motivation to comply with policies.

1. INTRODUCTION
"Effective security is at odds with convenience" [14]. This
statement reflects a common point of view among security
experts and software providers. The effectiveness of a security
mechanism, however, depends on both users and technology
"doing the right thing". The usability of security mechanisms
is not just a question of improving interfaces to security tools,
but designing security to work with the real-world tasks users
perform, and within the physical and social context of that
interaction [18].

Recent research on usability and security has focussed on user
problems and needs (e.g. [6], [20], [21]). There is compelling
evidence that system developers deserve at least as much

New Security Paradigms Workshop 2003 Ascona Switzerland
© 2004 ACM 1-58113-880-6/04/04....$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or comrnemial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

attention. According to CERT [1], the number of security
vulnerabilities in systems is increasing rapidly (from 2437 in
2001 to 4129 in 2002). A recent survey [4] of similar products
from different providers found that the least secure product
carried a 6 times higher business risk than the most secure one,
highlighting the fact that the security quality of a product can
vary drastically depending on who designed and implemented
it.

It is self-evident that developers play a key role in the
provision of usable and effective security. But to make the
right decisions during the design and implementation process,
developers need a development method that helps them to
identify and represent security and usability requirements in
the design from the outset. Such a method must be
lightweight, compatible with notations and tools already in
use, and lead to secure systems that work in practice. To answer
this need, we have developed AEGIS (Appropriate and
Effective Guidance for Information Security), a secure software
engineering method that integrates security requirements
elicitation, risk analysis and context of use, bound together
through the use of UML.

In section 2, we discuss in detail what type of support software
developers need to build secure systems. In section 3, we
present the detailed stages of AEGIS, and in section 4 we report
on case studies where AEGIS has been applied.

2. ISSUES IN DEVELOPING SECURE
SOFTWARE
Since the advent of the software engineering process,
developers have been required to balance a number of
requirements in building systems (e.g. functionality,
eff iciency, t ime-to-market , modulari ty, scalability,
extensibility). Over the past few years, the rapid evolution of
wide area networked systems has created additional security
concerns. Recent research on usability of security points out
that systems must be designed to make it easy for intended
users to "do the right thing" when it comes to security [12].
The number and complexity of issues that developers of secure
systems have to consider has increased such that many find it
difficult to cope. Following good software engineering
practices is, in many cases, not enough.

Building secure systems necessitates:

1. Following a systematic process of software
engineering.

49

2. Carrying out a risk assessment on which to base
security decisions [10], [19].

3. Up-to-date knowledge of security threats and
countermeasures.

4. Devising security mechanisms that are effective in
the real world, i.e. that are usable by the intended
users in their specific context of use [18].

The problem is that existing design methods for secure
systems do not address all of these goals and do not provide
enough support for the developers to realistically achieve
them.

One method that does address all principles is the one by
Abrams [5], which aims to integrate security engineering into
the evolutionary acquisition process. The method follows a
prototyping and pragmatic risk-based security design
approach. It also relies on regular input from various
stakeholders such as users and developers, as well as an
understanding of the context in which the system operates.

Although we agree with the principles of this approach
(contextual information about the system, integration into a
software engineering strategy, risk-based security decisions),
we believe that it fails to provide sufficient support for
developers.

1. There is no integration with the system design
documents: the results are presented in a security
specification in a separate document, and in a
different notation. This is more than a mere
inconvenience: having a separate specification
document means security requirements are usually
"out of sight" when design decisions are made.

2. The context in which the system operates is not part
of the documentation used throughout the design
process. The system context is reviewed
at the beginning of each new iteration of
the prototype, as opposed to being
visible throughout the whole process.

3. Although the design process provides a
placeholder for risk-driven security
design, there is no particular guidance as
to what factors to take into account when
making such decisions - especially
social and cultural factors. i

We introduce a method that builds on [5], but [
which can support developers in building
effective and usable security throughout the
design process, and is fully integrated with the
existing software engineering tools and notations.

Appropriate and Effective Guidance in
Information Security (AEGIS) uses context
regeneration (based on contextual design [9]) and
risk analysis as tools to assist developers in
representing and addressing security and
usability requirements in system design. By
involving stakeholders in the high-level risk
analysis and selection of countermeasures, their
understanding of the need for security
countermeasures, and their motivation to
contribute to security are likely to be improved
[101, [19].

Finally, by using UML, AEGIS provides a uniform basis on
which to discuss and bind the separate areas of usability, risk
management and technical design.

Grid computing
We are currently applying AEGIS to the analysis and design of
a number of Grid projects. The purpose of Grids, such as
Seti@Home [3], is to use the Internet as an infrastructure for
distributed computing. Computing power, storage or results
can all be shared across Grids, lowering the cost of research. In
areas of research that require very large investment (physics,
medicine, astronomy, etc.), the advantages of sharing data and
resources are very attractive. Whereas current computing power
can only be upgraded through the purchase of expensive
machinery, Grids allow completely different concepts of
operation to be supported, such as the remote use of another
institution's specialised facilities (e.g. supercomputers, a
specific observatory, a specialised laboratory, etc.).

This has led to a number of projects being started to
investigate and create the necessary technology to make Grids
a reality. Because of the nature of Grids and the number of
different environments they aim to operate in, however, there
exist a large number of threats, many of which are not
considered in standard security analyses. This makes the need
for security in these projects paramount to the future success
of Grids.

3. AEGIS
AEGIS is a software engineering method for creating secure
systems based on security requirements identification through
asset modelling, risk analysis and context of use.

Based on the spiral model of software development - as seen
in Figure 1 (inspired from [19] and [11]) - AEGIS integrates
security arid usability with the prevailing modelling

Proj ~ t

Gather [Identify
Requirements Stakehol

Code

Code

Ship Acceptance
Test

Test

Figure 1. AEGIS Spiral Model of Software Development

50

Operative

Asset

Processing Node

Application

Honest Operative I

Malicious Operative [

~0~! °perates
th

I..* excites 1

1 7 1
~ pro esses
. \ ' - , , , , , o...

o..

Security Measure Nkl Communication Link

Fieure 2. Relationship Diagram of a System's Assets

technique UML. This ensures that usability, thanks to
contextual regeneration (inspired from the same technique that
Zurko et al. [22] used to successfully design a secure and
usable authorisation system), and security are visible
throughout the process.

Evidence from the case studies we have conducted so far
suggests that AEGIS can take place over a series of four design
sessions between developers and stakeholders. Depending on
the level of security needed and experience of the developers,
security experts should be included to assist with
identification of threats and selection/design of
countermeasures.

As part of our ongoing review of AEGIS, we are envisaging
more detailed support in the form of checklists/FAQs to
address known security pitfalls, and to help identify
appropriate security mechanisms for specific contexts of use.
In the long term, links to appropriate security patterns [2]
should also be added.

3.1 Participants
AEGIS is conducted with three different types of participants:

1. Facilitators

2. Stakeholders (owners, developers, users)

3. Security Experts

Facilitators are in charge of conducting AEGIS. They are
necessary to keep the design sessions on track and to
elicit and document the security requirements.

Stakeholders consist of developers, users and owners. It
is important to have a variety of stakeholders (i.e.
owners/management and all groups of users should be
represented), although for practical purposes the number
of participants in the meetings is best kept to 5-6. The
reason for involving both owners and users is to ensure
that:

1. all contexts in which the system is used are
represented, and

2. owners and users become aware of each others'
goals and needs.

Today, many systems are built to minimise the need for
geographic closeness in cooperation - Grid systems
being an example. Whilst these systems can offer many
benefits, communication between different stakeholders
is limited to occasional meetings. In the absence of day-
to-day communication, the number o f implicit
assumptions made - e.g. what others are trying to
achieve, and how they work - increase. Another
prominent phenomenon we have encountered is what
social psychologists call diffusion of responsibility: the
notion that it is tempting to assume that someone else
will take care of a particular problem [13]. To counter
these tendencies, better education [20] and motivation
[20] are key factors; getting stakeholders together
provides the basis for improving the motivation to
behave securely, and the knowledge of how to do this.

Security Experts must be involved if neither Facilitators
nor stakeholders have any technical security knowledge.
Expert knowledge is best used, however, in the Risk
analysis and security design phase.

3.2Identifying Assets and Security
Requirements
The foundation of AEGIS is to base every security decision on
knowledge of the assets in the system. Inspired by the work of
Herrmann et al. [15], we use UML syntax to model the system,
its assets, threats and security controls. Figure 2 shows a
relationship diagram of the assets in a system.

During the first design session, the facilitators help
stakeholders build a model of the system, representing various
assets and their relationships.

Facilitators ask participants to state the raison d'Stre of the
system: who is involved, what is to be achieved, and how;
anything that contributes to achieving the goal is represented
as an asset. Facilitators must pay particular attention to
ensuring that the context in which people are interacting with
the system is represented. This includes the physical and
cultural environment, the particular roles that people must
assume and the tasks they must carry out [9].

Using the model of the assets, security requirements are then
gathered from the stakeholders through scenarios where
particular properties of the security of an asset are

51

compromised. For example, a requirement for the integrity of a
database can be elicited by asking what would happen if the
database were corrupted or intentionally (maliciously or not)
modified. It is important to record these scenarios for future
use and checking. This can be done by modelling them as
abuse cases [16] - use cases of undesirable events.

For example, Figure 4 shows a model generated in a case study.

3.3 Risk Analysis and Security Design
The second design session focuses on clarifying the asset
model of the system and the security requirements.
Dependencies between the assets of the system must also be
identified.

Based on the information gathered in the asset model and the
security requirements, the third session is spent identifying
the risks, vulnerabilities and threats to the system, and the
fourth sess ion se lec ts or designs the appropriate
countermeasures. Figure 3 shows the process of risk analysis
and security design.

For the risk analysis and security design part of the process, i t
is important to ensure that expert knowledge is available in
order to identify r isks and countermeasures. AEGIS
recommends using a lightweight risk analysis method that
allows the rapid assessment of human and technical risks and
threats, and focuses on building the system. It is possible,
however, to employ more time-consuming, exhaustive and
quantitative methods should it be appropriate for the project.

1. Determine vulnerabilities

A vulnerability is an area which is susceptible to undesirable
action. There are many kinds of vulnerabilities, which can be
broadly divided into two categories: technical vulnerabilities
and social vulnerabilities. Technical vulnerabili t ies can
include buffer overflows, protocol timing attacks, message
replays, unsecured access points and so on. Social
vulnerabilit ies consists of people making mistakes on
security administration (forgetting to backup their files, not
rescinding access privileges, leaving computers unlocked,

L Determine
Vulnerabilities

" 2_. Assess Cost and TM

Likelihood of Attack in
Context Unacceptable Cost

 aC22

3~ Select
Countermeasures

Figure3. Risk Analysis and Secure Design Process

in Context

etc.), deliberately trying to subvert the system for malicious
purposes (more commonly called social engineering, e.g.
convincing an administrator to reset a user's password by
impersonating the user, getting a user to reveal their password
by impersonating the administrator, activating the fire alarms
and physically accessing a computer in the confusion, etc.
[17]). More information about social vulnerabilities and a
technique for modelling them can be found in [12]. This uses
a model adapted from the domain of industrial safety, and
distinguishes between active failures (at the operator level)
and latent failures (weaknesses in the system). A security
breach is a result of the combination of active and latent
failures. Active failures are categorised into:

• slips (attention failures)

• lapses (memory failures)

• mistakes (rule or knowledge failures) - intended
actions that lead to unintended results

• v i o l a t i o n s - actions that intentionally breach the
security of the system

Both technical and social vulnerabilities should be considered
equally.

Acceptable
Cost

Likelihood of Attack to

2. Assess cost and likelihood o f attack in context

This step is necessary to establish how damaging an attack on
the asset (utilising the vulnerability) will be, and how likely i t
is to happen in the context of use.

John Adams states that 'risk is subjective. It is a word that
re/~rs to a future that exists only in the imagination' [8]. He
also shows that any risk compensation affects the risk being
compensated for and that subsequent behaviours can create
different risks [7]. Adams illustrates this with evidence that
seat-belt legislation has reduced the number of injuries in car
passengers, but has increased the number of injuries to
pedestrians. This is because seat belts provide the driver with
an added sense of safety and their behaviour becomes less risk
averse as a result. Assessing risk is therefore a complex
endeavour which, as Blakely et al. [10] state would benefit

from adopting a structure which
allowed the sharing of information.

Quantitatively evaluating risks and
damages , such as the ALE
(Annual ised Loss Estimate - a
product of the probability of the risk
occurring and the financial damage i t
would incur [10]), allows an easily

~ ° ~ C ~ N N used and shared measure for risk and
damages. Another example of a
w ide ly used quant i ta t ive risk

~ikelihoodof~tackto } measurement is the security metric
ostofCountermeasuresJ accompanying CERT vulnerabil i ty

disclosures [1], which is based on a
number of factors including the
impact of the vulnerabili ty being
exploited, the ease with which it can
be exploited, the number of systems
at risk, etc.

One problem with this is that only
J easily financially estimated assets

can make use of this. Non-tangible
assets such as reputation, goodwill,

52

staff morale, etc. cannot be assigned a meaningful quantitative
financial cost, and this does not take account of non-
financially motivated attackers

Furthermore, the usefulness of sharing quantitative ratings
(such as the CERT security metric) - thereby reusing some of
the acquired knowledge in the field - is currently badly
affected by their lack of contextual information. Without this
information, it is impossible to know whether the value has
any use in a given environment. By modelling context as well
as risk we hope to provide a starting point to the meaningful
sharing of risk knowledge in computer security.

We currently use qualitative ratings as a means of ascertaining
the importance of a particular security requirement because the
relative importance of different assets is often sufficient to
make decisions in research projects such as the Grid ones.
These generally take the form of 'high', 'low' or 'medium' as
ratings of importance. Particularly important ratings are
generally labelled as 'essential'. In other application areas,
such as the financial sector, quantitative ratings can also be
added.

In this step, it is important to seek accurate knowledge in order
to achieve an informed decision and both quantitative and
qualitative measurements should be used where most
appropriate. Since risk is ultimately subjective, a consensus
should be reached with security experts and stakeholders,
based on available information - which can include existing
risk assessments, field experience, numbers of past incidents,
environment of the asset, dependencies between assets, etc.

When determining the cost of a potential attack, one method of
assessing this is to run through the security requirement
document and confirm the ratings of importance. This
information can then be correlated with other sources, such as
legal requirements, know replacement costs (for replaceable
assets), industry standards and brand impact so as to gather a
good picture of the cost of an attack. This process is also
useful to validate the initial seeurity requirements and any
changes should be reflected in the requirement documentation.

3. Select countermeasures

This section is the first stage of an iterative process of
identifying the most cost-effective countermeasures.

Once assets and the risks they face have been identified, the
next step is to determine how to address these risks. From the
information gathered thus far, a clear picture should emerge as
to which parts of the system are most at risk, either due to a
very high likelihood of attack, or due to the estimated
crippling cost of a successful attack. Attention must be given
to the most likely and damaging risks first.

For example, all other factors being equal, it would be more
important to secure a salary database residing on an Internet
connected workstation (seen as high risk) than it would the
same database on an unconnected workstation (with a lower
risk from the internet). This does not mean that no attention
should be paid to the second salary database, because
although it has a lower risk, it still holds very valuable data.

Expert advice should be used in order to identify as quickly as
possible the most likely countermeasures. It can be proposed
to employ:

I. no countermeasure

2. deterrence, prevention, detection and reaction to
attacks,

3. transfer of liability and responsibility (through
insurance or third party intervention).

Returning to our example, in order to secure the high-risk
salary database some countermeasures might include
disconnecting the workstation from the Internet and locking it
in a room to which only two people have the key (prevention).
Other alternatives might be to install access control and
intrusion detection mechanisms allowing the audit of whoever
accessed the machine (detection), making misuse a punitive
offence (deterrence and reaction), allowing only a limited
number of MAC addresses to connect to the machine
(prevention), getting a third party to secure the database and
maintain it's security (transfer of liability), etc.

4. Cost-benefit assessment in context

This next stage in the countermeasure selection process
determines what the cost of the proposed countermeasures will
be, and weighs it against the benefits that they bring.

Cost o f countermeasures in context

Cost in this section not only addresses financial issues, but
also refers to the effort a user will expend in deploying the
countermeasures. The context refers to the environment in
which the attack can occur and in which the countermeasures
are deployed. It is very important for the facilitator to gather
information from the users in order to identify the projected
costs associated with a particular countermeasure. Scenarios
and use cases can again be used to document this activity.

For example, if a system forces a user to change his password
whilst he is simultaneously being urged to achieve a
production task for which he needs the system, the cost will be
very high both in terms of loss of productivity and in
frustration of the user.

Benefit o f countermeasures

Benefit in this section refers to whether the controls actually
reduce the risk, as well as establishing whether they provide
any advantages to the user. It is important to put the control in
context with the other security controls as well as the rest of
the system. Taking the previous example, the benefit of
forcing a password change may not be particularly evident in
the face of the potential problems. It may be that a different or
additional countermeasure would be more beneficial. A
different countermeasure- such as a physical authentication
token - or an additional countermeasure - such as user training
in selecting passwords - would provide additional benefits to
the user, at the cost of greater financial expenditure and the
potential creation of different risks (such as having the token
stolen).

5. Compare cost and likelihood o f attack against cost o f
countermeasures in context

This is the final stage in the countermeasure selection process,
where the actual decision to adopt a countermeasure is made
depending on its benefits versus its cost.

Owners in the project should be involved at this stage - these
include owners and developers. This is to establish whether
the vulnerability poses sufficient risk and potential damage to
justify the cost of the countermeasures.

53

Thanks to the information gathered so far about the various
countermeasures proposed, a clear picture should be evolving
as to the impact of a particular countermeasure. I f the cost
proves to be unacceptable, or the risk still too great, the
process of selecting countermeasures (step 3) should be
started again. Otherwise, time and money permitting, a new
cycle (step 1) should be started to conduct a new
determination of the vulnerabilities taking the new
countermeasures into account. If no further controls have been
added, the assessment is over.

The final output of the risk analysis and security design phase
is a design document detailing the architecture of the system
together with all the countermeasures which have been agreed

Scientist

I
Web-based

forms. (GUI)

f

I I
~Comrnand Line

I C"e"t
Cache

confidentiality : high
in tegr i~ : high
availabil i ty : v. high

J Institutio [,

Backup

Maintenanc
Administrator

I Special service

Security
,~,.h.hi

[S e r v e r]

f

Broker to
Broker 0 - - - -

Broker

confidentiali ty : nil
inte~.yity : v. high
a v a i l a b i l i t y : v.
high

4. CASE STUDIES
One of the projects that we have documented as a ease study is
EGSO (European Grid of Solar Observations).

The purpose of EGSO is to provide a Grid making the solar
observations of a number of different observatories and
institutions available to customers.

We evaluated AEGIS by looking at:

1. whether developers are aware what workload the
design imposes on users

2. whether developers ' knowledge of security is
improved, such as their understanding of

Institutio [

Backup

Maintenanc
Administrator--.--e

[Special service

Security
adm-h~

"~ ~ Provider to
(User Activity) Q Client

Provider to | I1--I ¢ Broker , /

Provider

0 i ¢onfidentialit~ : nil
I integrity : v. high
I a v a i l a b i l i t y : v .

Provid~er t ° high

Provider

Service Execution
I Manager

©

Broker to Provider ~ Compute
Query Interface

J I Routing Metadata ' O
confidential i ty : reed

j •

Figure 4. EGSO Asset and Security Requirement Model

_LiL
Solar Data

confidentiali ty : reed
integrity : essential
availabil i ty : v. high

Solar Metadata
confidentiali ty : med
integrity : essential
availabil i ty : v. high

Programs
confident. : reed-low
integrity : high

Hardware

a v a i l a b i l i t y : low

J
J

upon (including training and staff motivation as well as
technical measures), the necessary user behaviour these
countermeasures depend on, and the workload this adds to
users. In addition to this, the documentation generated in this
process can be built upon and used to support future
iterations.

3.

vulnerabilities, threats, risks and how to address
them

whether developers' and users' awareness of, and
motivation to, apply security have increased

54

4.1 Background
We started our case study by conducting three meetings with
stakeholders in order to determine what the aims and
requirements of the project were, and also to establish the
current state of security in the project.

We then arranged a series of design sessions with up to three
stakeholders (two developers and one user/manager) and
applied the AEGIS method.

The initial review uncovered that thanks to the presence of
very competent software engineers in the project, a high
standard of practice was being applied to EGSO. This could be
seen in documented use cases, requirements validation, user
interface design and UML system design. The need for security
had been acknowledged and some use cases, albeit in vague
terms, described the need for some security mechanisms (e.g.
the need for 'direct access to satellite data in near real-time,
perhaps only with necessary authorisation ').

4.2 AEGIS
In the beginning of the process, a number of previously
undocumented security needs emerged, such as 'users want
their results to be protected' and data providers need to
protect their resources from being swamped and attacked.

We also uncovered that 'no one is in charge of security'. It was
also stated that security had not been considered in depth
because the project was 'still in (the) early stages (oJ) going
from requirements to design '. A final comment justified a lack
of concern for security by insisting that functionality was
much more important at this point in time, and that security
would be addressed later.

Evidence of diffusion of responsibility with respect to
security was also present. Assumptions were made that other
people or technologies would take care of some security
aspects. For example, if digital certificates were to be used, the
middleware would 'take care o f the PKI' (Public Key
Infrastructure). Another example, witnessed to a greater extent
in other Grid projects, was the assumption that the technical
support of the institutions hosting the projects would take
care of their security. What happened in reality is that many
institutions isolated Grid projects from their internal network,
but did not make any further efforts to protect the projects.

4.2.1 Asset Identification
As facilitators, we started by focussing on identifying the
major assets of EGSO. We asked our participants to draw a
model of EGSO, and because of the distributed nature of GRID
applications, we asked for a model that would represent every
different kind of asset, without worrying about modelling the
multiplicity.

The natural inclination was to draw the system isolated from
its environment, and we encouraged the participants to
describe where people were involved in the system and in what
kinds of environments various different parts of the system
existed. The wide range of possible environments for EGSO
users led us to refrain from modelling too much detail,
although the commonalities of the rest of the system were
identified.

4.2.2 Security Requirements Elicitation
Once the main assets of the system had been modelled, we set
about identifying security requirements. We started by
defining the concepts of confidentiality, integrity and

availability (for other projects, different concepts might be
applicable as well, such as dependability, accountability, non-
repudiation, etc.). We then looked at specific assets and asked
the participants to rate them (qualitatively) according to these
three terms. More specifically, we asked them to evaluate what
the impact would be on the system should a specific type of
attack occur.

For example, this is how we rated the solar data asset:

Availability: What would happen if users were unable to
access this information? The system needs to be 'robust
within reason '. Identifying levels of acceptability was 'not
something that's been clearly defined.'Availability was
therefore rated as being a 'very high' requirement.

Integrity: How important is it for the information held at the
providers to be what users and providers expect it to be? ' l f
there was no data, there would be no system '. Similarly, if the
data was modified in any way so as to mislead, this would be
unacceptable. The Integrity requirement was therefore rated as
being 'essential'.

Confidentiality: Does the Solar Data have to be kept secret
from anyone? 'Some providers may want to restrict the access
to the data for a period of time ', but 'they may not want to use
EGSO for that type o f data'. The requirement for
confidentiality was rated as 'medium '.

This proved to be useful for three reasons:

1. Participants had to look systematically at their
system and identify a wide range of security
requirements for every part of the system (many
people tend to forget that requirements other than
confidentiality are also important).

2. It allowed the explicit description of implicit
assumptions, which in turn uncovered problems.

3 . The final outcome, although it consisted of
qualitative ratings, allowed the easy identification of
the most important assets in the system

The full asset model, complete with the identified security
requirements can be seen in Figure 4.

4 .2 .3 R i s k A n a l y s i s
Although the risk analysis is not complete, we started by
identifying the various dependencies between the assets of
EGSO. This highlighted, for example, that the availability of
the solar data (rated as very high) was completely dependent
on a wide range of factors such as provider administrators,
broker administrators, routing, hardware operation, network
links and their traffic.

Prior to carrying out the AEGIS analysis with EGSO, there had
been a debate about whether or not to use digital certificates.
The perceived cost and complexity of employing certification
(based on little more than word-of-mouth) was driving the
discussion, but the full consequences of either path of action
had not been analysed.

Before even starting the risk analysis, a strong desire to avoid
having to use digital certificates was voiced, illustrating the
fact that accurate knowledge in this area is paramount.

During this process, we identified that some users were going
to require a privileged access in order to be able to run
resource-consuming jobs. This conflicted with the stated
desire to avoid having to employ a robust version of access
control and authentication. It soon became apparent that

55

ruling out certification at this stage would be premature and
could possibly lead to a greater workload on developers and
more complex system.

We anticipate that the rest of the risk analysis will identify a
number of vulnerabilities, mainly in areas of availability of
services and integrity of data. We have already provided a
number of scenarios in which the data that was assumed to be
public could be modified to suit a particular attacker, or where
user software running on provider hardware could be used to
attack the system.

4.2.4 Security Design
Whilst the security design sessions are incomplete, the
identification of the dependencies in the beginning of the risk
analysis highlighted the total dependency on system
administrators and prompted the need for specifying their
duties. This in turn led to some discussions about the stated
need for a low cost buy-in from observatories wishing to
participate in the project, balanced against the current design
requirement for their administrators to actively carry out
various security tasks.

Other areas were also identified where policies would have to
be detailed, such as the expansion to different providers, data
update and integrity control, and acceptable use.

4.3 User issues in security decisions
The need to document specific administrative policies has
stemmed from explicitly stating the implied behaviours,
duties and skill levels expected of the administrators of the
system. This analysis has highlighted the need to detail the
duties of the administrators in order to provide ground for
both guidance and security.

Issues that will be raised include the problems users can have
with key management if the need for certification arises, the
need to clarify the specifics of tasks that administrators must
perform and conflicts that may occur if there is no provision
for prioritising administrator tasks (backup, maintenance,
security) and production tasks (special service). We will also
highlight the need for a security culture in which secure
behaviour is encouraged, possibly through the use of
incentives and punishment for transgression.

4.4 Developer knowledge of security
Some statements uncovered during the design sessions
illustrated a confusion and misunderstanding over what
securing the project entailed. For example, backup needs and
procedures were initially seen as an archival problem that
should be solved by individual providers, even though EGSO
was intended (among other things) to be a reliable means of
access to the data.

Other evidence of a better understanding of security can be
taken from comments such as how this approach has raised a
number of issues that had never been contemplated, such as
the need for EGSO to trust providers to behave in the expected
way as much as the need for providers to trust EGSO. Also, in
the words of one participant (and paraphrasing an American
politician), it was 'converting the unknown unknowns to
known unknowns '.

The process also seems to have changed the attitude of the
stakeholders from an initially held optimistic outlook on
security, to a more searching and deterministic attitude.

Furthermore, developers are happy to use the process and some
have even found it to be useful in gathering functional
requirements and understanding the system.

4.5 Motivation to apply security
In this case study, even without our involvement, the
motivation to apply security existed - what was missing was a
systematic analysis and plan for implementing it. There was
isolated evidence of some initial reluctance by some
participants of EGSO to get involved because of the need to
pursue functionality, but this quickly disappeared as soon as
we started.

Since our involvement, some of the points and suggestions
that were made have prompted changes in the design and
increased the resolve that security is a necessary step.

5. SUMMARY
These are the initial results for AEGIS and we are currently in
the process of gathering more detailed results and transcripts
from a number of other case studies.

From the evidence gathered so far, AEGIS has proved to be
approachable, engaging and simple to use. Through the
application of AEGIS, EGSO also identified a number of
problems and instituted a number of key changes:

• No one was explicitly in charge of ensuring the
project was secure

• Lit t le work was done to approach security
systematically

• There was little coordination between the project and
the institutions that run the project regarding
security

• We identified and modelled main assets

• We identified and documented security requirements

• We identified many areas which forced the project to
look at their implicit assumptions.

• We identified the need to document policy for a large
number of areas: backup, data update and integrity
checking, administrator duties, expansion of EGSO
to other providers and acceptable use

There is evidence that this process also improved the
developers' and researchers' knowledge about security. We
also believe that the inclusion of contextual information has
highlighted the need to document and regulate specific duties
of human personnel in the system that other security
methodologies would have overlooked in favour of technical
issues.

6. CONCLUSIONS
Although research in the usability of security is ongoing, we
believe there is a need to address the problems developers face
when building secure systems. They require help to overcome
the complexity of applying good security and designing
usable systems at the same time.

In response to this, we have presented AEGIS, a lightweight
approach improving the usability of a secure development
method as well as providing security decision makers with
increased awareness of user context.

Although this method is not necessarily as comprehensive in
its technical coverage of security when compared to other

56

methodologies, we believe it is the first to actively involve
user information in security decisions.

Our case studies have shown that this method is well received,
useful and approachable, having in many cases resulted in a
more comprehensive and structured approach to security. We
are currently expanding the number of projects we are working
with as a result. As part of our review of AEGIS, we intend to
extend and refine our methods in order to provide more
extensive support for the risk analysis and security design
phases.

We envisage future work to involve identifying common
security requirements and linking them to the appropriate
security design patterns [2] as well as improving tool support.

7. A C K N O W L E D G E M E N T S
We gratefully acknowledge the contributions of the NSPW
2003 participants and NSPW reviewers, who helped to improve
the earlier version of the paper. Ivan Flechais is funded
through an EPSRC CASE studentship with BT Labs.

8. R E F E R E N C E S

[1] CERT. http://www.cert.org

[2] Security Patterns. http://www.securitypattems.org/

[3] Seti@home. http://setiathome.ssl.berkeley.edu

[4] @stake. The Security of Applications: Not All Are Created Equal.
http://www .atstake.com. 2002.

[5] Abrams, M. D. Security Engineering in an Evolutionary
Acquisition Environment. New Security Paradigms Workshop
1998.

[6] Adams, A. & Sasse, M. A. Users Are Not The Enemy.
Communications of the ACM 1999. Vol. 42, No. 12 December

[7] Adams, J. Risk. 1995. UCL Press.

[8] Adams, J. & Thompson, M. Taking account of societal concerns
about risk:flaming the problem. Health and Safety Executive.
Research Report 035 2002.
http://www.geog.ucl, ac.uk/~j adams/publish.htm

[9] Beyer, H. & Holtzblatt, K. Contextual Design : Defining
Customer-Centered Systems. 1998. Morgan Kaufmann
Publishers, Inc.

[lO]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[191

[20]

[21]

[22]

Blakley, B., McDermott, E., & Geer, D. Information Security is
Information Risk Management. New Security Paradigms
Workshop 2001. pp 97-104.

Boehm, B. W. A spiral model of software development and
Enhancement. IEEE Computer 1988.21(5), pp 61-72.

Brostoff, S. & Sasse, M. A. Safe and Sound: a saflbty-critical
approach to security design. New Security Paradigms Workshop
2001.

Darley, J. M. & Latan6, B. Norms and normative behaviour:
field studies of social interdependence. Altruism and Helping
Behaviour. 1970. New York: Academic Press. J.Macauley &
L.Berkowitz (eds).

Grygus, A. 2003 And Beyond.
http://www.aaxnet.com/editor/edit029.html. 2003.

Herrmann, P. & Krumm, H. Object-Oriented Security Analysis
and Modeling. Proceedings of the 9th International Conference
on Telecommunication Systems - Modeling and Analysis 2001.
pp 21-32.

McDermott, J. P. & Fox, C. Using Abuse Case Models for
Security Requirements Analysis. Proceedings of the 15th Annual
Computer Security Applications Conference (ACSAC'99),
Phoenix 1999. pp 55-67. IEEE Computer Society Press.

Mitnick, K. D. & Simon, W. L. The Art of Deception: Controlling
the Human Element of Security. 2002. Wiley Publishing Inc.

Sasse, M. A., Brostoff, S., & Weirich, D. Transforming the
'weakest link': a human-computer interaction approach to usable
and effective security. BT Technical Journal 2001. 19, pp
122-131.

Viega, J. & McGraw, G. Building Secure Software. 2002.
Addison-Wesley.

Weirich, D. & Sasse, M. A. Pretty Good Persuasion: .4 first step
towards effective password security in the real world. New
Security Paradigms Workshop 2001.

Whitten, A. & Tygar, J. D. Why Johnny Can't Encrypt: A
Usability Evaluation of PGP 5.0. Proceedings of the 8th USENIX
Security Symposium, August 1999, Washington 1999.

Zurko, M. E., Simon, R., & Sanfilippo, T. A User Centered,
Modular Authorization Service Built on an RBAC Foundation .
IEEE 1999.

57

