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ABSTRACT 
Locality as a unifying concept for understanding the normal 
behavior of benign users of computer systems is suggested 
as a unifying paradigm that  will support  the detection of 
malicious anomalous behaviors. The paper  notes tha t  local- 
i ty appears in many dimensions and applies to such diverse 
mechanisms as the working set of IP addresses contacted 
during a web browsing session, the set of email addresses 
with which one customarily corresponds, the way in which 
pages are fetched from a web site. In every case intrusive be- 
haviors that  violate locality are known to exist and in some 
cases, the violation is necessary for the intrusive behavior to 
achieve its goal. If this observation holds up under further 
investigation, we will have a powerful way of thinking about  
security and intrusive activity. 

Categories and Subject Descriptors 
C.2 [Computer-Communications Networks]: Local and 
Wide-Area  Networks; C.2.5 [Local and Wide-Area N e t -  
works] :  Internet--observations of tra1~c characteristics 

General Terms 
Security 

Keywords 
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. INTRODUCTION 
Big whorls have litt le whorls 

That  feed on their  velocity, 
And little whorls have lesser whorls 

And so on to viscosity. 
- Lewis F. Richardson as quoted by George 

Gamow in "Creation of the Universe" [7] 
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Multiscale locality has proven to be a key to understanding 
physical a wide variety of physical phenomena. The piece 
of dogeral above is quoted in a 1950's popular  cosmology 
book[7]. I t  serves to i l lustrate the observation that  locality, 
manifested as clustering, appears  at  many scales in the ob- 
servable universe. In the cosmological world, clusters form 
at the scale of planets with their  satellites and smaller sys- 
tems up to clusters of clusters of galaxies and beyond. 

Closer to home, locality of program counter and da ta  ref- 
erences turned out to be the  key to the design of effective 
memory paging systems[4]. In this case, the key locality 
concept is the "working set," i.e a set of memory pages 
that ,  if maintained in the physical memory of the computer 
will allow the program (or programs) in execution to make 
progress without excessive page faulting. This work was 
in response to the observation that ,  on some time sharing 
computers, page faults occurred so frequently that  the CPU 
was mostly idle, waiting for the page(s) containing the next 
da ta  or instructions to be referenced to be loaded into mem- 
ory. This phenomenon, termed thrashing,  led to a variety 
of models of program behavior, the understanding of which 
allowed efficient implementat ion of paged memory systems. 
As a side benefit, this area also led to studies that  resulted 
in efficient da ta  structures and algorithms for dealing with 
da ta  whose size demanded organization in virtual  memory. 

The thesis of this paper  is tha t  locali ty principles are a key 
to distinguishing and understanding "normal" behavior in 
computer systems tha t  may be subject  to at tack by out- 
siders. We feel tha t  an understanding of normal is an impor- 
tant  step towards understanding tha t  port ion of abnormal 
behavior that  represents the actions of malicious users of the 
system. Our long term goal is to develop a sufficient under- 
standing of the systems with which we work so that  we can 
identify properties tha t  are necessary parts  of certain mali- 
cious activities, and, with luck, propert ies  tha t  are sufficient 
to indicate such activities. As an example, one of the few we 
have, a necessary aspect of the behavior of rapidly spread- 
ing worms such as Code Red or SQL/Slammer  is that  they 
a t tempt  to make contact with a large number of potential ly 
infectable hosts in a short  period of time. 

The individual observations on which the thesis is based are 
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not unique, but their unification into a guiding principle 
is. We note that locality is a fairly broad concept. In gen- 
eral, locality is manifest when the behavior of the system 
can be represented by relatively compact clusters in some 
dimensions of a multidimensional measurement space. The 
clustering may appear at various scales, i.e. the time and 
amount of data necessary to manifest a cluster may vary 
widely. Time, typically the rate at which events are observed 
or the intervals between them may be one of the dimensions 
along which clustering occurs. If normal behavior exhibits 
clustering and abnormal behavior fails to cluster (or clus- 
ters in a different way), we have a mechanism that has the 
potential for discriminating between normal and abnormal 
behaviors. Note that  we have not used the terms "benign" 
and "malicious" as surrogates for normal and abnormal. In 
this context, abnormal means unusual. In some cases, as we 
at tempt to understand why locality appears to characterize 
normal behavior, we may be able to make a case that  cer- 
tain classes malicious behavior are necessarily abnormal in 
that  it will necessarily fail to meet the "normal" clustering 
criteria. On the other hand, we may not be able to make the 
case that all normal activity necessarily satisfies the "nor- 
mal" clustering criteria so that failure to cluster is evidence 
of malicious behavior, but  does not identify such behavior 
with absolute certainty. 

In the remainder of the paper, we consider a number of 
observations in which the locality principle is manifest and 
make the case that, at least observationally, they are strong 
indicators of normal behavior at an appropriate scale. We 
then look at a variety of malicious behaviors that  appear 
to violate these notions of locality, examining the question 

of whether or not the the violation is necessary or fortu- 
itous. We conclude by presenting (limited) evidence from 
our own data to support the thesis and outline the future 
research that  we hope will lead to a better  understanding of 
the paradigm. 

It remains to explain the term "outsider" in the title. As 
Jim Anderson noted in his 1980 paper on detecting computer 
misuse[2], in the limit, the malicious behavior of an insider 
is indistinguishable from that  of a normal, non-malicious, 
user. The phenomena that  we are discussing are the result 
of activities by outsiders who have not taken care to tailor 
there attacks to mimic the behaviors of the normal user 
populations of the systems being examined. In some cases, 
we are examining purely outside or external behaviors such 
as the characteristics of packets that  arrive at the border 
of an enterprise network. In other cases, the behavior is 
internal, e.g. a worm propagating from an infected host, 
but  we still prefer to characterize it as outsider since the 
code that  does the propagation originates outside the system 
and has not been created with any notion of observing and 
mimicking normal users, i.e. it represents the actions of a 
visiting outsider who makes no effort to fit in. 

2. MOTIVATING EXAMPLES 
In this section, we discuss a number of examples in which 
locality appears to be a key to describing normal behavior. 
The time scales involved range from weeks or days down to 
seconds or less. 

2.1 Gross Scale Workstation Connectivity 
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Figure 2: The number of  unique source IPs that contacted each number of  unique dest ination IPs per hour 
for January 14, 2003. This graph represents all outgoing T C P  data. 

Hofmeyr observed in his dissertation[8], that, at least in the 
context of his network at the University of New Mexico and 
with a few exceptions, the set of network addresses with 
which an individual workstation makes contact stabilizes 
within a period of several weeks after observation starts. 
After that point, the addition of new addresses into the set 
is relatively uncommon and may be taken as an indication 
of misbehavior on the part of the system initiating the con- 
nection. 

The general conclusion is that most users operate largely 
within a closed community of systems with which they make 
contact. The exceptions are fairly obvious: 

Workstations belonging to a system administrator whose 
job included making contact with a wide variety of 
other systems were excluded. 

HTTP browsing behavior was excluded for all users. 
The nature of the web where material at one site con- 
tains links to a variety of other sites is not likely to 
reach closure in most setting. Fortunately, browsing 
behavior appears to manifest useful locality on a smaller 
scale as we will see in section 2.2 below. 

2.2 Fine Scale Workstation Connectivity 
Williamson [12] presents a hypothesis that browsing behav- 
ior exhibits small scale locality. Based on a limited set of 
observations, he concludes that, for populations similar to 
his coworkers, a working set containing the 10 most recently 
visited IP addresses is a good predictor of the next IP ad- 
dress to be visited. Least Recently Used (LRU)replacement 

is used to maintain the working set with timestamps that 
are updated whenever an address already in the working set 
already is accessed. Departures from this locality are rela- 
tively frequent, but not persistent. Many of the violations 
result from extraneous factors such as references to sites 
containing pop up advertising material. 

Figure 1 provides a view of a network, providing support 
for Williamson's use of 10 for the size of a working set of 
IP addresses. This graph shows the number of source IP 
addresses that  contacted up to 50 IP addresses per hour, 
for data spanning one week in January, looking at outgoing 
data produced by Cisco NetFlow for a large network. (This 
data consists of flows, not packets, and has no directionality 
associated with it. That  is, we do not know definitively 
whether the internal or external machine started the flow.) 
The majority of source IP addresses (nearly 10%) contacted 
only 1 IP address per hour. And, looking at any one hour, 
at least 94.9 

Williamson uses a "soft limit" to react to locality viola- 
tions. When an address that  are not in the working set 
are accessed, the access request is placed in a paced de- 
lay queue which limits the rate at which such requests can 
be dispatched to one request per unit  delay (1 second in 
Williamson's case). When a delayed access is dispatched, 
all queued pending requests destined for the same address 
are sent immediately in the order in which they were en- 
queued and the destination is inserted in the working set, 
replacing its least recently accessed address. In this way, 
small locality violations are tolerated with minimal delay, 
but gross violations encounter ever increasing delays. The 
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system is intended to counter rapidly spreading malicious 
codes such as "Code Red" [9]. In this case, queue lengths in 
excess of some predetermined size might invoke more drastic 
responsive actions such as disconnecting the affected system. 

The notion that  unusual and potentially malicious behavior 
may violate locality properties is demonstrated in Figure 
2. In this graph, the number of source IP addresses that  
contacted some number of destination IP addresses for each 
hour over a typical workday during the month of January 
2003 is shown. There is one source IP address that  contacted 
65,536 destination IP addresses during one hour. In this 
case, the source performed a port scan of a class B-sized 
network. By definition, a port scan must violated notions of 
locality in terms of the number of destination IP addresses 
typically contacted by any given source IP, whether server 
or workstation, and so can be easily recognized in a well- 
mannered network. 

We suggest alternative representations for the working set 
that  obviate the queuing mechanism making for more math- 
ematical representations of locality. 

F i x e d  size w o r k i n g  se t  In this representation, the maxi- 
mum working set size is fixed. When a new address is 
seen, the least recently used 1 address is replaced with 

1 Other replacement policies than Least Recently Used could 
be adopted. Investigation of alternate policies is a possible 
path for future research. Our intuition is that  changes in 
policy may result in slight changes in optimal working set 
size, bu t  are unlikely to affect the validity of the hypothesis. 

the newly referenced one. The measure of locality is 
the frequency with which the contents of the work° 
ing set changes. In the queuing model, we could look 
at the effective working set as the union of the actual 
working set and the set of unique addresses currently in 
the queue. Based on Williamson's observations where 
queue lengths are seldom more that  two, a working set 
with a size of 12 (vice Williamson's 10) might be ex- 
pected to see an update frequency of less than 2 per 
second. Updates much in excess of this would be con- 
sidered as gross violations of locality. 

V a r i a b l e  size w o r k i n g  set  w i t h  c o n s t a n t  r e m o v a l  In this 
representation, the size of the working set is not fixed. 
Whenever an address not in the set is seen, it is added. 
At fixed intervals, say equal to the delay queue time, 
the least recently used entry is removed from the work- 
ing set. At any given time, the current size of the 
working set represents the locality of the monitored 
system. Based on the behavior of the fixed set plus 
queue model, we would expect the size of the working 
set to be relatively small and stable. If the size ex- 
ceeds a threshold,  this would be considered as a gross 
violation of locality. 

Note that,  under fixed assumptions on the distributions of 
addresses with time, the three models could probably be 
shown to be equivalent. Until we have empirical data on 
this and some assurance that  the actual distributions are 
tractable, we choose not to undertake this approach. 

The notion that  unusual and potentially malicious behavior 
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may violate locality properties is demonstrated in Figure 
2. In this graph, the number of source IP addresses that  
contacted some number of destination IP addresses for each 
hour over a typical workday during the month of January 
2003 is shown. There is one source IP address that  contacted 
65,536 destination IP addresses during one hour. In this 
case, the source performed a port scan of a class B-sized 
network. By definition, a port scan must violated notions of 
locality in terms of the number of destination IP addresses 
typically contacted by any given source IP, whether server 
or workstation, and so can be easily recognized in a well- 
mannered network. 

2.3 Incoming Traffic 
Both of the examples given in the previous section, along 
with previous work by Williamzon[12], focus on outgoing 
traffic. The notion of locality should also apply equally to in- 
coming traffic as seen at the border of an enterprise network, 
most likely with a larger working set. To test this notion, a 
graph of the number of source IP addresses that  contacted 
some number of destination IP addresses for a week in Jan- 
uary for all incoming TCP traffic was generated, and can 
be seen in Figure 3. The majority of incoming sources con- 
tact a single destination IP address on the target network, 
and may represent activities such as contacting a particular 
web server, or checking e-mail from a home address. On 
the opposite extreme, a small number of sources contacted 
a very large number of internal addresses. It  is suspected at 
this point that these sources may represent events such as 
port scans. Thus far, attempts to calculate a working set for 
this data have not proven fruitful and there are no obvious 
locality violations of the sort seen in Figure 2. Investiga- 

tion is on-going to better understand the behaviors shown 
in this graph. The dataset used apparently contains a very 
large amount of scan and probe data. One of the authors 
(Gates) is currently working to identify these scans and we 
plan to repeat the at tempts to construct a working set with 
this data removed. In addition, we do not know precisely 
which addresses in the monitored network have computers 
assigned to them at any given time. Removal of attempts to 
contact non existent machines from the incoming traffic (a 
first approximation to the removal of scans) may alter the 
picture substantially. 

Work at Boeing [6, 5] indicates that  locality (as represented 
by changes in address entropy) can be observed in network 
border or core data. In  this case, a stream of border data 
that was known to be free of DDoS attacks was examined 
and the entropy of the set of the 10,000 most recently seen 
source addresses was calculated. The stream was augmented 
with a simulated DDos attack that  used spoofed source ad- 
dresses and the attack was easily recognized by the change 
in entropy of the addresses. It  is noted, that an attack us- 
ing non-spoofed addresses would also be detected by this 
mechanism, as well. 

2.4 Gross Scale Email Addressing 
Beginning with Meliesa in 1999, we have seen a number of 
wide spread email based viruses. While the detailed behav- 
ior of of these viruses is discussed in section 2.5 below, email 
viruses exhibit a kind of locality violation, albeit complex, 
at an enterprise level. For the purposes of this discussion, 
we assume that the email origination and reception behavior 
of the enterprise as a whole is easily observable. This will 
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be relatively easy if all email, internal and external passes 
through a limited number of (perhaps one) mail servers. 

In this case, the locality is manifest in the time dimension. 
Under normal circumstances, email transmission patterns 
follow a fairly regular pat tern that  reflects the working hours 
of the enterprise in question. A typical email pattern under 
normal circumstances can be seen in the left hand side fig- 
ure 4. Typical, successful, email viruses spread by sending 
copies of themselves to a fairly large number of addressees, 
usually obtained from some address repository available on 
the account of the user being attacked. 

As the enterprise becomes infected, the rate of emission of 
email increases, sometimes exceeding historical peaks, as 
shown at the right hand end of figure 4. If we plot the deriva- 
tive (daily difference) of the email volume, we see that the 
slope becomes steeper as the attack starts as shown in figure 
5. These two figures are based on the CERT email volume 
for the first 8+ months of 2003. The peak in late August 
represents the outbreak of a "sobig" email virus. The noise 
in the peak represents some anomalous behavior caused by 
the excessive mail load. 

In addition we may be able to define secondary indications 
of locality in email behavior. If we at tempt to cluster mail 
based on properties such as sender, nature and size of at- 
tachments, order of addresses, etc., we think that  only virus 
messages and those sent to mailing lists are likely to cluster 
significantly. Work by Stolfo and his group at Columbia, ad- 
dressed at the detection of malicious codes in email attach- 
ments, holds promise in this area[l l ,  10]. Their approach, 
based on data mining, builds classifiers for benign and mali- 

cious email content based on the learning of discriminators 
from labeled data. The result is the establishment of content 
based locality measures that  cluster normal and malicious 
content. 

2.5 Fine Scale Emafl Addressing 
Many users maintain address books that are used in the 
sending of email. Starting with the Melissa email virus in 
1999, a number of email viruses have taken advantage of 
these address books to guide their propagation. By defi- 
nition, sending email to an address or addresses found in 
an address book cannot be considered to be abnormal, per 
se. On the other hand, we suspect that  most email activity 
follows relatively simple pat terns that  demonstrate consid- 
erable locality over a time frame ranging from hours to days. 
In observing this locality, it is necessary to distinguish be- 
tween receiving an email and reading it. When an email is 
read, the reader may perform one or more responsive ac- 
tions, including: 

• Delete the email. 

• Reply to the email. 

• Forward the email to one or more individuals. 

• Originate an email to another party without including 
the provocative original. 

• etc. 

We believe that  observing email behaviors for a cross sec- 
tion of users will allow us to build locality models for email 
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connectivity that  can be used to distinguish normal activity 
from the automatic spread of malicious code via email. It 
will be interesting to see what role address books play in 
characterizing this activity. 

Problematic areas include users who maintain large scale 
mailing lists as part of their job and regularly launch large 
batches of email with identical content to the lists, We note 
that only a specifically targeted malicious email worm would 
be likely to provoke activity from the keeper of such lists 
without provoking a general flurry of abnormal emall activ- 
ity from other users. 

2.6 Server Considerations 
Pure servers can be expected to exhibit locality based on 
their intended function. We note, in passing, that a ma- 
chine configured as a pure server 2 would have an outgoing 
locality set with no entries in it and any at tempt by such a 
server to initiate an arbitrary connection is suspect 3. Hy- 
brid servers do exist. Systems that  do price comparisons 
take requests from users and make outgoing connections to 
determine the best price for the requested item. We believe 
that the outgoing connection sets for such machines are rel- 
atively small and stable, though perhaps not as small as 
Williamson suggests for workstations. 

2by pure server, we mean a machine that only responds 
to external requests, but never initiates requests to other 
systems. 
3Syslog messages being sent to a log server would be the 
exception, but  the point is that the outgoing connection set 
is both small and stable. 

For server machines, it is the incoming connection set that 
we need to examine for locality behaviors. Fortunately, a 
substantial amount of work has been done characterize both 
the temporal and spatial locality of web traffic. Motivated 
by the need to design appropriate caching mechanisms, A1- 
media, et. al. observe[l] that a stack distance model based 
on a LRU stack of object references is a good model for char- 
acterizing the temporal locality of web page references. Note 
that  this is quite similar to the workstation locality working 
set discussed above. In the case of web page temporal lo- 
cality, a stack of page requests is maintained with the most 
recently requested page on top. When a page that  is already 
on the stack is requested, it is moved to the top. For each 
request, rl, we can compute a distance dl that is the num- 
ber of positions up the stack that  the requested document is 
moved. Thus, a request string r l , r 2 , . . ,  r . . . .  Can be con- 
verted into a distance string dz, d2 , . . ,  d , . . .  that  preserves 
the pattern of activity, but does not depend on document 
names. The statistical distribution of the distance values 
is a representation of the temporal locality of the request 
strings. In practice, popular documents stay near the top of 
the stack with relatively small distances. 

In addition to temporal locality, web request traces exhibit 
spatial locality, defined as the tendency of substrings of re- 
quests to be repeated in the overall request trace. This 
occurs whenever there is a canonical navigation through a 
series of pages in a particular order. It  turns out that  spa- 
tial locality on web references is a fractal property, i.e. it 
exhibits detail at all scales[l] showing both short and long 
range dependencies among request strings. Note that  this is 
characteristic of bursty processes in which regions of intense 
activity tend to occur at irregular intervals. 



Figure 6 shows the temporal behavior of a machine that  is 
acting almost exclusively as an email server. In this fig- 
ure, we see that  the outgoing activity consists of approxi- 
mately equal amounts of DNS (port 53) and SMPT (port 
25) traffic 4. Since email addresses are symbolic, they must 
be converted to IP form before the delivery connection can 
be made. The figure is based on observations made at the 
border of a large network and reflects only traffic from inside 
to outside, i.e. deliveries within the network are not shown. 

We suspect that  patterns involving temporal or spatial lo- 
cality occur for other services and that  further investigation 
can lead to ways in which their normal activities can be 
characterized. 

2.7 Content Locality and Clustering 
We recently became aware of work by Cilibrasi, et. al. on 
clustering of music[3] based on approximations of its Kol- 
mogorov complexity. This might provide an approach for 
identifying, for example, members of a polymorphic virus 
family. We have not yet had time to investigate this fur- 
ther, but hope to do so in the near future. 

3. LOCALITY AS A UNIFYING PARADIGM 
The examples given above are neither complete nor exhaus- 
tive. In many cases, they are based on very limited observa- 
tional data and a program of observation and experimenta- 
tion is needed to see whether they hold up on a large scale. 
Nonetheless, locality appears to be a powerful framework 
for unifying many aspects of normal behavior. Why this 
should be is not entirely clear. It is likely that  some effi- 
ciency of action phenomena are involved. In the biology of 
motion, small motions involving resonance phenomena lead 
to efficiency. Trees in a forest tend to have similar resonant 
frequencies allowing them to bend together in response to 
wind gusts. People tend to behave in repetitive ways that  
exhibit various forms of locality. Perhaps it is only rea- 
sonable that human artifacts such as systems of computer 
programs should exhibit similar properties. 
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