
Public Key Distribution through "cryptolDs"
Trevor Perrin

trevp@trevp.net

ABSTRACT
In this paper, we argue that person-to-person key distribution is
best accomplished with a key-centric approach, instead of PKI:
users should distribute public key fingerprints in the same way
they distribute phone numbers, postal addresses, and the like.
To make this work, fingerprints need to be small, so users can
handle them easily; multzpurpose, so only a single fingerprint is
needed for each user; and long-lived, so fingerprints don't have to
be frequently redistributed. We show how these qualities can be
achieved with simple and well-understood techniques. The chief
technique is for each user to store a root key in a highly secure
environment and use it to certify subkeys for use in more
convenient environments. Certificate formats like X.509, PGP,
and SPKI could be used for this, but we argue that a format
designed expressly for this could do a better job; thus we design
the cryptolD certificate format.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and
authentication; E.3 [Data Encryption]

Protection -

General Terms
Design, Human Factors, Standardization.

Keywords
Public key infrastructure, key distribution, key management,
fingerprints, cryptolDs.

1. INTRODUCTION
When Diffie and Hellman invented public key cryptography, they
assumed public keys could be distributed by placing them "in a
public directory along with the user's name and address" [10].
Implicit in this is the idea that public keys are similar to
addresses, and thus can be distributed in the same fashion (such
as through directories like phone books, or through manual
methods like exchanging business cards).

This approach to key distribution is particularly apt for securing
person-to-person communications, since users are already
accustomed to exchanging and managing addresses in this
setting. Thus, the metaphor "public keys as addresses" allows us
to repurpose existing infrastructure (directories, address books,
etc.) and existing user behaviors for key distribution.

New Security Paradigms Workshop 2003 Ascona Switzerland
© 2004 ACM '1-58113-880-6/04/04.._$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

There are a few problems with treating public keys as addresses:

• Public keys are large: thus they are difficult for people
to read, write, speak, memorize, or compare.

• Public keys are single-use: it is good practice to use
different key pairs for different protocols or in different
devices, and thus a person will have multiple public
keys.

• Public keys are transient: they need to be revoked
when the private key is lost or stolen, and should be
changed periodically.

It would be burdensome to transmit multiple large public keys,
frequently, from the subject to the relying party. Thus we must
construct some sort of cryptographic identifier which is like a
public key but is small, multipurpose, and long-lived:

• Small: Through hash extension [1] and base 32
encoding we can construct a public key fingerprint that
is half the length of current fingerprints (20 versus 40
characters) but still achieves an adequate security level.

• Multipurpose: Each user's fingerprint would
correspond to a root key under which the user certifies
the subkeys he uses in particular protocols, or on
particular devices.

• Long-Lived: The root key would be kept in a highly
secure environment, possibly in the possession of some
trusted party or threshold of parties. Root key
compromise would thus be a rare occurrence, and
subkey compromise would be dealt with by frequently
re-issuing and revalidating subkey certificates.

The certificates issued by a root key to its subkeys are neither
identity certificates (like X.509 [25,30] or PGP [6,29]) nor
authorization certificates (like SPKI [13,14]). We call them key
management certificates. These certificates wouldn't contain
identity or authorization data, but they would benefit from
techniques such as threshold subjects [15] and timed revalidation
[17]. X.509, PGP, or SPKI certificates could be used for key
management, but a certificate system designed specifically for
this could be much simpler, and could implement the above
techniques more effectively.

In what follows, we consider key infrastructure as having two
parts: public key distribution and private key management. In
section 2 we examine public key distribution, and argue against
identity certificates in favor of address-based key distribution. In
section 3 we consider private key management and argue for key
management certificates. Finally, since current certificate
formats are not ideal for key management, we design the
cryptolD certificate format. The fingerprints used with this
format we call cryptographic identifiers, or cryptolDs.

87

2. PUBLIC KEY DISTRIBUTION
2.1 Scope of the Problem
Public key distribution is the problem of distributing to parties,
in a trustworthy fashion, the public keys of those with whom they
wish to communicate. This problem must be pursued in a wide
range of settings, each with its own requirements, constraints,
and opportunities.

The setting we are interested in is end-to-end security for person-
to-person communications. We would like a solution that could
be built into consumer hardware and software and which would
enable widespread use of authenticated and confidential phone
calls, emalls, text messaging, video conferencing, and the like,
whether in business, personal, national security, or any other
environment.

Such a solution would meet three primary requirements:

• Flexibility as to degree o f assurance: Users in
different environments will have different security
requirements. When chatting with her Morn, Alice
might not care much if the public key is authentic.
When arranging a high-value money transfer, she will
care greatly. A one-size-fits-all solution will be too
burdensome in some cases yet too lax in others.
Achieving a low assurance level must be easy, and
achieving a high one must be possible.

• Flexibility as to means of assurance: Users in
different environments will find different means of
gaining assurance more natural. When users have
frequent real-world contact and are not part of any
overarehing security domain, manual exchange of
fingerprints is the most feasible approach. When users
are part of the same security domain, a trusted
authority for this domain should be able to introduce
them to each other. When users belong to different
domains, it should be possible to link these domains
through some sort of delegation, and in this fashion
assemble a large-scale infrastructure.

• Simplicity: If we expect security analysts to review and
approve of the solution, programmers to implement it,
administrators to deploy and manage it, and users to
comprehend and use it, it must be incredibly simple.
In a sense this is obvious. However, engineering
always runs into trade-offs, and we are declaring up-
front our bias for simplicity over efficiency, feature-
richness, backwards-compatibility, extensibility to
different use cases, or other desiderata.

X.509-based Public Key Infrastructure (henceforth just "PKI")
and PGP are commonly offered as solutions to this problem. In
2.2 we assess these systems against our requirements and find
them lacking. In 2.3 we present an alternative approach.

2.2 Current Approaches
PKI and PGP both use certificates for key distribution - PKI
relies entirely on certificates, whereas PGP also allows direct key
exchange, vedfiecl by fingerprints. Nonetheless, to fully
understand both systems, we must understand certificates.

A certificate is a document, signed by the issuer's public key,
which contains the subject's public key and some identity or
authorization information. It can be viewed as an assertion by
the issuing key about the subject key. Since certificates are

small and self-contained, they can be passed around and re-used
easily, and since they are signed, they can be distributed over
untrusted channels. A offline trusted third-party Trent can thus
express his opinion once that Alice's public key really belongs to
her, and Alice can publish this opinion in untrusted directories,
and pass it around by herself, to convince anyone who trusts
Trent of the association between herself and her public key.

This sort of certificate, which binds a public key to a name or
address, is an identity certificate. An authorization certificate
binds a public key to an authorization, such as the right to access
a particular server, or read a particular file. Authorization
systems such as SPKI are used primarily for access control; for
the person-to-person scenario, we will be concerned with identity
systems such as PKI or PGP.

We can further divide identity certificate systems into simple and
networked systems. A simple system, like our scenario with
Alice, Bob, and Trent, has only a single intermediary between
the subject and the relying party. In a networked system there
are end-entity certificates, which we've been discussing, and
certificate authority, or CA, certificates. These latter grant the

subject the power to issue certificates himself for some set of
names. The subject could delegate these powers further by
issuing his own CA certificates, and so on. The result is that
Bob will choose some certificate authorities as his trust anchors,
these will certify some other CAs, which will certify some other
CAs, and eventually one will certify Alice. To acquire trust in
Alice's public key, Alice presents, or Bob discovers, a certificate
path from one of Bob's trust anchors to Alice's public key.

PKI is a networked system. The PGP web of trust can be used as
a networked system but is perhaps better viewed as a network of
simple systems, since people sign each other's keys, but they
usually don't delegate a specific portion of the narnespace to the
signee, nor does software automatically discover paths. As we
mentioned, PGP also allows fingerprint-verified key exchanges -
thus PGP key distribution is a hybrid of fingerprint and
certificate techniques.

We now show how PKI and PGP fall short of our requirements.

2.2.1 P K I vs. R e q u i r e m e n t s
Most PKI applications try to automate key distribution
completely - when a valid certificate path is discovered for a
communication, some icon is shown to indicate security. Since
software can't know the user's security requirements for this
particular communication, this is necessarily a one-size-fits-all
approach. At best, the user can inspect the certificate path and
decide whether the issuers, policy OIDs, and Certificate Practice
Statements [25] are satisfactory - yet most users have no idea
what these things are. Thus, PKI offers little flexibility for the
average user to achieve different degrees of assurance in
different circumstances.

This automation also means PKI has little flexibility with respect
to means of assurance. If Alice and Bob have frequent real-world
contact, it may be quite easy for Alice to give Bob her fingerprint
manually. Yet PKI tries to get by without involving the user, so

88

it has no way to exploit this relationship. Instead, Alice and Bob
must exchange keys through the PKI infrastructure, since this is
all the software knows about. This requires Alice to authenticate
with Trent and procure a certificate, and it requires Bob to add
Trent as a trust anchor, and to ensure that both he and Trent
share the same name for Alice.

If we draw the relationship between Alice, Bob, and Trent as a
triangle, scaled to reflect ease of key distribution, Alice and Bob
may be close and Trent may be quite distant, so requiring all key
distribution to occur through third parties is inefficient. Alice
and Bob can work around this if Alice becomes her own CA and
issues herself a certificate, but then Bob has to treat Alice's CA
as a trust anchor, which is a huge security risk.

If PKI isn ' t flexible enough to support manual fingerprint
exchange, we still might expect it to be flexible in supporting
delegation amongst trusted third parties. A CA can delegate
authority to another just by issuing a CA certificate for some set
of names. Since these certificates can form any sort of topology,
this seems a very flexible system. However, this form of
delegation is extremely limited, since the issuing CA can only
delegate authority over concisely representable portions of the
namespace. When the desired delegations can't be exactly
expressed as permitted and excluded subtrees [25] of some
namespace (such as X.500 or DNS), the issuing CA is faced with
the procrustean choice of:

• Delegating too little authority and disenfranchising
some users.

• Delegating too much authority and creating a security
risk.

• Issuing multiple certificates, thus complicating path
construction.

This is a specific instance of a general problem - with
certificates, all delegations must be expressed in some language
which is necessarily limited. We can see the problem clearly by
considering a more flexible form of delegation - trusted
directories. A trusted directory is an online trusted third party
which clients query for public keys. This is what Diffie and
Hellman started with, and what many, even in the PKI
community, are returning to (under the name validation servers -
see SCVP [33,39] or XKMS [24]).

A trusted directory supports more flexible forms of delegation
than a CA because a trusted directory implements its delegations
instead of just proclaiming them. Thus, while a CA is limited to
delegations which can be expressed in a certificate and processed
by client software, a trusted directory can do anything when a
client asks it for a key - it can look in its local storage, consult
another directory, consult a PKI, consult multiple other
directories and PKIs and corroborate the results, and so on.

Trusted directories are not only more flexible than CAs, but they
are simple for clients to use - a client just consults a directory
and receives an answer. CAs, by constrast, simply proclaim that
they are delegating some authority and then wash their hands of
it. It is left to the client to find all the relevant proclamations and
make sense of them. Clients must pull certificates from a wide
range of sources while trying to discover a path through the
certificate graph for which the delegations are valid, the

signatures are correct, and the certificates have not been revoked.
This is an extraordinarily complex problem [8,23], so placing
this responsibility on client software, which is widely deployed
and thus difficult to upgrade and configure appropriately, is a
poor design choice.

CAs are more complicated than trusted directories in another
way. Consider the triangle between Alice, Bob, and Trent. If
Trent wants to tell Bob what Alice's public key is, the simplest
information flow would be directly from Trent to Bob. But if
Trent is a CA, he is offline and thus can't speak directly to Bob.
Instead, Trent must communicate with Bob in a roundabout
fashion - he must enlist Alice to present a certificate to Bob.
Thus, the offline nature of CAs forces end entities to mediate
communications between CAs and relying parties.

If online trusted third parties (i.e. trusted directories) are so
much more flexible and simpler than offline trusted third parties
(i.e. CAs), why are CAs the conventional approach? Offline
T I P s are seen as having three advantages:

• Performance: The ' ITP is not a communication
bottleneck.

• Partition Resilience: The system will keep functioning
if the ' ITP becomes unreachable.

• Private Key Protection: The "ITP's private key can be
kept offline, in a more secure environment.

These are legitimate performance and robustness goals, but they
aren't worth the crippling complexity CAs impose. Furthermore,
CAs are not even succesful in achieving the first two benefits:
relying parties desire timely assurance of a key's authenticity,
and this requires an online mechanism be added back in - either
the subject or the relying party needs to frequently contact some
online party to procure validation data.

In sum, PKI makes two rnisl~akes with respect to key distribution.
First, it ignores the user and tries to automate everything: it
neither takes account of the variability in users' security
requirements nor takes advantage of the user's capacity for
manual key distribution. Second, PKI pays an enormous price in
limitations and complexity for the marginal benefit of offline
"ITFPs.

2.2.2 PGP vs. Requirements
PGP allows users to exchange keys over untrusted channels such
as key servers or web pages, and then verify the keys against
trusted fingerprints. We have two criticisms of this use of
fingerprints:

• Key-Centric instead ofFingerprint-Centric: PGP uses
fingerprints only to verify keys, instead of treating
fingerprints as the primary element of key distribution.
A PGP end-user cannot simply enter a fingerprint and
address into his software with the meaning "use this
fingerprint for this address". Instead he has to acquire
the key, import the key onto his key ring [47], verify
the key's fingerprint, and then sign the key to record
that it is trusted.

• Size: PGP fingerprints are 32 or 40 characters long
when rex-encoded. This makes them difficult to

89

display in business cards and paper directories, and
difficult for people to deal with.

We also have a nit:

• Presentation: PGP Fingerprints aren't written in a
consistent form - different users call them different
things, and often include details which shouldn't be
necessary such as key ID, key type, or key size. This
makes fingerprint handling confusing, particularly to
novice users.

PGP also allows indirect key distribution through a web of trust.
In this model, people certify each other's keys, and each relying
party assigns trust levels to keys belonging to certain people.
When presented with a new key, relying party software will
check whether the new key has been certified by keys whose
trust levels sum to a sufficient threshold; if so, the new key will
be considered valid.

Certificates are a much better design choice for PGP than PKI:
the PGP web of trust consists of a network of people functioning
as trusted third parties. Since people cannot be expected to be
online, serving at the beck and call of relying parties, certificates
are a necessity. Nonetheless, certificates introduce complexity
and rigidity into PGP just as in PKI.

Con~plexity because the relying party is forced to explain his trust
decisions to the computer. To do this, he must understand not
only the cryptographic concepts of keys, signatures, and
certificates, but also the web of trust concepts of trust and
validity, and how the latter is calculated from the former [45,46].
Furthermore, he must understand how to manipulate these
concepts by importing and signing keys, assigning trust levels,
and reading validity levels. We emphasize that the underlying
concepts of trust and validity are not complex - people deal
intuitively with them every day. The problem is that PGP forces
users to deal quantitatively with these fuzzy notions and to
manage them across the human-computer interface.

Rigidity is introduced because the user must express his trust
decisions in a limited language. Real-world trust is above all
context-dependent. Bob and Charlie may be partners in business
but competitors for the fair hand of Alice. Alice may be an
employee of Bob but a union organizer on the side. Alice may
trust Charlie in little things, yet know he has an ethical weak
spot when it comes to making a buck. Questions of trust can't be
answered in the abstract, yet PGP assumes a user can assign
fixed trust levels to individuals, and that these trust levels will
interact additively. These are hugely simplistic assumptions.

Besides trust management, another source of limitation and
complexity in the web of trust is path discovery. In PKI this
complexity is felt by end-entity software, whereas in PGP it is
felt by the user. This is because the web of trust has no structure
that could guide automated path discovery, so software doesn't
even try. If a user is presented with a new key which none of his
current trusted keys have certified, it is up to the user to
download keys from the keyserver until he finds a trusted path to
the new key. This is neither scaleable nor convenient.

Finally, we point out that PGP is usually delivered as a stand-
alone application. This is of little use to end-users, who need

security within the devices and applications they actually use.
Trying to splice PGP support into these environments through
plugins typically results in a poor user experience. Why haven't
software vendors added PGP support to their applications? We
surmise that the complexity of PGP trust management has made
this task seem too imposing. A public key distribution system
that aims for wide deployment must make life simple for
developers as well as end-users.

In sum: Like PKI, the PGP web of trust tries to automate
calculations best performed in the user's mind. The result is
excessive complexity for both users and developers [44].
Furthermore, a web of trust provides no basis for path discovery,
so it 's unclear how this could scale beyond small, tight-knit
communities. On the positive side, PGP users can ignore the
web of trust and just use fingerprints to verify a key exchange,
but this is still excessively complex.

In the next section, we show how fingerprint exchange by itself
can meet our requirements.

2.3 Address-Based Key Distribution
We argue that fingerprint exchange could form a person-to-
person key distribution architecture that is both flexible as to
degree and means o f assurance and simple. This argument is
based on an idealized notion of fingerprints which are:

• Small: We assume fingerprints that are around 20
characters in length.

• Multipurpose: We assume that each fingerprint
corresponds to multiple subkeys which can be used in
different protocols on different devices.

• Long-Lived: We assume that each fingerprint
corresponds to a root key that is managed in a highly
secure fashion, so revocation due to key compromise is
r a r e .

In section 3 we show how to approximate these idealized
fingerprints through real-world techniques. For now, we show
how such fingerprints would facilitate key distribution.

2.3.1 Fingerprints as Addresses
We propose that users can be educated to understand that
acquiring the fingerprint of another party is necessary for secure
communication with that party. Furthermore, it should be
explained that the fingerprint must be acquired through a secure
channel, lest they be tricked into using a fingerprint belonging to
someone else.

Armed only with this knowledge, and with their intuitive grasp
of all the ways in which small tokens of data can be
communicated, we believe that users could take key distribution
into their own hands. This human-centric approach to key
distribution would yield a system much more flexible, and much
simpler, than trying to automate key distribution through PKI or
the PGP web of trust.

The key to this argument is the metaphor fingerprints as
addresses. Like phone numbers, postal addresses, emall
addresses, and the like, fingerprints are small pieces of data that
must be exchanged as a prelude to communication.

90

It can be objected that fingerprints aren't small enough to justify
the metaphor - an X.509 or PGP v4 fingerprint is a hex-encoded
SHA-1 output, which works out to 40 characters. In response,
we will later design 20 character fingerprints that look like these:

f3v4g, ifcen, r3rj5, embx8

eg9zk, yv89c, yk4kr, dufge

bf45a.qssfo. 5ur8z.cx3ba

These are a little longer than most email addresses, a little
shorter than most postal addresses, and about the same size as a
credit card number plus its 4-digit expiration date. Since users
are capable of managing these items, we contend that users are
capable of managing fingerprints.

Fingerprint distribution would allow users to acquire assurance
in a fingerprint through any channel available to them:
fingerprints can be printed on business cards; written on napkins;
read aloud over the phone, over the radio, or in person; sent in
email or postal mail; published in paper or electronic directories,
print advertisements, or web pages; exchanged on removable
media; or handled through any channel that users find
convenient. Thus we achieve flexibility as to means of
assurance.

Since users would be directly involved in acquiring and
corroborating fingerprints from different sources, users can
mentally estimate the degree of assurance they have in any
fingerprint. If this degree is insufficient for the desired use, they
can consult other sources, give up the attempt to communicate, or
proceed with the communication while retaining some suspicion.
Thus we achieve flexibility as to degree of assurance.

Since users can view fingerprints as a sort of "crypto address",
they should be quite comfortable exchanging them, importing
them into address books, notifying people when they change, and
so on. In contrast, schemes which try to simplify things through
automation end up forcing users to grapple with the concepts of
keys, signatures, certificates, certificate chains, revocation lists,
trust roots, and validity/trust calculations. Paradoxically, by
giving users more responsibility we make things easier for them,
since less automation means less machinery and fewer concepts
to deal with. Thus we achieve simplicity for end-users.

With PKI, end-user software must perform path discovery and
validation. With PGP, software must provide a key management
interface. Both approaches make it difficult for developers to
add communication security to their products. However, almost
all personal communications software has an address book. It
would be easy to add a new field to address book entries to
contain the specified person's fingerprint. When a
communication is authenticated to a fingerprint that matches
some entry, the only thing software would have to do is display
the name of the entry (i.e. the pet name [35] "Morn", "Bob",
etc.), and an authentication indicator. Thus we achieve
simplicity for application developers.

Fingerprint distribution could piggyback on address distribution:
business cards and trusted directories would carry addresses and
fingerprints in tandem, and if you could get someone's address
from a mutual friend, you could probably get their fingerprint as
well (the Granovetter diagram models this type of interaction;
see [7,36]). In corporate environments, the enterprise directory

could deliver fingerprints along with addresses. Since pre-
existing address distribution infrastructure can be re-used for key
distribution, we achieve simplicity of infrastructure.

We now remark on some complications that result from the
fingerprints-as-addresses approach:

2.3.2 Retrieving Encryption Keys
Alice cannot encrypt an email to Bob if all she has is his
fingerprint. PGP requires Alice to either:

• Find Bob's key and import it manually, or-

• Download the key from an appropriate keyserver.

The first approach requires too much effort on Alice's part, and
the second depends upon a global, universally agreed-upon
infrastructure. Either approach requires Alice to carry around
her key ring if she wishes to encrypt to Bob from different
computers.

We would prefer to have Bob's trust information in a more
concise form that could be stored in directories and address
books, so that Alice could import this information from a
directory into her address book, and synchronize her address
books, without having to juggle keys and certificates. We'd also
like to streamline the conveyance of this information, so that
Alice doesn't have to acquire it manually, or depend on any
global infrastructure.

Thus we suggest each user should choose his own key URL,
where he will post the latest version of his encryption keys.
Address books and directories will have an additional field for
this URL. All of Bob's secure communications will contain his
key URL, so that Alice's software can populate this field
automatically. Where requesting a bootstrap message from Bob
is inconvenient or impossible, Alice can fill in this field herself.

2.3.3 Proof o f Possession
Alice could lie and claim ownership of Bob's fingerprint. To
someone who believed her, Bob's communications would appear
as if they were originating from Alice. If you only retrieve
fingerprints from people or directories you have a great deal of
trust in, then this is not a concern. Otherwise, the only way to
prevent this is to check and make sure that Alice can be
contacted under the fingerprint she claims is hers.

PGP provides this check, to some extent, since every key should
have a self-signed User ID containing the name and email
address of the key's owner. If you can recognize that these match
Alice and no-one else, then you can feel assured that Alice is not
trying to claim someone else's key.

We don't wish to follow this approach - it means that a relying
party must retrieve and inspect a user's key before asserting trust
in the fingerprint, and that would complicate fingerprint
distribution. Instead, we suggest warning users that people
might lie about their fingerprint, so you should contact them
under their claimed fingerprint to make sure it 's really theirs
(software could provide this warning automatically).

In practice, this check will happen in the course of things, since
most communications contain identifying information, either
explicitly (in message headers that identity the sender) or
implicitly (in the contents of the communication itself).

91

2.3.4 Human-Readable Certificates
We have pointed out that certificates make sense in PGP, since
they allow Trent to express his opinion about Alice's public key
in a form that Alice can re-use. If we're giving up certificates, it
seems that any relying party who trusts Trent will have to contact
him directly and ask him about Alice's fingerprint.

However, Trent could easily send Alice a signed email, where he
writes "I, Trent, hereby certify that the fingerprint
dbrav6,6zpre.wahq4.gqzjz belongs to Alice." Essentially,
this would be a human-readable instead of a machine-readable
certificate (we could call it a letter of introduction). Trent could
describe himself and Alice in any way that might be meaningful
to a relying party (mentioning nicknames, physical descriptions,
places of residence, etc.). Similarly, he could describe how he
authenticated Alice. Alice could forward this email to relying
parties to convince them of her fingerprint's authenticity.

2.3.5 Revocation
Suppose Bob receives Alice's fingerprint from Trent. Later,
Trent discovers that he gave Bob the wrong fingerprint. Trent
would like to revoke the fingerprint that he's already distributed
to Bob.

If Trent is a trusted directory, then Bob can poll Trent on a
regular basis. If Trent is a person, this can't be done as easily.
Nonetheless, if Bob and Trent have at least occasional contact,
then Bob would expect to learn from Trent if Alice's fingerprint
has changed. If the revocation is important enough, Trent may
broadcast it through channels that will reach most relying parties
(such as mailing lists, web sites, phone trees, etc.).

Thus, instead of designing a technical infrastructure for
revocation notices, we will assume these can be distributed
through the same mix of infrastructures that distributed
addresses and fingerprints in the first place.

2.3.6 Untrusted Fingerprints
Communication devices should always encrypt and authenticate
themselves, even when the fingerprint of the other party is
unrecognized. Opportunistic encryption of this sort protects
against passive eavesdroppers, even though it doesn't
authenticate the other party.

Software could automatically populate address book entries with
unrecognized fingerprints lifted from communications. These
fingerpnnts should be prefixed with some marker such as
"(untrusted)". When a communication is authenticated to an
untrusted fingerprint, software should not display an
authentication indicator. However, if a communication from the
same address fails to match the fingerprint, software should
display a warning about the mismatch.

A user could verify an untrusted fingerprint and then remove the
"(untrusted)" marker. Since it 's easier to compare fingerprints
than to type them in, this would save the user some effort.

2.3.7 Conclusion
We have tried to solve key distribution by reducing it to address
distribution - fingerprints are like addresses, and address
distribution is a solved problem. However, we've forced the
analogy by assuming that fingerprints could be made small,
multipurpose, and long-lived. Now we must show how to do so.

3. PRIVATE KEY MANAGEMENT
3.1 Scope of the Problem
Our approach to key distribution was based upon fingerprints.
However, a fingerprint that is simply a hash of a single public
key is quite limited:

• Alice may have multiple communications devices (a
desktop, a laptop, a cellphone, and a PDA, for
example), and each device may speak multiple
protocols. Sharing a single private key amongst all
these devices and protocols would be cumbersome and
risky (both in the act of sharing, and in the fact that a
compromise of one device or protocol would
compromise them all).

• Alice faces a tension between keeping her private key
secure and keeping it accessible: From the perspective
of security, Alice would love to bury her private key in
a mineshaft. However, Alice also wants to use her
private key on all her devices and in all different
circumstances - at home or at work, when travelling,
and so on.

• If the private key is lost or stolen, Alice has no way to
recover short of creating a new key pair and
redistributing the fingerprint.

In discussing key distribution we assumed that each person has a
single, long-lived fingerprint. Now we must consider how to
create such a fingerprint which also supports:

• Multiple private keys per fingerprint.

• Robust security and accessibility of private keys.

• Recovery from loss or theft of private keys.

We call this the private key management problem. Our solution
is for Alice to distribute the fingerprint of her root key. Alice
will then use her root key to issue certificates to the subkeys she
uses for particular protocols and devices. These certificates will
limit the allowed uses of subkeys and will specify revalidation
requirements so that subkeys can be disabled if compromised.
Whenever Alice communicates with Bob, she will present the
certificate chain from her root key to the subkey she is using, and
Bob will validate the chain against Alice's fingerprint.

Thus we accomplish:

• Multiple private keys per fingerprint: Alice can use a
different subkey for each protocol on each device.

• Robust security and accessibility of private keys: Since
the root private key only needs to be used ocassionally,
it can be kept in a highly secure manner. The less
important subkeys can be made accessible to different
devices.

• Recovery from loss or theft of private keys: Subkey
certificates will have short lifetimes and revalidation
requirements, so that theft of the private key can be
quickly recovered from.

The certificates used for private key management are different
from the identity and authorization certificates used for public
key distribution, and so we will call them key management

92

certificates. Whereas identity or authorization certificates bind
the key to some entity and must describe who this entity is, or
what he is allowed to do, key management certificates assume
that the root key is already bound to an entity. Thus, they only
address the simpler problems of binding a subkey to the root key,
and confining the damage done if the subkey is compromised.

This approach to key management is not novel. The PKI, PGP,
and SPKI communities have all considered how their respective
certificate formats could be adapted for private key management
[43,3,19]. In the next few subsections, we consider the use cases
and requirements for key management certificates. In 3.2 we
examine Pig/, PGP, and SPKI key management certificates, and
conclude that none of them meet our requirements. In 3.3 we
present the cryptoID certificate format.

3.1.1 Rootholders and Certificate Servers
Root keys should be stored in tamper-resistant hardware and kept
under lock and key. Most users would be unwilling or unable to
manage their root key this securely. These users should choose
some trusted party as their rootholder.

A rootholder is a self-chosen, offiine CA. The rootholder would
keep the root key physically secure, and would issue subkey
certificates to an online CA, or certificate server. The user
would periodically authenticate to the certificate server, probably
using a mutually-authenticated password protocol such as
TLS/SRP [42], and the server would issue short-lived subkey
certificates to the user. Since the certificate server would be
online, the user could retrieve certificates from anywhere,
whether at home, at work, or travelling, using any of his devices.

Business users would access the rootholder and certificate server
infrastructure maintained by their employer. Home users would
be free to select their own rootholders and certificate servers.
They might choose a fee-based commercial service, a free service
that comes bundled with something else (such as their operating
system, cell phone, or internet connection), or a nonprofit service
offering key management infrastructure as a benefit to the
community.

A user might not have sufficient trust in any of these parties. To
eliminate any single rootholder or server as the sole point of
failure, users should be allowed to choose a root key or subkey as
a threshold subject [15] of different keys held by different
parties. A user can thus assemble a trusted aggregate out of
several partially-trusted services which he feels are unlikely to
collude, or to suffer a common-mode failure.

3.1.2 Certificate Lifetimes and Timed Revalidation
The lifetimes of subkey certificates should be chosen so as to
balance two security risks. Frequent re-issuance of certificates
allows frequent replacement of the subject's private key, making
each key a less valuable target for cryptanalysis or theft.
However, frequent re-issuance increases the exposure of the
issuer's private key to theft or misuse.

Because of this tension, it is unlikely that we can re-issue
certificates as frequently as we would like. However, we can
achieve some of the benefits of frequent re-issuance without the
costs by requiring timed revalidation [17] of certificates. The
issuer of a subkey certificate can nominate a validation authority
(or VA) by including the VA's public key in the certificate. The

certificate will only be considered valid when presented in
conjunction with a signature from the VA, and the VA can
include expiration dates in these signatures. If the VA receives
notice that the subject's private key has been stolen, the VA will
refuse to issue further validation signatures and the certificate
will become unusable once its current signature expires.

Revalidations don't allow the subject to change private keys, but
they also don't require the involvement and exposure of the
issuer's private key; instead, the VA's key is involved. This key
is less important, since the VA can't issue certificates, and since
a compromised VA can be removed the next time a certificate is
issued.

Frequent revalidations introduce another security risk, and
another trade-off. If a user is prevented from contacting the VA,
the validation signature will expire and the subkey will become
unusable. There is a trade-off here between safety and liveness:
the more frequently the user has to revalidate, the more quickly a
compromised key can be shut down, but the more likely it
becomes that a denial-of-service attack or network failure can
prevent use of a legitimate key.

To manage this trade-off, a certificate should be able to specify
the VA as a threshold subject. To increase liveness, different
VAs can be linked through disjunctions, so that if one is
unreachable the user can contact another. To increase safety,
different VAs can be linked through conjunctions, so that if one
is compromised, the other can disable the subkey on its own.
Through these techniques a validation infrastructure can be
tailored to different requirements.

Example: Alice doesn't trust anyone else to hold her root key,
but she is worried it might be compromised. To mitigate this
risk, Alice can choose an online service as the VA for her root
key. If the online service misbehaves it can disable Alice's root
key, but it cannot impersonate her [20]. To mitigate the risk of
service misbehavior, Alice can choose a backup VA, so that both
VAs have to fail to prevent Alice from using her root key.

3.1.3 Time Synchronization
The use of short-lived certificates and revalidations requires
relying parties to keep accurate time. Personal computers and
devices often have no reliable, trustworthy source of time.
Nonetheless, the only way to avoid time synchronization would
be for every communication to be supplemented by online
exchanges with the issuing and validating parties. The
performance and denial-of-service implications of this are severe.
In contrast, keeping accurate time should only require
occassional contact with a trusted time source.

If we assume that relying parties can stay within at least 5
minutes of the correct time, then certificates and validation
signatures that expire in less than 5 minutes should never be
used.

3.1.4 One-Time Revalidation
A stolen private key will usually remain exploitable for at least a
few minutes. If this is unacceptable, an issuer may wish to
require that every use of a certificate requires an online, or one-
time revalidation [18]. We would prefer the subject to perform
the one-time revalidation, instead of the relying party, since the
subject and the VA are likely to be on the same local network or

93

otherwise closely connected. We would also like one-time
validation signatures to be presented along with the certificate
chain, just as timed validation signatures are.

This can be achieved fairly easily: instead of an expiration date, a
one-time validation signature would contain a nonce that is
derived from the current protocol the certificate is being used
within (such as TLS [9,32], IKEv2 [26,28], etc.).

3.1.5 Non-Interactive Communications
A signed and encrypted email might be received hours, days, or
even weeks after it was sent. By that time the sender's signing
key and the recipient's encryption key might have expired. The
recipient can archive old encryption keys, so the more serious
problem is sender authentication.

In 2.3.2 we mentioned that each user should have his own key
URL. This URL should contain the user's latest email
encryption certificate chain. If the user also posts the most
recent validation signatures for his email signing certificate
chain, the recipient of a signed message can retrieve these and
validate the certificate chain at a later date.

Essentially, the key URL would serve as a proxy for the user
(like the designated servers in [40]). In a nonlnteractive
communication, Bob can contact Alice's key URL and retrieve
the information that would have been sent directly in an
interactive exchange.

Example: Alice might change her signing key and certificate
once a month. She might revalidate this certificate every 24
hours. Bob would normally receive emails that still have active
validation signatures; however, if Bob fails to check email for a
few days, then he might receive an email with expired validation
signatures. His software would then retrieve the latest signatures
from Alice's key URL

3.1.6 Requirements
We can review the above scenarios and extract some
requirements for key management certificates:

• An authorization language for saying which protocol(s)
a key can be used with (emall, instant messaging, etc.).

• Threshold subjects

• Timed and one-time revalidations

• Threshold VAs

• Simplicity and security

In the next section, we argue that current certificate formats such
as PKI, PGP, and SPKI do not meet our requirements.

3.2 Current Approaches
PKI, PGP, and SPKI certificates were designed for public key
distribution. As a result, they contain many features irrelevant to
private key management, such as sophisticated naming and
authorization languages.

These components add complexity, but they could be ignored or
chopped out. Below we will ignore these irrelevancies and focus
only on whether these certificate formats have sufficient
functionality to meet our requirements.

3.2.1 X.509 Proxy Certificates
Proxy Certificates (or PCs) are X.509 certificates issued under an
end-entity certificate or under another proxy certificate [43]. PCs
were developed within the Grid Security Infrastructure [5,21] to
support single sign-on and delegation of rights within a grid
computing environment. Later, PCs were considered for private
key management in a fashion similar to our rootholders and
certificate servers [38]. Standardization of PCs is being pursued
within the IETF PKIX working group [4].

PCs are a simple profile of X.509 certificates - essentially, an
extension is added to indicate that a certificate is a PC, and path
validation is simplified. Certain of our arguments against PCs
thus apply to X.509 certificates in general.

PCs do not possess an authorization language for stating which
protocol(s) a key may be used with. PCs do allow for the
inclusion of arbitrary policy statements, so an appropriate
language could be defined.

X.509 certificates do not allow threshold subjects - a certificate
can only certify a single public key.

X.509 certificates do allow timed and one-time revalidation
through CRLs [25] and OCSP responses [37] issued by Indirect
CRL Authorities and Designated OCSP Responders (what we
have called VAs). However, threshold VAs are not supported.
Furthermore, a VA issuing these instruments must have a
certificate from the CA who issued the subject certificate. This
causes some problems:

• It is less efficient than putting the VA's public key in
the subject certificate.

• It complicates revalidation of root certificates.

• It is unclear whether Proxy Issuers are allowed to issue
certificates to VAs.

Another problem is that not all application protocols allow CRLs
and OCSP responses to be transmitted along with certificate
chains.

Proxy certificates also inherit a feature from X.509 certificates
that we consider a security risk. Suppose a CA or Proxy Issuer
has multiple certificates for the same key, with the same name.
X.509 certificate chaining is based on the name and key, so
certificate chains containing these certificates could be spliced
with each other, allowing a downstream subject to place himself
under whichever upstream certificates he finds most convenient:
"if an issuer were two PCs with identical names and keys, but
different rights this could allow the two PCs to be substituted for
each other in path validation and effect the fights of a PC down
the chain" [43]. This situation can arise quite naturally as
certificates are re-issued over time.

Finally, PCs are encumbered with X.509's legacy baggage, such
as ASN.I, OIDs, Distinguished Names, ambiguous key usage
bits, multiple bolted-on validation mechanisms, and an excessive
number of ways to encode strings, represent time, and identify
certificates [22].

3.2.2 PGP Subkeys
PGP subkeys [6] were introduced when PGP was trying to avoid
the RSA algorithm (for patent reasons) by allowing a user's

94

"key" to be a DSA signing primary key paired with an Elgamal
encryption subkey. With this functionality in place, people began
to use short-lived encrypfion subkeys, to give a measure of
forward secrecy [4] in the face of key compromise. Signing
subkeys are not often used, though the PGP community
recognizes the benefits of keeping a primary certification key in a
safe environment and certifying subkeys for use in more
convenient and hence riskier environments [3,27].

A PGP subkey cannot have subkeys, so PGP subkeys couldn't
support a 3-tiered architecture of rootholders, certificate servers,
and user devices.

PGP has some key flags, but these don't have sufficient
granularity to precisely specify which protocols a key can be used
with.

PGP does not support threshold subjects, or timed or one-time
revalidations.

3.2.3 S P K I Cert i f icates
SPKI has inspired our requirements, and has informed much of
the thinking in this paper. SPKI certificates almost meet our
requirements, but we will point out a few deficiencies.

SPKI's authorization language is sufficient for authorizing keys
for use with particular protocols.

SPKI supports threshold subjects: a certificate can certify a k-of-n
combination of keys or other threshold subjects. Each key then
becomes the root of a separate certificate chain, and these
certificate chains have to rejoin at some future point by all
certifying the same subject. This is rather complex, since a
certificate chain can now contain sub-chains. The current SPKI
structure draft [13] doesn't specify how these are handled.

SPKI supports timed and one-time revalidations. However, it
does not support threshold VAs - instead, every VA listed in an
SPKI certificate must validate the certificate. To achieve a
threshold an issuer could issue certificates that name each k-
subset of VAs separately. For a 3-of-5 threshold this works out
to 10 certificates. If the subject of these 10 certificates wanted to
issue a certificate that also has a 3-of-5 threshold of VAs, he
would have to issue 10 certificates under each of his 10
certificates, for a total of 100 certificates. This becomes
unmanageable.

A different approach would be to ignore SPKI's specialized
validation instruments, and to just treat VAs as threshold
subjects [16]. If A is the subject key and B through F are VA
keys, the following expression would require 3 of the 5 VAs to
collaborate to issue a certificate: (2 of A,(3 o f B, C,D,E,F)). Of
course, normally VAs don't collaborate to isssue a certificate,
they simply validate the certificate they belong to. Since
threshold subjects cannot sign their own certificate, they would
each need to issue another certificate whose only subject is A.
There are a couple of problems with this:

• A would need to sign this certificate as well. If A was
itself a threshold subject, this could add a fair number
of extraneous signatures.

• The validation certificates issued by the VAs could
contain expiration dates but not one-time nonces, nor

could they cover multiple certificates with a single
signature, as SPKI's specialized validation instruments
Call.

One last, minor point is that SPKI uses canonical S-Expressions
[40] for encoding certificates. These are easier to deal with than
ASN. I, but this is a less popular text encoding than XML.

In sum: SPKI's threshold subjects seem overly complex and
under-specified. SPKI's VAs do not support thresholds. VAs
can instead be treated as threshold subjects, but using certificates
as validation instruments is clumsy in a few ways. Nonetheless,
the idea of integrating VAs as threshold subjects seems
promising, if it could be done more cleanly. We will pursue this
further in the cryptoID certificate format.

3.3 The CryptolD Certificate System
The cryptolD system currently comprises a fingerprint format and
a certificate format. The fingerprint format is designed for
human convenience. The certificate format is designed to be
simple for relying parties while providing great flexibility in key
management for subjects.

In the next few subsections we give a detailed view of these
formats. In 3.3.10 we step back and give the rationales behind
certain decisions. An example <certChain> in the Appendix
may help clarify the text.

3.3.1 CryptolDs
A fingerprint calculated from a cryptoID root certificate we call a
cryptographic identifier, or cryptolD. A cryptolD is a 100 bit
value formatted as four groups of five lower-case base 32 digits.
The base 32 alphabet we use consists of the letters 'a ' through
'z ' except '1', and the numbers 3 through 9. Below are some
example cryptolDs:

dhdkc. 9af3q. fS~hk, choae

bfmns. 8x95s. ch59b, jtrdo

fynze, i9byx, owTbc, ybwt9

e84vj. 8agSg. skosq. 3hxzo

As 100 bits may not be secure against a brute-force search for
pre-images on a hash function, we adopt the hash extension
technique from [1]. The last 96 bits of the cryptoID are taken
from a SHA-1 hash of the root certificate. The first bit is
reserved, and must be set to zero. The next three bits form a
zero count and are used to determine the number of zero bits by
the formula 16 + (zeroCount • 4). The resulting 16 to 44 zero
bits are prepended to the 96 bits to yield a check value from 112
to 140 bits in length. When a root certificate is presented to the
relying party, the relying party will hash it using SHA-1, and
ensure that the check value is a prefix of the hash value.

When generating a root certificate, the cryptoID creator chooses
the number of zero bits he desires (16, 20 44). The creator
then includes trial rood/tier values in the certificate and hashes
the result until a modifier which yields the requisite number of
zero bits is discovered.

In test code on the author's Pentium 4 1.7 GHz laptop,
discovering a cryptolD with 16 zero bits (for a security level of
112 bits) takes a fraction of a second. Discovering a cryptolD

95

with 32 zero bits (for a security level of 128 bits) takes several
hours. Thus, the creator of the cryptolD can weigh his security
requirements against the inconvenience of a lengthy one-time
computation.

3.3.2 X M L Encoding
We use XML for our certificate format. There will be a
canonical form for this XML, and whenever a <certChain>
XML element (see 3.3.4) is used within a non-XML protocol
(such as TLS or S/MIME [31]) it must be in canonical form.

Canonicalization is necessary since some elements are used as
inputs to hash functions, and it also simplifies parsing.
However, when a <certChain> is used within an XML
document, it does not need to be in canonical form, as long as it
is canonicalized before hashing.

We won't define the canonical form in this document. However,
it simply consists of using a default namespace, using tabs for
indenting, and not breaking up long lines of text, plus a few other
things.

For defining XML structures within this document, we use a
shorthand similar to regular expressions, where:

• "?" denotes zero or one occurrence

• "+" denotes one or more occurrence

• "*" denotes zero or more occurrences

• xly denotes either x or y

For encoding binary data or large numbers, we use base64
encoding in the same fashion as XML-Signature [11].

3.3.3 Application Protocols
The <certChain> element (see 3.3.4) is presented to a relying
party by the owner of a cryptoID, and serves to certify a
particular end-entity key.

We would like to retrofit protocols such as TLS, S/MIME, and
IPsec [28] to support cryptoID certificate chains. A <certChain>
can be transmitted in any of these protocols by sending it instead
of an X.509 chain. In addition, care must be taken to ensure that
any use of the private key commits to the <certChain>.

Some examples:

• In TLS [9], we can use the cert_type extension from
[34] to indicate that a <certChain> will be carried in
the TLS Certificate messages.

• In S/MIME [31], we can add a <certChain> as a
signed attribute in a Signerlnfo structure. Within a
Recipientldentifier, we can use subjectKeyIdentifier to
carry a chainlD (see 3.3.4).

• In IPsec's IKEv2 [26], we can add a Ceruficate
Encoding for carrying a <certChain> within a
Certificate Payload.

• In XML-Signature and XML-Encryption [11,12], we
can add a <certChain> inside a dsig:Keylnfo.

3.3.4 The <certChain> Element
A <certChain> can have three attributes and three child
dements:

<certChain xmlns="http: //trevp. net/cryptoID"

cryptoID

cryptoID URL?

chainID>

<certs>

<keys>

<signatures>?

</certChain>

The cryptolD attribute gives the relevant cryptolD.

The cryptolD_URL attribute gives the eryptoID URL where the
latest certificate chains and signatures for this cryptolD can be
found.

The chainlD attribute gives a SHA-I hash of the <certs>
element. This value uniquely identifies the certificate chain (not
including the signatures).

The <certs> element contains a list of certificates. Each
certificate binds a key expression to a set of authorized protocols.
A key expression is like a threshold subject in SPKI: the
variables of the expression correspond to key hashes, and these
variables are linked by threshold connectives. Each variable
evaluates to true if the corresponding key produces a certification
signature on the next certificate in the chain, or a validation
signature on the current certificate, or if the key is the end-entity
key which the <certChain> certifies. Each key expression must
evaluate to true for the chain to be valid.

The <keys> dement lists public keys that match the hashes in
the key expressions.

The <signatures> element lists certification and validation
signatures that satisfy the key expressions.

3.3.5 The <certs> Element
The <certs> dement contains a list of certificates:

<certs>

<rootCert>

<cert>*

</certs>

<rootCert ID zeroCount modifier>

<keyExpression>
<protocols>?

</rootCert>

<cert ID>

<keyExpression>
<protocols>?

</cert>

The <rootCert> is hashed to create the cryptoID. It has
zeroCount and modifier attributes, but otherwise is identical to a
< c ert> .

96

Each <cert> has an ID attribute, which assigns the certificate a
unique number within the <certChain>. The <rootCert> has
1D= "0", the next ccert is "1 ", and so on, to a maximum of "9".

3.3.5.1 The <keyExpression> Element
Each <cert> has a <keyExpression>, containing an expr
attribute and a list of <keyHash> elements.

<keyExpression expr>

<keyHash>*

</keyExpression>

<keyHash key type?>

Each <keyHash> has a key attribute, which names the variable
bound to the key hash. The first variable in the chain is "A", the
next "B", and so on, to a maximum of "Z". The <keyHash>
element takes the hash of a <key> (see 3.3.6) as its content. The
type attribute determines the hash algorithm, with SHA-1 as the
default.

The expr attribute contains the key expression proper. Each expr
can refer to variables bound in the current certificate or any
previous certificate. In other words, once a variable is bound, it
remains bound for the rest of the certificate chain.

The expr attribute states which combinations of keys can jointly
exercise the certificate's power. Any key in a key expression can
issue a certification signature on the next certificate in the chain,
or a validation signature on the current certificate. A
certification signature is the key's way of assenting to a
particular exercise of power, A validation signature is the key's
way of expressing trust in the other keys in the key expression,
and delegating its decision-making powers to them.

Below is the key expression from the <rootCert> of the
<certChain> listed in the Appendix:

<keyExpression expr="((2 of A,B,C) and (D or E))">

<keyHash key= "A" > fQgRO4g3...</keyHash>

<keyHash key="B">ESOYtIc4...</keyHash>

<keyHash key=" C "> Zbu+HppY...</keyHas h>

<keyHash key=" D">LwzxiFBw...</keyHash>

<keyHash key=" E ">bYL j 56 fo...</keyHash>

</keyExpression>

A, B, and C are CA keys. D and E are VA keys. This distinction
is not encoded in the key expression, but is a matter of
operational behavior. Below is the key expression from the next
and last certificate in the same chain:

<keyExpression expr="(F and (D or E))">

<keyHash key=" F" >H+gs lrt 4...</keyHash>

</keyExpression>

This expression draws upon the VAs D and E which were
previously bound, and introduces the end-entity key F. In the
last certificate in a chain, the first key in the expression is always
the end-entity key, and the other keys are restricted to producing
validation signatures.

Since D and E are listed in key expressions in two certificates, a
single signature from either of them could be used to validate
both certificates.

Below is pseudo-BNF for the expr string. The last key
expression in the chain must match the lastExpr:

expr : := andExpr I orExpr I threshExpr [vat

lastExpr ::= "(" var " and " expr ") " I var

andExpr : := "(" expr " and " expr ")"

orExpr ::= "(" expr " or " expr ")"

threshExpr ::= "(" number " of " exprList ")"

exprList : := expr I expr "," exprList

number ::= "1"-"26"

var ::= "A"-"Z"

3.3.5.2 The <protocols> Element
Each <cert> may have a <protocols> element, listing the
protocols which the key expression can issue certificates for, or
which the end-entity key can be used with.

<protocols>

<protocol>+

</protocols>

If <protocols> is omitted, the <keyExpression> is usable with
all protocols. Each <protocol> element consists of a URI.
Some examples:

• urn:ie~:smime:signing
urn:ie~:smime:encryption

• urn:ietf:https:client
urn :ietf : https :server

The first example gives values for use in email signing and email
encryption certificates. The second gives values for use in web
client and web server certificates.

The <protocols> element in each <cert> must be a subset of the
previous <cert>'s <protocols>. A protocol is considered a
subset of another if it contains the other protocol as a prefix. To
make comparing lists of protocols easy, we require procotols to
appear in lexicographic order.

3.3.6 The <keys> Element
The <keys> element contains a list of keys:

<keys>

<key>+

< / key>

Each <key> will be qualified with a default namespace which
determines its type, and thus its contents. For example:

<key ID=? xlmns="http://trevp, net/rsa">

<e>Aw==</e>

<n>8blhBiWQ...</n>

</key>

A more precise type, such as http://trevp.net/rsa-pkcsl-shal,
would limit the key for use with a particular algorithm.

The ID attribute matches the key with a corresponding
<keyHash>. Not all <keyHash> elements need to have a
corresponding <key> - only keys that have produced signatures
need to be listed in <keys>. The entire <key> element will be
hashed to determine the <keyHash>'s content.

97

3.3.7 The <signatures> Element
The <signatures> element contains a list of signatures:

<signatures>

<signature salt key caInCerts? vaInCerts?

untrustedKeys? expiresOn? nonce? type>+

</signatures>

The salt attribute is a random value added by the signer to
prevent collision attacks.

The key attribute identifies the key performing this signature.

The calnCerts attribute lists every <cert> for which this key, in
this signature, is performing the function of a CA. The valnCerts
attribute lists every <cert> for which this key, in this signature,
is performing the function of a VA. These attributes can be
present simultaneously. For every cert in valncerts or calnCerts,
the variable matching the signer's key is set to true.

The untrustedKeys attribute can only occur when valnCerts is
present. It lists keys which the VA believes to be compromised
or untrustworthy. For every cert in valnCerts, the variables
matching untrustedKeys are fixed to false, regardless of any other
signatures.

The expiresOn and nonce attributes are mutually exclusive. The
expiresOn attribute gives the date and time when this signature
expires. It uses the dateTime UTC format from XML-Schema
[2].

The nonce attribute contains a nonce which must be derived from
the protocol the <certChain> is being used within. For
example, if a <certChain> is being used for client authentication
in TLS, the nonce might be a SHA-I hash of the
ServerHello.Random value. If neither expiresOn nor nonce is
present, the signature never expires.

The type attribute specifies the asymmetric algorithm used for
the signature. This must contain the relevant key's xm/ns
attribute as a prefix.

The <signature> content is a base64-encoded signature value.
The signature is calculated by hashing a concatenation of:

• The <signature> start tag, including all its attributes.

• The <rootCert> and <cert> elements, starting with
the <rootCert>'s start tag, and ending with the end tag
of the Xth <cert>, where X is the last <cert> covered
by this signature.

To calculate X, take the largest number V in the
valnCerts list and the largest number C in the
calnCerts list. Add one to C. Set X = max(V,C).

This construction serves two purposes:

• Hashing the <signature> start tag, with its salt value,
before the certificates, means that the signature will be
calculated on a hash result that can't be controlled by
an attacker.

• Hashing all the certificates from the root to the Xth
means that all important context is covered by the

signature, so there's no possibility of certificate chain
manipulations like those that X.509 is susceptible to.

Below is an example <signatures> from the Appendix that
would satisfy the previous example key expressions:

<signatures>

<signature

salt =" EcG9PmUr..."

key= "A"

caInCerts=" 0"

expiresOn ='' 2004-10-16T12 : 00 : 00Z"

type=" http: //trevp. net/rsa-pkc s 1-shal ">

fVE2PzBL...< / signature>

<signature

salt=" DjRGtNc j..."

key=" B"

caInCerts=" 0"

nonce=" bTc 0Rnei..."

type=" http: //trevp. net/rsa-pkcs 1-shal">

5 r zFzG7 Z...< / signature>

<signature

salt=" v3drGwA+... "

key=" D"

vaInCerts=" 0 I"

untrustedKeys= "C"

expiresOn=" 2004-08-21T08 : 38 : 06Z"

type=" http: / /trevp. net / rs a-pkc s i-s ha I ">

bJwzqrEh..< / signature>

</signatures>

3.3.8 The <certChain> Validation Algorithm
To validate a <certChain> requires the following steps:

1) Check that the <rootCert> yields a cryptolD consistent with
its zeroCount attribute, and equal to the cryptolD attribute.

2) Check that the chainlD attribute equals the SHA-1 hash of
the <certs> element.

3) Check that every <protocols> is a subset of the previous.

4) Check that every <key> matches its <keyHash>.

5) Check that any signature nonce value are correct.

6) Check that any signature expiresOn values are in the future.

7) Check that the signatures verify correctly.

8) Set each variable in each key expression to false.

9) For each calnCerts and valnCerts number in each signature,
set the variable for the signer's key in the relevant key
expression to true.

10) For each valnCerts number in each signature, set the
variables for the untrustedKeys in the relevant key expression to
false.

11) Set the first variable in the last key expression to true.

12) Check that each key expression evaluates to true.

98

3.3.9 The <certChains> Element
The cryptoID URL will contain a single <certChains> dement:

<certChains xmlns="http://trevp, net/eryptoID->

(<certChain> I <certChainDelta>) *

<signature>

</eertChains>

A <certChainDelta> is just a <certChain> minus the certs, and
containing only <signature> elements that weren't in the
original <certChain> and any new <key> dements needed to
verify them:
<¢ertChainDelta xmlns="http://trevp, net/cryptoID"

cryptoID

cryptoID URL?

ehainID>

<keys> ?

<signatures>

</eertChain>

The <signature> element in <certChains> authenticates both
the <certChains> and the cryptolD URL itself:
<signature salt chain eryptoID URL expiresOn

type>+

The chain attnbute refers to a preceding <certChain> which
must be certified for use with the protocol
"http://trevp.net/cryptolD_URL/". The cryptolD_URL attribute
lists the URL where this <certChains> is stored. The signature
hash is calculated over the <signature> element followed by its
sibling <certChain> and <certChainDelta> dements.

If Bob is given a cryptolD URL purported to belong to Alice, Bob
can verify the <certChains> against Alice's cryptolD to ensure
that the URL is correct. When Bob enters a cryptoID URL into
his address book, software should perform this check
automatically.

3.3.10 Rationales
We end this section by trying to justify some design decisions.

3.3.10.1 CAs and VAs
One innovation in cryptolD certificates is to integrate the roles of
CAs and VAs. A <keyExpression> does not assign any key a
particular role - any key in the expression can issue either
certification or validation signatures.

We view validation signatures as an optimization: if one key
trusts another, the first key could echo all the certification
signatures performed by the other. A validation signature simply
lets the first key express this trust, so the first key doesn't have
to be contacted each time the other key signs a certificate.

3.3.10,2 Partial Validation Signatures
Through the untrustedKeys attribute, a VA can express partial
trust in a key expression. Instead of refusing to validate an
expression just because an inessential key has been
compromised, a VA can issue a validation signature that simply
excludes the compromised key.

3.3.10.3 Key Hashes
We could have placed keys directly inside certificates, instead of
using <keyHash> elements. One advantage of referring to keys
through their hashes is that unused keys can be omitted. Another
rationale is that since the certificates have to be hashed for every
signature, we wanted to keep the certificates themselves small.

3.3.10.4 Hashing of Preceding Certificates
The signature on any <cert> covers all preceding certificates.
This makes the certificate format simple, since each <cert>
doesn't have to identity its issuer, reiterate the cryptolD it
belongs under, or re-bind variables. Also, it prevents any
splicing of one certificate chain with another.

3.3.10.5 CAs vs. EEs
A cryptolD certificate can be used directly in a protocol, or it can
issue certificates for that protocol. Some certificate systems
allow each certificate only one of these uses. However, this
distinction is not enforceable: with a CA certificate you can issue
yourself an EE certificate, and with an EE certificate you can
give away the private key or else proxy requests for other people.

4. CONCLUSION
Conventionally, certificates have been used for key distribution.
We argued that they are unsuited for this - they can only delegate
in limited ways, and the resulting structures are too complex.
Instead, users should exchange small fingerprints as if they were
addresses. These fingerprints would be easy for users to handle
and easy for software to support.

Certificates work better when used for private key management -
here there's no need to delegate over namespaces or
authorizations, and there's no need for structures more complex
than chains. The only function of key management certificates is
to allow multiple subkeys under a single fingerprint, and to limit
the damage done if subkeys are compromised. This allows the
user to have a root key which is managed in a highly secure
fashion, while subkeys are used for day-to-day business.

We then argued that current certificate systems are too
complicated for such a simple use, and lack certain desirable
features, so we designed a system focused on this case. The
result is the cryptolD - a small, multipurpose, long-lived
identifer which places key distribution where it should be - in
the hands of users.

5. ACKNOWLEDGMENTS
Thanks to the anonymous reviewers and the participants at
NSPW 2003 for their advice.

6. REFERENCES
[l] T. Aura. Cryptographically Generated Addresses (CGA).

To Appear in Information Security Conference 2003, 2003.
http://research.microsoft.com/users/tuomaura/CGM

[2] P.V. Biron and A. Malhotra. W3C Recommendation: XML
Schema Part 2: Datatypes, May 2001.
http://www.w3.org/TPJxmlschema-2/

99

[3] I. Brown. RE: OpenPGP Sub Keys (Was: key flag for
authentication). OpenPGP Mailing List, June 2003.
http:l /www.ime.orglietf-openpgp/mail-
archive/msg05207.html

[4] I. Brown, A. Back, and B. Laurie. Internet-Draft: Forward
Secrecy Extensions for OpenPGP, April 2002.
http://www.es.ucl.ac.uk/staff/I.Brown/draft-brown-pgp-pfs-
03.txt

[5] R. Butler, D. Engert, I. Foster, C. Kesselman and S. Tuecke.
A National-Scale Authentication Infrastructure. IEEE
Computer, 33(12), 2000.
http://www, globus.org/docurnentation/incoming/butler.pdf

[6] J. Callas, L Donnerhacke, H. Finney, and R. Thayer. RFC
2440: OpenPGP Message Format, November 1998
http://www.ieft.org/rfc/rfc2440.txt

[7] T. Close. What Does the 'y' Refer to?, July 2003.
http://www.waterken.com/dev/YURIJDefinition/

[8] M. Cooper et. al. Internet Draft: Internet X.509 Public Key
Infrastructure: Certification Path Building, February 2003.
http://www.ieff.org/internet-drafts/draft-ietf-pkix-
certpathbuild-00, txt

[9] T. Dierks and C. Allen. RFC 2246: The TLS Protocol
Version 1.0, January 1999
http://www.ietf.org/rfc/rfc2246.txt

[10] W. Diffie and M.E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory,
22, 1976.
http://citeseer.nj.nee.com/340126.html

[I 1] D. FEastlake, J. Reagle, and D. Solo. RFC 3075: XML-
Signature Syntax and Processing, March 2001.
http://www.ietf.org/rfc/rfc3075.txt

[12]D. Eastlake and J. Reagle. W3C Recommendation: XML
Encryption Syntax and Processing, December 2002.
http://www.w3.or g/TR/xmlenc-core/

[13] C. EUison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. Internet Draft: Simple Public Key
Certificate, July 1999.
http://world, std.com/~cme/spki.txt

[14] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. RFC 2693: SPKI Certificate Theory,
September 1999.
http://www.ietf.org/rfc/rfc2693.txt

[15] Ibid., 1.1.

[16] Ibid., 4.5.3.4

[17] Ibid., 5.3.

[18] Ibid., 5.5.

[19] Ibid., 7.

[20] Ibid., 7.6.

[21] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
Security Architecture for Computational Grids. Proceedings
of the 5th ACM Conference on Computer and

Communications Security, 1998.
ftp://ftp, globus.org/pub/globus/papers/secufity.pdf

[22]P. Gutmarm. X.509 Style Guide, October 2000.
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

[23] P. Gutmann. Everything you Never Wanted to Know about
PKI but were Forced to Find Out.
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutofial.pdf

[24] P. Hallam-Baker. W3C Working Draft: XML Key
Management Specification Version 2.0, April 2003.
http://www.w3.orgfI'R/xkms2/

[25] R. Housley, W. Polk, W. Ford, and D. Solo. RFC 3280:
Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, April 2002
http://www.ieft.org/rfe/rfc3280.txt

[26] C. Kaufman. Internet Draft: Internet Key Exchange (IKEv2)
Protocol, August 2003.
http://www.ietf.org/internet-drafts/draft-ietf-ipsec-ikev2-
10.txt

[27] W. Koch. RE: OpenPGP Sub Keys. OpenPGP Mailing
List, June 2003.
http:l /www.imc.org/ieff -openpgp/mail-
archive/msg05209.html

[28] IETF IPsec Working Group (ipsee)
http://www.ietf.org/html, charters/ipsec-charter.html

[29] IETF OpenPGP Working Group (openpgp).
http://www.ietf.org/html.charters/openpgp-charter.html

[30] IETF Public Key Infrastructure Working Group (pkix).
http://www.ietf.org/html, charters/pkix-charter.html

[31] IETF S/MIME Working Group (smime)
http://www.ieft.org/html.charters/smime-charter.html

[32] IETF TLS Working Group (tls)
http://www.ietf.org/html.charters/tls-charter.html

[33] A. Malpani, R. Housley, and T. Freeman. Internet Draft:
Simple Certificate Validation Protocol (SCVP), June 2003.
http://www.ietf.org/internet-drafts/draft-ietf-pkix-scvp-
12.txt

[34] N. Mavroyanopoulos. Internet Draft: Using OpenPGP keys
for TLS authentication, April 2003.
http:l/www.ietf.org/internet-drafts/draft-ietf-tls-openpgp-
keys-03.txt

[35] M. Miller. Lambda For Humans - The Pet Name Markup
Language.
http://www.efi ghts.org/elib/capability/pnml.html

[36] M. Miller, C. Morningstar and B. Frantz. Capability-based
Financial Instruments. Proceedings of Financial
Cryptography, 2000.
http://www.efi ghts.org/elib/capability/ode/index,html

[37] M. Myers, R. Ankney, A. Malpani, S. Galperin and C.
Adams. RFC 2560:X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol, June 1999.
http://www.ietf, org/rfc/rfc2560.txt

100

[38]J. Novotny, S. Tuecke, and V. Welch. An Online
Credentials Repository for the Grid: MyProxy. Proceedings
of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-IO), August 2001.
http://www.globus.org/research/papers/myproxy.pdf

[39]D. Pinkas and R. Housley. RFC 3379: Delegated Path
Validation and Delegated Path Discovery Protocol
Requirements, September 2002.
http://www.ieft.org/rfc/ffc3379.txt

[40] R. Rivest. Internet-Draft: S-Expressions, May 1997.
http://theory.lcs, mit,edu/~rivest/sexp, txt

[41] R. Rivest and B. Lampson. SDSI - A Simple Distributed
Security Infrastructure. Presented at Crypto '96 Rump
Session, 1996.
http://theory.lcs.mit.edu/~cis/sdsi.html

[42] D. Taylor, T. Wu, N. Mavroyanopoulos, and T. Perrin.
Internet-Draft: Using SRP for TLS Authentication, June
2003.
http://www.ieff.org/internet-draftsldraft-ietf-tls-srp-05.txt

[43] S. Tuecke et. al. /nternet Draft: Internet X.509 Public Key
Infrastructure Proxy Certificate Profile, August 2003.
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-
08.txt

[44] A. Whitten and J.D. Tygar. Why Johnny Can't Encrypt: A
Usability Evaluation of PGP 5.0. 8 tn Usenix Security
Symposium, 1999.
http : / / w w w- 2. cs. cm u. edu/~al ma/j ohnn y. pdf

[45] Ibid., 4.4.

[46] Ibid., 5.3. "Deciding whether to trust keys from the
keyserver ".

[47] Ibid., 5.3. "Getting other people's public keys".

101

A P P E N D I X - E x a m p l e <certChain>
<certChain xmlnsf"http://trevp.net/cryptoID"

cryptoID="bde7o.rsr3c.sgopr.m48mg"

cryptoIDURL="http://trevp.net/certChains.xml"

chainID="eROUmyjO/xOGWGKztULrpxXvlOk=">

<certs>

<rootCert ID="0" zeroCount="0" modifier="4075">

<keyExpression expr="((2 of A,B,C) and (D or E))">

<keyHash key="A">fQgRO4g3Uf4sL+uBULegUiYmSXI=</keyHash>

<keyHash key="B">ESOYtIc4EluT3MNVUeCSyhAJrz4=</keyHash>

<keySash key="C">Zbu+HPpYeoPYOl15xQiZx08xhnk=</keyHash>

<keyHash key="D">LwzxiFBwO/twxueL8MFPfxvXyPs=</keyHash>
<keyHash key="E">bYLj56fooumc2Gfo8/buc+6kwE8=</keyHash >

</keyExpression>

</rootCert>

<cert ID="I">

<keyExpression expr="(F and (D or E))">

<keyHash key="F">H+gslrt4az3pTwSYuJAfKEztSDY=</keyHash>

</keyExpression>

<protocols>

<protocol>urn:ietf:smime:signing</protocol>

</protocols>

</cert>

</certs>

<keys>

<key ID="A" xmlns="http://trevp.net/rsa">

<e>Aw==</e>

<n>rXXEojht..</n>

</key>

<key ID="B " xmlns="http://trevp.net/rsa">

<e>Aw==</e>

<n>ypn595ta...</n>

</key>

<key ID="D" xmlns="http://trevp.net/rsa">

<e>Aw==</e>

<n>i/HmEGNX...</n>

</key>

<key ID="F" xmlns="http://trevp.net/rsa-pkcsl-shal ">

<e>Aw==</e>

<n>mnxT1CgQ...</n>

</key>

</keys>

<signatures>
<signature salt="EcG9PmUryEgbXcoLgEECLA" key="A" caInCerts="0"

expiresOn="2004-10-16T12:00:00Z"

type="http://trevp.net/rsa-pkcsl-shal">fVE2PzBL...</signature>

<signature salt="DjRGtNcjSNRFqiwyQnuJ9g" key="B" caInCerts="0"

nonce="b7c0RNeicxeOFC2zJ6HTDZN58c0="

type="http://trevp.net/rsa-pkcsl-sha1">5rzFzG7Z...</signature>

<signature salt="v3drGwA+WyKSbzoZHA0moA" key="D" vaInCerts="01" untrustedKeys="C"

expiresOn="2004-08-21T08:38:06Z"
type="http://trevp.net/rsa-pkcsl-shal">bJwzqrEh...</signature>

</signatures>

</certChain>

102

