
Merging Paradigms of Survivability and Security:
Stochastic Faults and Designed Faults*

J. McDermott
Naval Research Laboratory

Washington, DC 20375
USA

mcdermott @itd.nrl.navy.mil

A. Kim
Naval Research Laboratory

Washington, DC 20375
USA

kim@itd.nrl.navy.mil

J. Froscher
Naval Research Laboratory

Washington, DC 20375
USA

froscher@itd.nrl.navy.mil

ABSTRACT
Faults are examined by both the security and fault toler-
ance communities. These communities have strikingly dif-
ferent views of the types of faults tha t exist, the way they
are modeled, and how they are addressed. One community
can pronounce a system survivable but the other community
would not find this to be so. This leaves us with two ap-
proaches that both fail to be comprehensive, depending on
which community is looking at the system. While intrusion-
tolerance and security researchers look at faults in terms of
statistically dependent events caused by the hard intruder,
the fault tolerance l i terature assumes that faults are statisti-
cally independent and can be described as random variables
with probabili ty distributions. When considering the sur-
vivability of a system, we cannot assume that the system is
susceptible to only one type of fault or the other, but this is
common practice in both communities. A new paradigm is
needed.

1. INTRODUCTION
When thinking of survivable systems, we expect them to
perform in the face of faults (or at least fall in the expected
manner). Therefore, understanding, modeling, and correct-
ing these faults are very important steps in the survivability
arena. While system faults are examined by both the secu-
rity and fault tolerance communities [7], those communities
have strikingly different views of the types of faults that ex-
ist, the way they are modeled, and how they are addressed.
The different communities can look at the same system and
identify different sets of faults, thus also devising different
survivability approaches. One community can pronounce a
system survivable but the other community would not find
this to be so. This leaves us with two approaches that both
fail to be comprehensive, depending on which community is

*This work was produced by the United States Government
and is not subject to copyright.

New Security Paradigms Workshop 2003 Ascona Switzerland
ACM 1-58113-880-R/04/04

looking at the system.

Security researchers and fault-tolerance researchers look at
survivability from opposing viewpoints. Security people view
it in terms of t rus t relationships while the fault tolerance lit-
erature focuses on redundancy and reconfiguration In sum-
mary, one community models faults as worst-case behavior
of hypothetical intruders while the other considers faults to
be stochastic. This results in solutions from both paradigms
tha t cannot handle faults from the other paradigm.

In this paper, we introduce some definitions and concepts
that are important in understanding the conceptual differ-
ences between the two opposing literatures, describe the dif-
ferent types of fault classes and intruders that the two lit-
eratures focus on, and propose that a new paradigm shift is
required in this area if a system is to be truly survivable.

1.1 Definitions
Powell, Stroud, et al.[13] provide an insightful interpretat ion
of general dependabi l i ty concepts [1, 9] for security. We
follow their definition:

a t t a c k - a malicious interaction fault aiming to inten-
t ionally violate one or more security properties; an in-
trusion a t t empt via a vulnerability.

v u l n e r a b i l i t y - a n accidental fault, or a malicious or
non-malicious intentional fault, in the requirements,
specification, design, implementation, or configuration
of the system or its use, tha t could be exploited to
create an intrusion.

intrusion - a malicious, externally-induced fault result-
ing from a successful attack.

Following conventional security practice, we qualify attack,
vulnerability, or intrusion with a general security property
tha t may be violated: e.g. confidentiality, integrity, or avail-
ability. For example, we may have a confidentiality a t tack or
an availability intrusion. This distinction is important be-
cause, for example, an approach tha t tolerates availability
intrusions may not tolerate confidentiality intrusions. For
example, redundant copies of a da t a i tem x allow a system
to tolerate availability intrusions tha t damage some but not

19

all of copies of x. However, a confidentiality intrusion that
results in an unauthorized read of data item x cannot be
tolerated by redundant copies, since the service (confiden-
tiaiity of x) cannot continue, be restored, or be compensated
for using the redundancy.

1.2 Hard Intruders and Gremlins
Security not only brings the notion of attack, vulnerability,
and intrusion faults to dependability, it also brings with it
the notion of an intruder. The significant characteristics of
intruders are the rate at which they occur, their objectives,
their capabilities, and their willingness to take risks. Of
these characteristics, only the intruder's rate of occurrence
is probabilistic and even then it is not ergodic.

In this paper we consider two kinds of intruders. In the spec-
trum of intruder characteristics these two represent extremes
that make our point clear. Consideration of intruders, such
as script kiddies, who fall between these extremes, obscures
the point we are trying to make. One kind, hard intruders,
have relatively high-value objectives, low risk aversion, high
skills, and high resource levels. The other has no objective
at all, low skills, low risk aversion, and the capability to at-
tack any component at any point in its life cycle. We call
the latter gremlins.

A hard intruder may be a team defending a world view (i.e.
a very high value objective), some of the team members may
have a very low risk aversion for this goal, the team may have
many person-months to develop attack tools, and some team
members may have high security experience. Our thesis and
our experience is tha t hard intruders have a significant rate
of occurrence for high-consequence systems. Since hard in-
truders have statistically dependent impacts on containment
regions and components, Byzantine faults [12] do not model
them accurately. We use the notion of hard intruders in a
way that is analogous to Nieison and Nielson's hardest at-
tacker [11]: we look at what are arguably the most difficult
faults to address via fault-tolerance approaches.

In contrast to hard intruders we use the notion of spon-
taneous intruders or gremlins because they are arguably
the most difficult to address via trusted approaches used
to counter hard intruders. The term gremlin originated
in the RAF during the first half of the twentieth century
and referred to an imaginary gnome-like creature responsi-
ble for inexplicable failures in aircraft. Personify stochas-
tic faults as gremlins to show how trusted, unbypassable,
tamper-resistant components have difficulty in coping with
stochastic faults. The most significant fact about gremlins
is that they can attack any component at any point in its
life cycle. Unlike hard intruders who are real persons, grem-
lins are imaginary beings that cannot be stopped by trusted
design,development, and deployment. On the other hand,
gremlins do not perpetrate very sophisticated attacks and
have no specific objective. The damage or impact on one
component is usually statistically independent of any im-
pact on other components. Therefore, Byzantine faults can
accurately model the behavior of gremlins.

2. PROBLEMATIC FAULTS
As aforementioned, the types of faults that are examined
in the two opposing literatures can be categorized into two

host A host B

/ / ~ _ J application 1

j i / ~ , system

F i g u r e 1: A r c h i t e c t u r e A t t a c k

different classes. In a nutshell, the fault tolerance literature
focuses on stochastic faults, and the security literature fo-
cuses on designed faults. Before we can address the different
types of faults together, we need to examine each class of
fault in more detail.

2.1 Designed Faults
Hard intruders cause designed faults 1. According to our def-
inition of an attack or intrusion as a fault, designed faults
are attacks or intrusions that are matched to the design as-
sumptious and assertions 2 about the system under attack.
A designed fault invalidates one or more of the assertions
or assumptions that intrusion-tolerance or security depends
upon. Designed faults may include common mode faults as
replicated attacks on redundant components, with the in-
tention of defeating the redundancy. Designed faults may
include architecture faults, as attacks or intrusions that are
directed at a part of a system that does not directly enforce
the policy being challenged. Architecture attacks or intru-
sions bypass protection mechanisms. For example, an in-
tegrity attack may be conducted via host operating systems
when the applicable integrity policy is enforced by middle-
ware, thus bypassing the defense.

Designed faults (attacks or intrusions) are overlooked by
the fault tolerance community because they do not affect
tolerance.structures in statistically independent ways. Ap-
proaches based on redundancy only work if we assume that
the attacks or intrusions are not replicated in a correspond-
ing way. Approaches based on reconfignration only work if
we assume that the attack or intrusion does not reconfig-
ure to match the new security posture. Designed attacks
or intrusions can, by definition, be expected to employ the
precisely corresponding techniques.

The limitation of fault-tolerance techniques is that they as-
sume that random variables with tractable distributions ac-
curately describe all faults. On the basis of these random
variables, fault-tolerance approaches assume that some eom-

1We mean "designed" and not "design."
2 Assumptions are conditions on the environment of a system
and assertions are conditions that the system satisfies.

20

ponents or configurations will not be affected by a fault. On
the other hand, because the approaches assume a completely
random behavior, they can deal with faults that occur in
unpredictable locations with unpredictable behavior. The
behavior of a designed fault is, from a fault-tolerance point
of view, so unusual as to be practically impossible. Thus, no
provision is made for dealing with designed faults. In fact,
it would be awkward at best and intractable in most eases
to try to model designed faults as random variables.

2.2 Stochastic Faults
Gremlins perpetrate stochastic faults. That is, there are
no human sponsors behind the faulty behavior. Stochastic
faults can be due to software flaws, hardware failures, unin-
tentional misuse, or external damage such as fire or weather.
Whatever the cause, the effect is the same as if imaginary
but relatively ignorant persons were given unrestricted ac-
cess to randomly chosen components.

Fault-tolerance approaches use redundant fault containment
regions [3] to deal with stochastic faults. There is no at tempt
to reason about specific traces of behavior. Instead, some
very general behavior such as fail-stop or Byzantine commu-
nication is assumed for the region as a whole, and the rest of
the system is designed to operate with these kinds of faults
in several of its regions. Because they make no assumptions
about specific fault behavior, fault tolerance approaches are
very powerful in the presence of stochastic failures. Trusted
component-based approaches used by the security commu-
nity on the other hand, find stochastic faults to be most
problematic to deal with. Security approaches are intended
to resist designed attacks and are based on models of hard
intruders. A hard intruder is posed for each class of fault
(e.g. confidentiality) and a careful design, development, and
deployment process is followed. The goal of the process is
a system comprising a (relatively) small number of trusted
components with the rest being untrusted. The meaning
of trusted is that 1) the hard intruder has no access to the
trusted components and 2) hard intruder manipulation of
any combination of untrusted components will not succeed,
because of the way the trusted components interact. This
trust is established by reasoning about sets of specific system
traces and no random variables are used.

Trusted component approaches assume some components
can be ruled inaccessible to intruders during some or all
phases of their life cycle. Since gremlins can appear in any
component, it is not possible to have a component that is
trusted with respect to stochastic faults. Furthermore, since
gremlins can exhibit a wide range of (stochastic) behav-
ior, reasoning about a particular gremlin in terms of sets
of traces is essentially intractable. The problem with these
security approaches is that they assume that sets of traces
describing the behavior of (possibly hard) intruders accu-
rately models all faults.

From a trusted components point of view, gremlins (the in-
truders behind stochastic faults) are imaginary and thus not
considered at all. Thus, no provision is made for dealing
with them. No amount of logical verification can keep them
out, because they are stochastic.

3From a certain point of view.

2.3 An Example
Govindavajhala and Appel show how soft memory errors can
cause security flaws [4]. The immediate basis for the attack
is a single upset event that flips a bit somewhere in memory.
A carefully designed program can exploit this flipped bit,
to bypass a type system used for language-based security 4.
The single event upset appears to be a stochastic fault, and
by itself, it is. However, the attack described in this work
is highly designed, that is, it is not easily modeled by a
stochastic variable. The paper describes the designed nature
of the attack quite well and includes an explicit discussion
of the assumptions and assertions violated by the attack 5
It might be easier to see that this is a designed fault if one
recalls that controlled energy of some appropriate form is
applied to the hardware, to exceed the level assumed for the
physical environment of the hardware.

3. A PARADIGM SHIFT
The following table summarizes the major differences be-
tween the ways the two communities approach survivability
in terms of faults.

These two problematic kinds of faults have limited the prac-
tical survivability of current and proposed survivable sys-
tems. Any survivable or intrusion-tolerant system that is
based upon redundancy or reconfiguration and that does not
consider hard intruders, is probably ineffective against de-
signed attacks. Any survivable or intrusion-tolerant system
that is based upon trusted, unbypassable, tamper-resistant
components and that does not consider stochastic faults, is
probably ineffective in the presence of gremlins. Current re-
search in survivability and intrusion tolerance is proceeding
in just this fashion. A paradigm shift is needed to build
truly survivable systems.

There are at least three ways to shift toward the new paradigm:
1) from fault-tolerance approaches toward designed faults,
2) from trusted-component approaches toward stochastic
faults, and 3) increasing the expressiveness of models such
as stochastic process algebra [5] to encompass practical sys-
tems.

The first approach should be adopted when coming from
the field of fault tolerance. Results should show the re-
quired trust relationships among redundant components of
an intrusion-tolerant architecture and show how the redun-
dant components can achieve the required level of trust.
They should also seek to define significant hard intruders
and show how the trust relationships frustrate these intrud-
ers.

The second approach should be the first step when com-
ing from the security community. Results should be based
on trusted component approaches but make provisions for
dealing with stochastic faults through redundancy and re-
configuration. For example, multilevel secure database ap-
proaches could be adapted to make them Byzantine fault
tolerant.

4It seems likely that many other security mechanisms could
be bypassed by exploiting similar flaws.
5 "All proofs of soundness are premised on the axiom that the
computer faithfully executes its specified instruction set."

21

Security Community Fault Tolerance C o m m u n i t y
Nature of Faults Designed Stochastic
Attacker Hard Intruder Gremlin

Trusted Components Approaches
Weakness Stochastic Faults Designed Faults

T a b l e 1: C h a r a c t e r i s t i c s o f Problematic Faults from the T w o P a r a d i g m s

Both approaches 1 and 2 can be applied with incremental
extensions of known results from the appropriate commu-
nity. However, both approaches 1 and 2 have the poten-
tial to merely shift the focus from one to the other without
completely addressing the problems in each. Therefore, ex-
panded models that encompass both types of faults (and
intruders) are the ideal approach for dealing with the issues
of stochastic faults and designed faults. Stochastic process
algebra s is a good example of an expanded approach because
it can model not only the functional behavior of concurrent
systems, but probabilistic aspects as well, which are required
when considering stochastic faults. For example, the mission
of an organization (and the system that supports this mis-
sion) may be to deliver the correct computational results
(functional) for a certain fraction of the time, given a cer-
tain rate of fault occurrence (probabilistic). Unfortunately,
stochastic process algebras per se do not appear to be suiB-
ciently well-developed for direct application to survivability.
Further work is required by researchers in foundation issues,
toward new expanded modeling approaches (e.g. improve-
ments in stochastic process algebra).

3.1 An Example Paradigm
A simple application of stochastic process algebra will make
the preceding discussion more concrete. We want to show
two things with this example: 1) what a successful new
paradigm might look like, and 2) the kinds of limitations
that we find in current candidates for this paradigm.

We will use P E P A [6] as the stochastic process algebra, with
some changes in notation that make security modeling eas-
ier. In PEPA the instantaneous action a of a conventional
process algebra is replaced by the activity (a, r) where a is
the action type and r is the rate of the activity. An activity
(a, r) has a duration which is an exponentially distributed
random variable. The rate r is the parameter for the distri-
bution of the duration.

Our first extension is the use of compound action types for
the activities of a process P . In basic PEPA, the action
type of an activity is denoted either by a Greek letter such
as a or an identifier such as send. For our purposes, we
use compound action types where the components are com-
posed by the ordered tuple notation, thus (send, a, nonces)
represents the action type for sending a message containing
Alice's identifier and a nonce. In PEPA a process X that
engages in activity a of action type a with activity rate r

eStochastic Petri Nets (SPN) [10] are another possibility,
but they do not model abstraction and composition as well
as process algebras. It is difficult to compose a model of good
components with an intruder model, using SPN. Another
possible approach is the Box Calculus [2], an extension of
Petri nets.

and then acts like process P is denoted

X = (c~, r) .P

or, with a compound action type

X = ((send, a, noncea), r) .P

In addition to the change in notation we will also use re-
naming functions to establish associations between activi-
ties in different processes. For example, suppose we have
two processes P1 and P2 defined as Pz =(send , rl).Pz and
P2 = (receive, r2).P2. We wish to connect these two pro-
cesses by arranging for their first activities to have a common
activity type. This accomplished by a renaming function
defined as follows

f ((send, r)) = (receive, r)
/ ((a , r)) = (a , r) , ~ # send

When this function is applied to a process the result is a
new process with the action types renamed according to the
function. Using the function f defined above f(P1) becomes

f (Pz) = (receive, r l) . f (P1)

We can now combine the two processes to communicate by
means of the PEPA cooperation operator

/(P1) ~ F~
{receive}

The meaning of this construct is similar to the meaning of
parallel operators in conventional process algebras. Activ-
ities in Pz or P2 with action types other than receive will
proceed independently. Activities of type receive must com-
plete in both Pz and P2, at the rate of the slower instance
of receive.

The PEPA algebra was initially defined for performance
modeling but we can apply it to model survivability in the
presence of both designed and stochastic faults. PEPA mod-
els can be used as ordinary process algebra models, to show
the effects of designed faults. To show the effects of stochas-
tic faults we use a basic construction that starts by defining
a constant process F A I L

F A I L ~ (v , T) . F A / L (1)

Process F A I L only performs internal events with the un-
known action type r and don't care rate T. We use process

22

~Va

q,,CaJk~b

~q'Jl~b

Figure 2: Protocol Sequence Diagram

dexed choice used to model the fact that Bob is prepared to
a t tempt a protocol run with any legal key and nonce.

Bob = + (((receive, a, na), r).((send, rib, {ha }k~b), r). kEKey
n~Noncc
((receive, {nb } k.b), r) .Session(a, b, kab, ha, rib))

(4)

By using our previously defined renaming function f , we can
combine processes Alice and Bob into a complete protocol
run. This gives us a model of the protocol that is suitable
for analysis wrt designed attacks.

F A I L and the PEPA choice operator + to give every process
the alternative of failing. For example, suppose we need to
include a process (a, r) .P in a model. To make this process
fallible, we replace it with the process

(. , e + (. , FAIL (2)

This new process will perform an action of type a with rate
r but then, with probability 1/k, it may fail. (Our con-
struction for fallible processes is reminiscent of transition-
assigned-output state machines. Like the Mealy machine
that must perform a transition to have an output, all fal-
lible processes must complete at least one activity before
fa~Img.)

For our example, we will model a simple mutual authentica-
tion protocol taken from Kaufman, Perlman, and Speciner
[8]. Alice wishes to establish a protected communications
session with Bob. Alice starts the protocol run by sending
her userid and a nonce to Bob. Bob responds with a nonce
of his own and Alice's nonce encrypted with their shared
key kab. Alice then confirms the session by responding to
Bob with Bob's nonce encrypted with their shared key kab.
The protocol steps are depicted in the sequence diagram of
Figure 2.

We model infallible Alice r as the process shown in Equation
3. To simplify the exposition, we have shown each activity
with the same rate r.

A l i c e = ((send, a, na),r) . + (((receive, nb,{na}~.b) ,r). kEtf ey
n E N on ce

((send, {nb}kab), r) .Sess ion(a , b, kab, ha, rib))
(3)

The sub-process of receiving Bob's response, confirming Al-
ice's identity, and running a session is modeled as a choice
(+) indexed over all legal keys and nonces that Alice might
encounter. The term Session(a, b, k~b, na, rib) denotes a pro-
cess that carries out a communication session using key kab,
etc. We model infallible Bob in a similar fashion, with in-

rThat is, we don' t include failure probabilities using the
method of Equation 2.

f (Al ice) ~ f (Bob)
{ r e c e i v e }

(5)

We can adapt the model of Equation 5 to look at stochastic
faults by making Alice and Bob fallible processes, using the
approach of Equation 2. To simplify our exposition, we will
assume that all activities occur at the same rate r and that
all failures have the same probability 1/k. A fallible Alice
is

Alice =

+

+

+

((send, a.na), (k - 1)rlk) .
+ (((receive, rib, {na}kab), (k -- 1)r/k). kEKeF

nENonce
((send, {nb } kab) , (k - 1)r / k) .Session(a, b, kab, na , rib)

((send, {rib }~*b }, r / k) . F A I L

((receive, ha, {ha }k,,b), r / k) . F A I L)

((send, a, ha), r / k) . F A I L
(o)

We also show a fallible Bob process as

Bob :

+

4-

+

)

+ (
kEKey

nENonce
((receive, a, na), (k - 1)rlk).
((send, rib, {n,}*.b), (k -- 1)r/k) .
((receive, {rib} k.b), (k -- 1) r / k) . S e s s i o n (a , b, kab, ha, rib)

((receive, {nb}k,b), r) . F A I L

((send, nb, {na}kob), r) . F A I L

((receive, a, na) , r) .F A I L

(7)

It should be clear at this point that stochastic process al-
gebra can model both designed faults and stochastic faults.
We can add an infallible intruder process Y v e s to our sys-
tem and demonstrate, via the process algebra itself, that
](Alice){~eo~ive}f(Bob) is susceptible to a designed attack s.

SExercise for the reader: find the attack.

23

We can also derive an underlying Markov model from the
same PEPA model. We will not present this derivation be-
cause it would detract from our example. It is sufficient to
say that any finite PEPA model has a corresponding finite-
state Markov process. The problem (and one of the foun-
dational research issues) is that the Markov processes cor-
responding to PEPA models with failure have some states
that are not positive recurrent 9. The states corresponding
to the process FAIL constitute absorbing boundaries of the
Markov process. Because of this, the process may not have a
stationary probability distribution and if it does, the distri-
bution may be difficult to find. Without a stationary prob-
ability distribution, it is hard to make concise statements
about survivability wrt stochastic failures. So basic PEPA,
while promising, is difficult to use as survivability paradigm.

4. CONCLUSIONS
Survivable systems need to not only correctly and accurately
detect the presence of attack or intrusion faults, but also
function properly (i.e. complete the mission) in face of these
faults, especially in mission-critical systems. At the same
time, these mission critical systems should also be able to
survive faults that are random and unpredictable in nature.

Both intrusions and random faults are faults to the system,
and should not be thought of separately when considering
survivability of mission-criticai systems. However, in reality,
these two types of faults lack a common research plateau on
which to define, model, examine, and counter faults. That is
because, while both the intrusion-tolerance and fault toler-
ance communities examine system faults, these communities
have strikingly different views of the types of faults that ex-
ist, the way they are modeled, and how they are addressed.

While intrusion-tolerance and security researchers look at
faults in terms of statistically dependent events caused by
the hard intruder, the fault tolerance literature assumes that
faults are caused by gremlins and thus can be described as
random variables with probability distributions. However,
when considering the survivability of a system, we cannot
assume that the system is susceptible to only one type of
fault or the other.

For a system to be truly survivable, we must consider the
failure behaviors of both classes of faults. In order to achieve
this, we need to consider development of models based on a
combination of stochastic behavior and the ability to reason
about traces l°. This kind of model can encompass both
types of faults and methods of dealing with them. For this
purpose we suggest a paradigm shift that enables research
to merge these types of faults together.

This new paradigm would be much more useful since it can
be used for all stages of assessing survivable systems in-
cluding fault prediction, fault tolerance, fault recovery (re-
moval), and validation. With these new research tools, we
can design systems and support mechanisms that are toler-
ant against not only stochastic faults, but designed faults as
well, creating a practical survivable system.

9A state X in a Markov process is positive recurrent if the
expected number of transitions until the process returns to
state X is finite.

1°That is, specific detailed system behavior.

The position stated in this paper may appear obvious to
the reader. Unfortunately, it is apparently not obvious to
many of the researchers in the security and survivability
communities. Both research communities have spent much
time on complex algorithms or large prototypes that fail to
address issues from the other discipline. Our approaches
need to change.

The notion of "faults that are not easily modeled by stochas-
tic approaches" raises an interesting possibility that there
may be other significant classes of faults that are not stochas-
tic faults but are also not designed faults. Designed faults
invalidate the design assumptions or assertions of one or
more survivability mechanisms. It could be possible that
there are significant faults that do not violate design as-
sumptions or assertions but are nevertheless not stochastic
faults.

Acknowledgments

We would like to acknowledge the comments of the anony-
mous reviewers. Discussion with Bob Blakely, Sami Sayj-
dari, Mary Ellen Zurko, Steve Greenwald, and John McHugh
resulted in improvements to this paper. We would also like
to acknowledge B.B. Rath for posing the problem that led
to our results.

5. REFERENCES
[1] A. Avizenis, J. Laprie, and B. Randell. Fundamental

concepts of dependability. In Third Information
Survivability Workshop, Boston, MA, October 2000.

[2] E. Best, R. Devillers, and J.G. Hail. The Box calculus:
a new causal algebra with multi-level communication.
In Advances in Petri Nets, volume 609. LNCS, 1992.

[3] C. Davies. Recovery semantics for a db/dc system. In
Proe. ACM Annual Conference, pages 136-141. ACM
Press, 1973.

[4] S. Govindavajhala and A. Appel. Using memory errors
to attack a virtual machine. In Symposium on Security
and Privacy. IEEE, May 2003.

[5] H. Hermanns, J.-P. Katoen, J. Mayer-Kayser, and
M. Siegle. Towards model checking stochastic process
algebra. In W. Grieskamp, T. Santen, and
B. Stoddart, editors, Snd Int. Conf. on Integrated
Formal Methods (IPMZO00), 2000.

[6] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[7] Pankaj lalote. Fault Tolerance in Distributed Systems.
Prentice Hall PTR, 1994.

[8] C. Kaufman, R. Perlman, and M. Speciner. Network
Security: Private Communication in a Public World.
Prentice Hail, 1995.

[9] J.-C. Laprie, J. Arlat, J.-P. Blanquart, A. Costes,
Y. Crouzet, Y. Deswarte, J.-C. Fabre, H. Guillermain,
M. Kfiniche, K. Kanoun, C. Mazet, D. Powell,
C. Rabdjac, and P. Thdvenod. Dependability
Guidebook. Cdpadu~s-Editions, Toulouse, 1995.

24

[10] M.K.Molloy. Performance analysis using stochastic
petri nets. IEEE Transactions on Computers,
31(9):913-917, September 1982.

[11] H. Nielson and F. Nielson. Hardest attackers. In Proc.
Workshop on Issues in Theoretical Security, Geneva,
July 2000.

[12] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. JACM,
27(2):228-234, April 1980.

[13] D. Powell and R. Stroud. Malicious- and - ~
accidental-fault tolerance for internet applications:
Conceptual model and architecture. Technical report,
MAFTIA deliverable D2 (available as LAAS-CNRS
Rep. 01426 or University of Newcastle upon Tyne
CS-TI:t-749), November 2001.

25

