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ABSTRACT 
In this paper, we argue that person-to-person key distribution is 
best accomplished with a key-centric approach, instead of PKI: 
users should distribute public key fingerprints in the same way 
they distribute phone numbers, postal addresses, and the like. 
To make this work, fingerprints need to be small, so users can 
handle them easily; multzpurpose, so only a single fingerprint is 
needed for each user; and long-lived, so fingerprints don't have to 
be frequently redistributed. We show how these qualities can be 
achieved with simple and well-understood techniques. The chief 
technique is for each user to store a root key in a highly secure 
environment and use it to certify subkeys for use in more 
convenient environments. Certificate formats like X.509, PGP, 
and SPKI could be used for this, but we argue that a format 
designed expressly for this could do a better job; thus we design 
the cryptolD certificate format. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and 
authentication; E.3 [Data Encryption] 

Protection - 

General Terms 
Design, Human Factors, Standardization. 

Keywords 
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1. INTRODUCTION 
When Diffie and Hellman invented public key cryptography, they 
assumed public keys could be distributed by placing them "in a 
public directory along with the user's name and address" [10]. 
Implicit in this is the idea that public keys are similar to 
addresses, and thus can be distributed in the same fashion (such 
as through directories like phone books, or through manual 
methods like exchanging business cards). 

This approach to key distribution is particularly apt for securing 
person-to-person communications, since users are already 
accustomed to exchanging and managing addresses in this 
setting. Thus, the metaphor "public keys as addresses" allows us 
to repurpose existing infrastructure (directories, address books, 
etc.) and existing user behaviors for key distribution. 
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There are a few problems with treating public keys as addresses: 

• Public keys are large: thus they are difficult for people 
to read, write, speak, memorize, or compare. 

• Public keys are single-use: it is good practice to use 
different key pairs for different protocols or in different 
devices, and thus a person will have multiple public 
keys. 

• Public keys are transient: they need to be revoked 
when the private key is lost or stolen, and should be 
changed periodically. 

It would be burdensome to transmit multiple large public keys, 
frequently, from the subject to the relying party. Thus we must 
construct some sort of cryptographic identifier which is like a 
public key but is small, multipurpose, and long-lived: 

• Small: Through hash extension [1] and base 32 
encoding we can construct a public key fingerprint that 
is half the length of current fingerprints (20 versus 40 
characters) but still achieves an adequate security level. 

• Multipurpose: Each user's fingerprint would 
correspond to a root key under which the user certifies 
the subkeys he uses in particular protocols, or on 
particular devices. 

• Long-Lived: The root key would be kept in a highly 
secure environment, possibly in the possession of some 
trusted party or threshold of parties. Root key 
compromise would thus be a rare occurrence, and 
subkey compromise would be dealt with by frequently 
re-issuing and revalidating subkey certificates. 

The certificates issued by a root key to its subkeys are neither 
identity certificates (like X.509 [25,30] or PGP [6,29]) nor 
authorization certificates (like SPKI [13,14]). We call them key 
management certificates. These certificates wouldn't contain 
identity or authorization data, but they would benefit from 
techniques such as threshold subjects [15] and timed revalidation 
[17]. X.509, PGP, or SPKI certificates could be used for key 
management, but a certificate system designed specifically for 
this could be much simpler, and could implement the above 
techniques more effectively. 

In what follows, we consider key infrastructure as having two 
parts: public key distribution and private key management. In 
section 2 we examine public key distribution, and argue against 
identity certificates in favor of address-based key distribution. In 
section 3 we consider private key management and argue for key 
management certificates. Finally, since current certificate 
formats are not ideal for key management, we design the 
cryptolD certificate format. The fingerprints used with this 
format we call cryptographic identifiers, or cryptolDs. 
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2. PUBLIC KEY DISTRIBUTION 
2.1 Scope of the Problem 
Public key distribution is the problem of distributing to parties, 
in a trustworthy fashion, the public keys of those with whom they 
wish to communicate. This problem must be pursued in a wide 
range of settings, each with its own requirements, constraints, 
and opportunities. 

The setting we are interested in is end-to-end security for person- 
to-person communications. We would like a solution that could 
be built into consumer hardware and software and which would 
enable widespread use of authenticated and confidential phone 
calls, emalls, text messaging, video conferencing, and the like, 
whether in business, personal, national security, or any other 
environment. 

Such a solution would meet three primary requirements: 

• Flexibility as to degree o f  assurance: Users in 
different environments will have different security 
requirements. When chatting with her Morn, Alice 
might not care much if the public key is authentic. 
When arranging a high-value money transfer, she will 
care greatly. A one-size-fits-all solution will be too 
burdensome in some cases yet too lax in others. 
Achieving a low assurance level must be easy, and 
achieving a high one must be possible. 

• Flexibility as to means of  assurance: Users in 
different environments will find different means of 
gaining assurance more natural. When users have 
frequent real-world contact and are not part of any 
overarehing security domain, manual exchange of 
fingerprints is the most feasible approach. When users 
are part of the same security domain, a trusted 
authority for this domain should be able to introduce 
them to each other. When users belong to different 
domains, it should be possible to link these domains 
through some sort of delegation, and in this fashion 
assemble a large-scale infrastructure. 

• Simplicity: If we expect security analysts to review and 
approve of the solution, programmers to implement it, 
administrators to deploy and manage it, and users to 
comprehend and use it, it must be incredibly simple. 
In a sense this is obvious. However, engineering 
always runs into trade-offs, and we are declaring up- 
front our bias for simplicity over efficiency, feature- 
richness, backwards-compatibility, extensibility to 
different use cases, or other desiderata. 

X.509-based Public Key Infrastructure (henceforth just "PKI") 
and PGP are commonly offered as solutions to this problem. In 
2.2 we assess these systems against our requirements and find 
them lacking. In 2.3 we present an alternative approach. 

2.2 Current Approaches 
PKI and PGP both use certificates for key distribution - PKI 
relies entirely on certificates, whereas PGP also allows direct key 
exchange, vedfiecl by fingerprints. Nonetheless, to fully 
understand both systems, we must understand certificates. 

A certificate is a document, signed by the issuer's public key, 
which contains the subject's public key and some identity or 
authorization information. It can be viewed as an assertion by 
the issuing key about the subject key. Since certificates are 

small and self-contained, they can be passed around and re-used 
easily, and since they are signed, they can be distributed over 
untrusted channels. A offline trusted third-party Trent can thus 
express his opinion once that Alice's public key really belongs to 
her, and Alice can publish this opinion in untrusted directories, 
and pass it around by herself, to convince anyone who trusts 
Trent of the association between herself and her public key. 

This sort of certificate, which binds a public key to a name or 
address, is an identity certificate. An authorization certificate 
binds a public key to an authorization, such as the right to access 
a particular server, or read a particular file. Authorization 
systems such as SPKI are used primarily for access control; for 
the person-to-person scenario, we will be concerned with identity 
systems such as PKI or PGP. 

We can further divide identity certificate systems into simple and 
networked systems. A simple system, like our scenario with 
Alice, Bob, and Trent, has only a single intermediary between 
the subject and the relying party. In a networked system there 
are end-entity certificates, which we've been discussing, and 
certificate authority, or CA, certificates. These latter grant the  

subject the power to issue certificates himself for some set of 
names. The subject could delegate these powers further by 
issuing his own CA certificates, and so on. The result is that 
Bob will choose some certificate authorities as his trust anchors, 
these will certify some other CAs, which will certify some other 
CAs, and eventually one will certify Alice. To acquire trust in 
Alice's public key, Alice presents, or Bob discovers, a certificate 
path from one of Bob's trust anchors to Alice's public key. 

PKI is a networked system. The PGP web of trust can be used as 
a networked system but is perhaps better viewed as a network of 
simple systems, since people sign each other's keys, but they 
usually don't delegate a specific portion of the narnespace to the 
signee, nor does software automatically discover paths. As we 
mentioned, PGP also allows fingerprint-verified key exchanges - 
thus PGP key distribution is a hybrid of fingerprint and 
certificate techniques. 

We now show how PKI and PGP fall short of our requirements. 

2.2.1 P K I  vs. R e q u i r e m e n t s  
Most PKI applications try to automate key distribution 
completely - when a valid certificate path is discovered for a 
communication, some icon is shown to indicate security. Since 
software can't know the user's security requirements for this 
particular communication, this is necessarily a one-size-fits-all 
approach. At best, the user can inspect the certificate path and 
decide whether the issuers, policy OIDs, and Certificate Practice 
Statements [25] are satisfactory - yet most users have no idea 
what these things are. Thus, PKI offers little flexibility for the 
average user to achieve different degrees of assurance in 
different circumstances. 

This automation also means PKI has little flexibility with respect 
to means of assurance. If Alice and Bob have frequent real-world 
contact, it may be quite easy for Alice to give Bob her fingerprint 
manually. Yet PKI tries to get by without involving the user, so 
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it has no way to exploit this relationship. Instead, Alice and Bob 
must exchange keys through the PKI infrastructure, since this is 
all the software knows about. This requires Alice to authenticate 
with Trent and procure a certificate, and it requires Bob to add 
Trent as a trust anchor, and to ensure that both he and Trent 
share the same name for Alice. 

If we draw the relationship between Alice, Bob, and Trent as a 
triangle, scaled to reflect ease of key distribution, Alice and Bob 
may be close and Trent may be quite distant, so requiring all key 
distribution to occur through third parties is inefficient. Alice 
and Bob can work around this if Alice becomes her own CA and 
issues herself a certificate, but then Bob has to treat Alice's CA 
as a trust anchor, which is a huge security risk. 

If PKI isn ' t  flexible enough to support manual fingerprint 
exchange, we still might expect it to be flexible in supporting 
delegation amongst trusted third parties. A CA can delegate 
authority to another just  by issuing a CA certificate for some set 
of names. Since these certificates can form any sort of topology, 
this seems a very flexible system. However, this form of 
delegation is extremely limited, since the issuing CA can only 
delegate authority over concisely representable portions of the 
namespace. When the desired delegations can't  be exactly 
expressed as permitted and excluded subtrees [25] of some 
namespace (such as X.500 or DNS), the issuing CA is faced with 
the procrustean choice of: 

• Delegating too little authority and disenfranchising 
some users. 

• Delegating too much authority and creating a security 
risk. 

• Issuing multiple certificates, thus complicating path 
construction. 

This is a specific instance of a general problem - with 
certificates, all delegations must be expressed in some language 
which is necessarily limited. We can see the problem clearly by 
considering a more flexible form of delegation - trusted 
directories. A trusted directory is an online trusted third party 
which clients query for public keys. This is what Diffie and 
Hellman started with, and what many, even in the PKI 
community, are returning to (under the name validation servers - 
see SCVP [33,39] or XKMS [24]). 

A trusted directory supports more flexible forms of delegation 
than a CA because a trusted directory implements its delegations 
instead of just proclaiming them. Thus, while a CA is limited to 
delegations which can be expressed in a certificate and processed 
by client software, a trusted directory can do anything when a 
client asks it for a key - it can look in its local storage, consult 
another directory, consult a PKI, consult multiple other 
directories and PKIs and corroborate the results, and so on. 

Trusted directories are not only more flexible than CAs, but they 
are simple for clients to use - a client just consults a directory 
and receives an answer. CAs, by constrast, simply proclaim that 
they are delegating some authority and then wash their hands of 
it. It is left to the client to find all the relevant proclamations and 
make sense of them. Clients must pull certificates from a wide 
range of sources while trying to discover a path through the 
certificate graph for which the delegations are valid, the 

signatures are correct, and the certificates have not been revoked. 
This is an extraordinarily complex problem [8,23], so placing 
this responsibility on client software, which is widely deployed 
and thus difficult to upgrade and configure appropriately, is a 
poor design choice. 

CAs are more complicated than trusted directories in another 
way. Consider the triangle between Alice, Bob, and Trent. If 
Trent wants to tell Bob what Alice's public key is, the simplest 
information flow would be directly from Trent to Bob. But if 
Trent is a CA, he is offline and thus can't  speak directly to Bob. 
Instead, Trent must communicate with Bob in a roundabout 
fashion - he must enlist Alice to present a certificate to Bob. 
Thus, the offline nature of CAs forces end entities to mediate 
communications between CAs and relying parties. 

If online trusted third parties (i.e. trusted directories) are so 
much more flexible and simpler than offline trusted third parties 
(i.e. CAs), why are CAs the conventional approach? Offline 
T I P s  are seen as having three advantages: 

• Performance: The ' ITP is not a communication 
bottleneck. 

• Partition Resilience: The system will keep functioning 
if the ' ITP becomes unreachable. 

• Private Key Protection: The "ITP's private key can be 
kept offline, in a more secure environment. 

These are legitimate performance and robustness goals, but they 
aren't  worth the crippling complexity CAs impose. Furthermore, 
CAs are not even succesful in achieving the first two benefits: 
relying parties desire timely assurance of a key's authenticity, 
and this requires an online mechanism be added back in - either 
the subject or the relying party needs to frequently contact some 
online party to procure validation data. 

In sum, PKI makes two rnisl~akes with respect to key distribution. 
First, it ignores the user and tries to automate everything: it 
neither takes account of the variability in users' security 
requirements nor takes advantage of the user's capacity for 
manual key distribution. Second, PKI pays an enormous price in 
limitations and complexity for the marginal benefit of offline 
"ITFPs. 

2.2.2 PGP vs. Requirements 
PGP allows users to exchange keys over untrusted channels such 
as key servers or web pages, and then verify the keys against 
trusted fingerprints. We have two criticisms of this use of 
fingerprints: 

• Key-Centric instead ofFingerprint-Centric: PGP uses 
fingerprints only to verify keys, instead of treating 
fingerprints as the primary element of key distribution. 
A PGP end-user cannot simply enter a fingerprint and 
address into his software with the meaning "use this 
fingerprint for this address". Instead he has to acquire 
the key, import the key onto his key ring [47], verify 
the key's fingerprint, and then sign the key to record 
that it is trusted. 

• Size: PGP fingerprints are 32 or 40 characters long 
when rex-encoded. This makes them difficult to 
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display in business cards and paper directories, and 
difficult for people to deal with. 

We also have a nit: 

• Presentation: PGP Fingerprints aren't written in a 
consistent form - different users call them different 
things, and often include details which shouldn't be 
necessary such as key ID, key type, or key size. This 
makes fingerprint handling confusing, particularly to 
novice users. 

PGP also allows indirect key distribution through a web of  trust. 
In this model, people certify each other's keys, and each relying 
party assigns trust levels to keys belonging to certain people. 
When presented with a new key, relying party software will 
check whether the new key has been certified by keys whose 
trust levels sum to a sufficient threshold; if so, the new key will 
be considered valid. 

Certificates are a much better design choice for PGP than PKI: 
the PGP web of trust consists of a network of people functioning 
as trusted third parties. Since people cannot be expected to be 
online, serving at the beck and call of relying parties, certificates 
are a necessity. Nonetheless, certificates introduce complexity 
and rigidity into PGP just as in PKI. 

Con~plexity because the relying party is forced to explain his trust 
decisions to the computer. To do this, he must understand not 
only the cryptographic concepts of keys, signatures, and 
certificates, but also the web of trust concepts of trust and 
validity, and how the latter is calculated from the former [45,46]. 
Furthermore, he must understand how to manipulate these 
concepts by importing and signing keys, assigning trust levels, 
and reading validity levels. We emphasize that the underlying 
concepts of trust and validity are not complex - people deal 
intuitively with them every day. The problem is that PGP forces 
users to deal quantitatively with these fuzzy notions and to 
manage them across the human-computer interface. 

Rigidity is introduced because the user must express his trust 
decisions in a limited language. Real-world trust is above all 
context-dependent. Bob and Charlie may be partners in business 
but competitors for the fair hand of Alice. Alice may be an 
employee of Bob but a union organizer on the side. Alice may 
trust Charlie in little things, yet know he has an ethical weak 
spot when it comes to making a buck. Questions of trust can't be 
answered in the abstract, yet PGP assumes a user can assign 
fixed trust levels to individuals, and that these trust levels will 
interact additively. These are hugely simplistic assumptions. 

Besides trust management, another source of limitation and 
complexity in the web of trust is path discovery. In PKI this 
complexity is felt by end-entity software, whereas in PGP it is 
felt by the user. This is because the web of trust has no structure 
that could guide automated path discovery, so software doesn't 
even try. If a user is presented with a new key which none of his 
current trusted keys have certified, it is up to the user to 
download keys from the keyserver until he finds a trusted path to 
the new key. This is neither scaleable nor convenient. 

Finally, we point out that PGP is usually delivered as a stand- 
alone application. This is of little use to end-users, who need 

security within the devices and applications they actually use. 
Trying to splice PGP support into these environments through 
plugins typically results in a poor user experience. Why haven't 
software vendors added PGP support to their applications? We 
surmise that the complexity of PGP trust management has made 
this task seem too imposing. A public key distribution system 
that aims for wide deployment must make life simple for 
developers as well as end-users. 

In sum: Like PKI, the PGP web of trust tries to automate 
calculations best performed in the user's mind. The result is 
excessive complexity for both users and developers [44]. 
Furthermore, a web of trust provides no basis for path discovery, 
so it 's  unclear how this could scale beyond small, tight-knit 
communities. On the positive side, PGP users can ignore the 
web of trust and just use fingerprints to verify a key exchange, 
but this is still excessively complex. 

In the next section, we show how fingerprint exchange by itself 
can meet our requirements. 

2.3 Address-Based Key Distribution 
We argue that fingerprint exchange could form a person-to- 
person key distribution architecture that is both flexible as to 
degree and means o f  assurance and simple. This argument is 
based on an idealized notion of fingerprints which are: 

• Small: We assume fingerprints that are around 20 
characters in length. 

• Multipurpose: We assume that each fingerprint 
corresponds to multiple subkeys which can be used in 
different protocols on different devices. 

• Long-Lived: We assume that each fingerprint 
corresponds to a root key that is managed in a highly 
secure fashion, so revocation due to key compromise is 
r a r e .  

In section 3 we show how to approximate these idealized 
fingerprints through real-world techniques. For now, we show 
how such fingerprints would facilitate key distribution. 

2.3.1 Fingerprints as Addresses 
We propose that users can be educated to understand that 
acquiring the fingerprint of another party is necessary for secure 
communication with that party. Furthermore, it should be 
explained that the fingerprint must be acquired through a secure 
channel, lest they be tricked into using a fingerprint belonging to 
someone else. 

Armed only with this knowledge, and with their intuitive grasp 
of all the ways in which small tokens of data can be 
communicated, we believe that users could take key distribution 
into their own hands. This human-centric approach to key 
distribution would yield a system much more flexible, and much 
simpler, than trying to automate key distribution through PKI or 
the PGP web of trust. 

The key to this argument is the metaphor fingerprints as 
addresses. Like phone numbers, postal addresses, emall 
addresses, and the like, fingerprints are small pieces of data that 
must be exchanged as a prelude to communication. 

90 



It can be objected that fingerprints aren't small enough to justify 
the metaphor - an X.509 or PGP v4 fingerprint is a hex-encoded 
SHA-1 output, which works out to 40 characters. In response, 
we will later design 20 character fingerprints that look like these: 

f3v4g, ifcen, r3rj5, embx8 

eg9zk, yv89c, yk4kr, dufge 

bf45a.qssfo. 5ur8z.cx3ba 

These are a little longer than most email addresses, a little 
shorter than most postal addresses, and about the same size as a 
credit card number plus its 4-digit expiration date. Since users 
are capable of managing these items, we contend that users are 
capable of managing fingerprints. 

Fingerprint distribution would allow users to acquire assurance 
in a fingerprint through any channel available to them: 
fingerprints can be printed on business cards; written on napkins; 
read aloud over the phone, over the radio, or in person; sent in 
email or postal mail; published in paper or electronic directories, 
print advertisements, or web pages; exchanged on removable 
media; or handled through any channel that users find 
convenient. Thus we achieve flexibility as to means of 
assurance. 

Since users would be directly involved in acquiring and 
corroborating fingerprints from different sources, users can 
mentally estimate the degree of assurance they have in any 
fingerprint. If this degree is insufficient for the desired use, they 
can consult other sources, give up the attempt to communicate, or 
proceed with the communication while retaining some suspicion. 
Thus we achieve flexibility as to degree of assurance. 

Since users can view fingerprints as a sort of "crypto address", 
they should be quite comfortable exchanging them, importing 
them into address books, notifying people when they change, and 
so on. In contrast, schemes which try to simplify things through 
automation end up forcing users to grapple with the concepts of 
keys, signatures, certificates, certificate chains, revocation lists, 
trust roots, and validity/trust calculations. Paradoxically, by 
giving users more responsibility we make things easier for them, 
since less automation means less machinery and fewer concepts 
to deal with. Thus we achieve simplicity for end-users. 

With PKI, end-user software must perform path discovery and 
validation. With PGP, software must provide a key management 
interface. Both approaches make it difficult for developers to 
add communication security to their products. However, almost 
all personal communications software has an address book. It 
would be easy to add a new field to address book entries to 
contain the specified person's fingerprint. When a 
communication is authenticated to a fingerprint that matches 
some entry, the only thing software would have to do is display 
the name of the entry (i.e. the pet name [35] "Morn", "Bob", 
etc.), and an authentication indicator. Thus we achieve 
simplicity for application developers. 

Fingerprint distribution could piggyback on address distribution: 
business cards and trusted directories would carry addresses and 
fingerprints in tandem, and if you could get someone's address 
from a mutual friend, you could probably get their fingerprint as 
well (the Granovetter diagram models this type of interaction; 
see [7,36]). In corporate environments, the enterprise directory 

could deliver fingerprints along with addresses. Since pre- 
existing address distribution infrastructure can be re-used for key 
distribution, we achieve simplicity of infrastructure. 

We now remark on some complications that result from the 
fingerprints-as-addresses approach: 

2.3.2 Retrieving Encryption Keys 
Alice cannot encrypt an email to Bob if all she has is his 
fingerprint. PGP requires Alice to either: 

• Find Bob's key and import it manually, or-  

• Download the key from an appropriate keyserver. 

The first approach requires too much effort on Alice's part, and 
the second depends upon a global, universally agreed-upon 
infrastructure. Either approach requires Alice to carry around 
her key ring if she wishes to encrypt to Bob from different 
computers. 

We would prefer to have Bob's trust information in a more 
concise form that could be stored in directories and address 
books, so that Alice could import this information from a 
directory into her address book, and synchronize her address 
books, without having to juggle keys and certificates. We'd also 
like to streamline the conveyance of this information, so that 
Alice doesn't have to acquire it manually, or depend on any 
global infrastructure. 

Thus we suggest each user should choose his own key URL, 
where he will post the latest version of his encryption keys. 
Address books and directories will have an additional field for 
this URL. All of Bob's secure communications will contain his 
key URL, so that Alice's software can populate this field 
automatically. Where requesting a bootstrap message from Bob 
is inconvenient or impossible, Alice can fill in this field herself. 

2.3.3 Proof  o f  Possession 
Alice could lie and claim ownership of Bob's fingerprint. To 
someone who believed her, Bob's communications would appear 
as if they were originating from Alice. If you only retrieve 
fingerprints from people or directories you have a great deal of 
trust in, then this is not a concern. Otherwise, the only way to 
prevent this is to check and make sure that Alice can be 
contacted under the fingerprint she claims is hers. 

PGP provides this check, to some extent, since every key should 
have a self-signed User ID containing the name and email 
address of the key's owner. If you can recognize that these match 
Alice and no-one else, then you can feel assured that Alice is not 
trying to claim someone else's key. 

We don't wish to follow this approach - it means that a relying 
party must retrieve and inspect a user's key before asserting trust 
in the fingerprint, and that would complicate fingerprint 
distribution. Instead, we suggest warning users that people 
might lie about their fingerprint, so you should contact them 
under their claimed fingerprint to make sure it 's  really theirs 
(software could provide this warning automatically). 

In practice, this check will happen in the course of things, since 
most communications contain identifying information, either 
explicitly (in message headers that identity the sender) or 
implicitly (in the contents of the communication itself). 
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2.3.4 Human-Readable Certificates 
We have pointed out that certificates make sense in PGP, since 
they allow Trent to express his opinion about Alice's public key 
in a form that Alice can re-use. If we're giving up certificates, it 
seems that any relying party who trusts Trent will have to contact 
him directly and ask him about Alice's fingerprint. 

However, Trent could easily send Alice a signed email, where he 
writes "I, Trent, hereby certify that the fingerprint 
dbrav6,6zpre.wahq4.gqzjz  belongs to Alice." Essentially, 
this would be a human-readable instead of a machine-readable 
certificate (we could call it a letter of introduction). Trent could 
describe himself and Alice in any way that might be meaningful 
to a relying party (mentioning nicknames, physical descriptions, 
places of residence, etc.). Similarly, he could describe how he 
authenticated Alice. Alice could forward this email to relying 
parties to convince them of her fingerprint's authenticity. 

2.3.5 Revocation 
Suppose Bob receives Alice's fingerprint from Trent. Later, 
Trent discovers that he gave Bob the wrong fingerprint. Trent 
would like to revoke the fingerprint that he's already distributed 
to Bob. 

If Trent is a trusted directory, then Bob can poll Trent on a 
regular basis. If Trent is a person, this can't be done as easily. 
Nonetheless, if Bob and Trent have at least occasional contact, 
then Bob would expect to learn from Trent if Alice's fingerprint 
has changed. If the revocation is important enough, Trent may 
broadcast it through channels that will reach most relying parties 
(such as mailing lists, web sites, phone trees, etc.). 

Thus, instead of designing a technical infrastructure for 
revocation notices, we will assume these can be distributed 
through the same mix of infrastructures that distributed 
addresses and fingerprints in the first place. 

2.3.6 Untrusted Fingerprints 
Communication devices should always encrypt and authenticate 
themselves, even when the fingerprint of the other party is 
unrecognized. Opportunistic encryption of this sort protects 
against passive eavesdroppers, even though it doesn't 
authenticate the other party. 

Software could automatically populate address book entries with 
unrecognized fingerprints lifted from communications. These 
fingerpnnts should be prefixed with some marker such as 
"(untrusted)". When a communication is authenticated to an 
untrusted fingerprint, software should not display an 
authentication indicator. However, if a communication from the 
same address fails to match the fingerprint, software should 
display a warning about the mismatch. 

A user could verify an untrusted fingerprint and then remove the 
"(untrusted)" marker. Since it 's  easier to compare fingerprints 
than to type them in, this would save the user some effort. 

2.3.7 Conclusion 
We have tried to solve key distribution by reducing it to address 
distribution - fingerprints are like addresses, and address 
distribution is a solved problem. However, we've forced the 
analogy by assuming that fingerprints could be made small, 
multipurpose, and long-lived. Now we must show how to do so. 

3. PRIVATE KEY MANAGEMENT 
3.1 Scope of the Problem 
Our approach to key distribution was based upon fingerprints. 
However, a fingerprint that is simply a hash of a single public 
key is quite limited: 

• Alice may have multiple communications devices (a 
desktop, a laptop, a cellphone, and a PDA, for 
example), and each device may speak multiple 
protocols. Sharing a single private key amongst all 
these devices and protocols would be cumbersome and 
risky (both in the act of sharing, and in the fact that a 
compromise of one device or protocol would 
compromise them all). 

• Alice faces a tension between keeping her private key 
secure and keeping it accessible: From the perspective 
of security, Alice would love to bury her private key in 
a mineshaft. However, Alice also wants to use her 
private key on all her devices and in all different 
circumstances - at home or at work, when travelling, 
and so on. 

• If the private key is lost or stolen, Alice has no way to 
recover short of creating a new key pair and 
redistributing the fingerprint. 

In discussing key distribution we assumed that each person has a 
single, long-lived fingerprint. Now we must consider how to 
create such a fingerprint which also supports: 

• Multiple private keys per fingerprint. 

• Robust security and accessibility of private keys. 

• Recovery from loss or theft of private keys. 

We call this the private key management problem. Our solution 
is for Alice to distribute the fingerprint of her root key. Alice 
will then use her root key to issue certificates to the subkeys she 
uses for particular protocols and devices. These certificates will 
limit the allowed uses of subkeys and will specify revalidation 
requirements so that subkeys can be disabled if compromised. 
Whenever Alice communicates with Bob, she will present the 
certificate chain from her root key to the subkey she is using, and 
Bob will validate the chain against Alice's fingerprint. 

Thus we accomplish: 

• Multiple private keys per fingerprint: Alice can use a 
different subkey for each protocol on each device. 

• Robust security and accessibility of  private keys: Since 
the root private key only needs to be used ocassionally, 
it can be kept in a highly secure manner. The less 
important subkeys can be made accessible to different 
devices. 

• Recovery from loss or theft of private keys: Subkey 
certificates will have short lifetimes and revalidation 
requirements, so that theft of the private key can be 
quickly recovered from. 

The certificates used for private key management are different 
from the identity and authorization certificates used for public 
key distribution, and so we will call them key management 
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certificates. Whereas identity or authorization certificates bind 
the key to some entity and must describe who this entity is, or 
what he is allowed to do, key management certificates assume 
that the root key is already bound to an entity. Thus, they only 
address the simpler problems of binding a subkey to the root key, 
and confining the damage done if the subkey is compromised. 

This approach to key management is not novel. The PKI, PGP, 
and SPKI communities have all considered how their respective 
certificate formats could be adapted for private key management 
[43,3,19]. In the next few subsections, we consider the use cases 
and requirements for key management certificates. In 3.2 we 
examine Pig/, PGP, and SPKI key management certificates, and 
conclude that none of them meet our requirements. In 3.3 we 
present the cryptoID certificate format. 

3.1.1 Rootholders and  Certificate Servers 
Root keys should be stored in tamper-resistant hardware and kept 
under lock and key. Most users would be unwilling or unable to 
manage their root key this securely. These users should choose 
some trusted party as their rootholder. 

A rootholder is a self-chosen, offiine CA. The rootholder would 
keep the root key physically secure, and would issue subkey 
certificates to an online CA, or certificate server. The user 
would periodically authenticate to the certificate server, probably 
using a mutually-authenticated password protocol such as 
TLS/SRP [42], and the server would issue short-lived subkey 
certificates to the user. Since the certificate server would be 
online, the user could retrieve certificates from anywhere, 
whether at home, at work, or travelling, using any of his devices. 

Business users would access the rootholder and certificate server 
infrastructure maintained by their employer. Home users would 
be free to select their own rootholders and certificate servers. 
They might choose a fee-based commercial service, a free service 
that comes bundled with something else (such as their operating 
system, cell phone, or internet connection), or a nonprofit service 
offering key management infrastructure as a benefit to the 
community. 

A user might not have sufficient trust in any of these parties. To 
eliminate any single rootholder or server as the sole point of 
failure, users should be allowed to choose a root key or subkey as 
a threshold subject [15] of different keys held by different 
parties. A user can thus assemble a trusted aggregate out of 
several partially-trusted services which he feels are unlikely to 
collude, or to suffer a common-mode failure. 

3.1.2 Certificate Lifetimes and Timed Revalidation 
The lifetimes of subkey certificates should be chosen so as to 
balance two security risks. Frequent re-issuance of certificates 
allows frequent replacement of the subject's private key, making 
each key a less valuable target for cryptanalysis or theft. 
However, frequent re-issuance increases the exposure of the 
issuer's private key to theft or misuse. 

Because of this tension, it is unlikely that we can re-issue 
certificates as frequently as we would like. However, we can 
achieve some of the benefits of frequent re-issuance without the 
costs by requiring timed revalidation [17] of certificates. The 
issuer of a subkey certificate can nominate a validation authority 
(or VA) by including the VA's public key in the certificate. The 

certificate will only be considered valid when presented in 
conjunction with a signature from the VA, and the VA can 
include expiration dates in these signatures. If the VA receives 
notice that the subject's private key has been stolen, the VA will 
refuse to issue further validation signatures and the certificate 
will become unusable once its current signature expires. 

Revalidations don't allow the subject to change private keys, but 
they also don't require the involvement and exposure of the 
issuer's private key; instead, the VA's key is involved. This key 
is less important, since the VA can't issue certificates, and since 
a compromised VA can be removed the next time a certificate is 
issued. 

Frequent revalidations introduce another security risk, and 
another trade-off. If a user is prevented from contacting the VA, 
the validation signature will expire and the subkey will become 
unusable. There is a trade-off here between safety and liveness: 
the more frequently the user has to revalidate, the more quickly a 
compromised key can be shut down, but the more likely it 
becomes that a denial-of-service attack or network failure can 
prevent use of a legitimate key. 

To manage this trade-off, a certificate should be able to specify 
the VA as a threshold subject. To increase liveness, different 
VAs can be linked through disjunctions, so that if one is 
unreachable the user can contact another. To increase safety, 
different VAs can be linked through conjunctions, so that if one 
is compromised, the other can disable the subkey on its own. 
Through these techniques a validation infrastructure can be 
tailored to different requirements. 

Example: Alice doesn't trust anyone else to hold her root key, 
but she is worried it might be compromised. To mitigate this 
risk, Alice can choose an online service as the VA for her root 
key. If the online service misbehaves it can disable Alice's root 
key, but it cannot impersonate her [20]. To mitigate the risk of 
service misbehavior, Alice can choose a backup VA, so that both 
VAs have to fail to prevent Alice from using her root key. 

3.1.3 Time Synchronization 
The use of short-lived certificates and revalidations requires 
relying parties to keep accurate time. Personal computers and 
devices often have no reliable, trustworthy source of time. 
Nonetheless, the only way to avoid time synchronization would 
be for every communication to be supplemented by online 
exchanges with the issuing and validating parties. The 
performance and denial-of-service implications of this are severe. 
In contrast, keeping accurate time should only require 
occassional contact with a trusted time source. 

If we assume that relying parties can stay within at least 5 
minutes of the correct time, then certificates and validation 
signatures that expire in less than 5 minutes should never be 
used. 

3.1.4 One-Time Revalidation 
A stolen private key will usually remain exploitable for at least a 
few minutes. If this is unacceptable, an issuer may wish to 
require that every use of a certificate requires an online, or one- 
time revalidation [18]. We would prefer the subject to perform 
the one-time revalidation, instead of the relying party, since the 
subject and the VA are likely to be on the same local network or 
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otherwise closely connected. We would also like one-time 
validation signatures to be presented along with the certificate 
chain, just as timed validation signatures are. 

This can be achieved fairly easily: instead of an expiration date, a 
one-time validation signature would contain a nonce that is 
derived from the current protocol the certificate is being used 
within (such as TLS [9,32], IKEv2 [26,28], etc.). 

3.1.5 Non-Interactive Communications 
A signed and encrypted email might be received hours, days, or 
even weeks after it was sent. By that time the sender's signing 
key and the recipient's encryption key might have expired. The 
recipient can archive old encryption keys, so the more serious 
problem is sender authentication. 

In 2.3.2 we mentioned that each user should have his own key 
URL. This URL should contain the user's latest email 
encryption certificate chain. If the user also posts the most 
recent validation signatures for his email signing certificate 
chain, the recipient of a signed message can retrieve these and 
validate the certificate chain at a later date. 

Essentially, the key URL would serve as a proxy for the user 
(like the designated servers in [40]). In a nonlnteractive 
communication, Bob can contact Alice's key URL and retrieve 
the information that would have been sent directly in an 
interactive exchange. 

Example: Alice might change her signing key and certificate 
once a month. She might revalidate this certificate every 24 
hours. Bob would normally receive emails that still have active 
validation signatures; however, if Bob fails to check email for a 
few days, then he might receive an email with expired validation 
signatures. His software would then retrieve the latest signatures 
from Alice's key URL 

3.1.6 Requirements 
We can review the above scenarios and extract some 
requirements for key management certificates: 

• An authorization language for saying which protocol(s) 
a key can be used with (emall, instant messaging, etc.). 

• Threshold subjects 

• Timed and one-time revalidations 

• Threshold VAs 

• Simplicity and security 

In the next section, we argue that current certificate formats such 
as PKI, PGP, and SPKI do not meet our requirements. 

3.2 Current Approaches 
PKI, PGP, and SPKI certificates were designed for public key 
distribution. As a result, they contain many features irrelevant to 
private key management, such as sophisticated naming and 
authorization languages. 

These components add complexity, but they could be ignored or 
chopped out. Below we will ignore these irrelevancies and focus 
only on whether these certificate formats have sufficient 
functionality to meet our requirements. 

3.2.1 X.509 Proxy Certificates 
Proxy Certificates (or PCs) are X.509 certificates issued under an 
end-entity certificate or under another proxy certificate [43]. PCs 
were developed within the Grid Security Infrastructure [5,21] to 
support single sign-on and delegation of rights within a grid 
computing environment. Later, PCs were considered for private 
key management in a fashion similar to our rootholders and 
certificate servers [38]. Standardization of PCs is being pursued 
within the IETF PKIX working group [4]. 

PCs are a simple profile of X.509 certificates - essentially, an 
extension is added to indicate that a certificate is a PC, and path 
validation is simplified. Certain of our arguments against PCs 
thus apply to X.509 certificates in general. 

PCs do not possess an authorization language for stating which 
protocol(s) a key may be used with. PCs do allow for the 
inclusion of arbitrary policy statements, so an appropriate 
language could be defined. 

X.509 certificates do not allow threshold subjects - a certificate 
can only certify a single public key. 

X.509 certificates do allow timed and one-time revalidation 
through CRLs [25] and OCSP responses [37] issued by Indirect 
CRL Authorities and Designated OCSP Responders (what we 
have called VAs). However, threshold VAs are not supported. 
Furthermore, a VA issuing these instruments must have a 
certificate from the CA who issued the subject certificate. This 
causes some problems: 

• It is less efficient than putting the VA's public key in 
the subject certificate. 

• It complicates revalidation of root certificates. 

• It is unclear whether Proxy Issuers are allowed to issue 
certificates to VAs. 

Another problem is that not all application protocols allow CRLs 
and OCSP responses to be transmitted along with certificate 
chains. 

Proxy certificates also inherit a feature from X.509 certificates 
that we consider a security risk. Suppose a CA or Proxy Issuer 
has multiple certificates for the same key, with the same name. 
X.509 certificate chaining is based on the name and key, so 
certificate chains containing these certificates could be spliced 
with each other, allowing a downstream subject to place himself 
under whichever upstream certificates he finds most convenient: 
"if an issuer were two PCs with identical names and keys, but 
different rights this could allow the two PCs to be substituted for 
each other in path validation and effect the fights of a PC down 
the chain" [43]. This situation can arise quite naturally as 
certificates are re-issued over time. 

Finally, PCs are encumbered with X.509's legacy baggage, such 
as ASN.I, OIDs, Distinguished Names, ambiguous key usage 
bits, multiple bolted-on validation mechanisms, and an excessive 
number of ways to encode strings, represent time, and identify 
certificates [22]. 

3.2.2 PGP Subkeys 
PGP subkeys [6] were introduced when PGP was trying to avoid 
the RSA algorithm (for patent reasons) by allowing a user's 
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"key" to be a DSA signing primary key paired with an Elgamal 
encryption subkey. With this functionality in place, people began 
to use short-lived encrypfion subkeys, to give a measure of 
forward secrecy [4] in the face of key compromise. Signing 
subkeys are not often used, though the PGP community 
recognizes the benefits of keeping a primary certification key in a 
safe environment and certifying subkeys for use in more 
convenient and hence riskier environments [3,27]. 

A PGP subkey cannot have subkeys, so PGP subkeys couldn't 
support a 3-tiered architecture of rootholders, certificate servers, 
and user devices. 

PGP has some key flags, but these don't have sufficient 
granularity to precisely specify which protocols a key can be used 
with. 

PGP does not support threshold subjects, or timed or one-time 
revalidations. 

3.2.3 S P K I  Cert i f icates  
SPKI has inspired our requirements, and has informed much of 
the thinking in this paper. SPKI certificates almost meet our 
requirements, but we will point out a few deficiencies. 

SPKI's authorization language is sufficient for authorizing keys 
for use with particular protocols. 

SPKI supports threshold subjects: a certificate can certify a k-of-n 
combination of keys or other threshold subjects. Each key then 
becomes the root of a separate certificate chain, and these 
certificate chains have to rejoin at some future point by all 
certifying the same subject. This is rather complex, since a 
certificate chain can now contain sub-chains. The current SPKI 
structure draft [13] doesn't specify how these are handled. 

SPKI supports timed and one-time revalidations. However, it 
does not support threshold VAs - instead, every VA listed in an 
SPKI certificate must validate the certificate. To achieve a 
threshold an issuer could issue certificates that name each k- 
subset of VAs separately. For a 3-of-5 threshold this works out 
to 10 certificates. If the subject of these 10 certificates wanted to 
issue a certificate that also has a 3-of-5 threshold of VAs, he 
would have to issue 10 certificates under each of his 10 
certificates, for a total of 100 certificates. This becomes 
unmanageable. 

A different approach would be to ignore SPKI's specialized 
validation instruments, and to just treat VAs as threshold 
subjects [16]. If A is the subject key and B through F are VA 
keys, the following expression would require 3 of the 5 VAs to 
collaborate to issue a certificate: (2 of A,(3 o f  B, C,D,E,F)). Of 
course, normally VAs don't collaborate to isssue a certificate, 
they simply validate the certificate they belong to. Since 
threshold subjects cannot sign their own certificate, they would 
each need to issue another certificate whose only subject is A. 
There are a couple of problems with this: 

• A would need to sign this certificate as well. If A was 
itself a threshold subject, this could add a fair number 
of extraneous signatures. 

• The validation certificates issued by the VAs could 
contain expiration dates but not one-time nonces, nor 

could they cover multiple certificates with a single 
signature, as SPKI's specialized validation instruments 
Call. 

One last, minor point is that SPKI uses canonical S-Expressions 
[40] for encoding certificates. These are easier to deal with than 
ASN. I, but this is a less popular text encoding than XML. 

In sum: SPKI's threshold subjects seem overly complex and 
under-specified. SPKI's VAs do not support thresholds. VAs 
can instead be treated as threshold subjects, but using certificates 
as validation instruments is clumsy in a few ways. Nonetheless, 
the idea of integrating VAs as threshold subjects seems 
promising, if it could be done more cleanly. We will pursue this 
further in the cryptoID certificate format. 

3.3 The CryptolD Certificate System 
The cryptolD system currently comprises a fingerprint format and 
a certificate format. The fingerprint format is designed for 
human convenience. The certificate format is designed to be 
simple for relying parties while providing great flexibility in key 
management for subjects. 

In the next few subsections we give a detailed view of these 
formats. In 3.3.10 we step back and give the rationales behind 
certain decisions. An example <certChain> in the Appendix 
may help clarify the text. 

3.3.1 CryptolDs 
A fingerprint calculated from a cryptoID root certificate we call a 
cryptographic identifier, or cryptolD. A cryptolD is a 100 bit 
value formatted as four groups of five lower-case base 32 digits. 
The base 32 alphabet we use consists of the letters 'a '  through 
'z '  except '1', and the numbers 3 through 9. Below are some 
example cryptolDs: 

dhdkc. 9af3q. fS~hk, choae 

bfmns. 8x95s. ch59b, jtrdo 

fynze, i9byx, owTbc, ybwt9 

e84vj. 8agSg. skosq. 3hxzo 

As 100 bits may not be secure against a brute-force search for 
pre-images on a hash function, we adopt the hash extension 
technique from [1]. The last 96 bits of the cryptoID are taken 
from a SHA-1 hash of the root certificate. The first bit is 
reserved, and must be set to zero. The next three bits form a 
zero count and are used to determine the number of zero bits by 
the formula 16 + (zeroCount • 4). The resulting 16 to 44 zero 
bits are prepended to the 96 bits to yield a check value from 112 
to 140 bits in length. When a root certificate is presented to the 
relying party, the relying party will hash it using SHA-1, and 
ensure that the check value is a prefix of the hash value. 

When generating a root certificate, the cryptoID creator chooses 
the number of zero bits he desires (16, 20 . . . . .  44). The creator 
then includes trial rood/tier values in the certificate and hashes 
the result until a modifier which yields the requisite number of 
zero bits is discovered. 

In test code on the author's Pentium 4 1.7 GHz laptop, 
discovering a cryptolD with 16 zero bits (for a security level of 
112 bits) takes a fraction of a second. Discovering a cryptolD 
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with 32 zero bits (for a security level of 128 bits) takes several 
hours. Thus, the creator of the cryptolD can weigh his security 
requirements against the inconvenience of a lengthy one-time 
computation. 

3.3.2 X M L  Encoding 
We use XML for our certificate format. There will be a 
canonical form for this XML, and whenever a <certChain> 
XML element (see 3.3.4) is used within a non-XML protocol 
(such as TLS or S/MIME [31]) it must be in canonical form. 

Canonicalization is necessary since some elements are used as 
inputs to hash functions, and it also simplifies parsing. 
However, when a <certChain> is used within an XML 
document, it does not need to be in canonical form, as long as it 
is canonicalized before hashing. 

We won't  define the canonical form in this document. However, 
it simply consists of using a default namespace, using tabs for 
indenting, and not breaking up long lines of text, plus a few other 
things. 

For defining XML structures within this document, we use a 
shorthand similar to regular expressions, where: 

• "?" denotes zero or one occurrence 

• "+" denotes one or more occurrence 

• "*" denotes zero or more occurrences 

• xly denotes either x or y 

For encoding binary data or large numbers, we use base64 
encoding in the same fashion as XML-Signature [11]. 

3.3.3 Application Protocols 
The <certChain> element (see 3.3.4) is presented to a relying 
party by the owner of a cryptoID, and serves to certify a 
particular end-entity key. 

We would like to retrofit protocols such as TLS, S/MIME, and 
IPsec [28] to support cryptoID certificate chains. A <certChain> 
can be transmitted in any of these protocols by sending it instead 
of an X.509 chain. In addition, care must be taken to ensure that 
any use of the private key commits to the <certChain>. 

Some examples: 

• In TLS [9], we can use the cert_type extension from 
[34] to indicate that a <certChain> will be carried in 
the TLS Certificate messages. 

• In S/MIME [31], we can add a <certChain> as a 
signed attribute in a Signerlnfo structure. Within a 
Recipientldentifier, we can use subjectKeyIdentifier to 
carry a chainlD (see 3.3.4). 

• In IPsec's IKEv2 [26], we can add a Ceruficate 
Encoding for carrying a <certChain> within a 
Certificate Payload. 

• In XML-Signature and XML-Encryption [11,12], we 
can add a <certChain> inside a dsig:Keylnfo. 

3.3.4 The <certChain> Element  
A <certChain> can have three attributes and three child 
dements: 

<certChain xmlns="http: //trevp. net/cryptoID" 

cryptoID 

cryptoID URL? 

chainID> 

<certs> 

<keys> 

<signatures>? 

</certChain> 

The cryptolD attribute gives the relevant cryptolD. 

The cryptolD_URL attribute gives the eryptoID URL where the 
latest certificate chains and signatures for this cryptolD can be 
found. 

The chainlD attribute gives a SHA-I hash of the <certs> 
element. This value uniquely identifies the certificate chain (not 
including the signatures). 

The <certs> element contains a list of certificates. Each 
certificate binds a key expression to a set of authorized protocols. 
A key expression is like a threshold subject in SPKI: the 
variables of the expression correspond to key hashes, and these 
variables are linked by threshold connectives. Each variable 
evaluates to true if the corresponding key produces a certification 
signature on the next certificate in the chain, or a validation 
signature on the current certificate, or if the key is the end-entity 
key which the <certChain> certifies. Each key expression must 
evaluate to true for the chain to be valid. 

The <keys> dement  lists public keys that match the hashes in 
the key expressions. 

The <signatures> element lists certification and validation 
signatures that satisfy the key expressions. 

3.3.5 The <certs> Element  
The <certs> dement  contains a list of certificates: 

<certs> 

<rootCert> 

<cert>* 

</certs> 

<rootCert ID zeroCount modifier> 

<keyExpression> 
<protocols>? 

</rootCert> 

<cert ID> 

<keyExpression> 
<protocols>? 

</cert> 

The <rootCert> is hashed to create the cryptoID. It has 
zeroCount and modifier attributes, but otherwise is identical to a 
< c ert> . 
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Each <cert> has an ID attribute, which assigns the certificate a 
unique number within the <certChain>. The <rootCert> has 
1D= "0", the next ccert is "1 ", and so on, to a maximum of "9". 

3.3.5.1 The <keyExpression> Element  
Each <cert> has a <keyExpression>, containing an expr 
attribute and a list of <keyHash> elements. 

<keyExpression expr> 

<keyHash>* 

</keyExpression> 

<keyHash key type?> 

Each <keyHash> has a key attribute, which names the variable 
bound to the key hash. The first variable in the chain is "A", the 
next "B", and so on, to a maximum of "Z". The <keyHash> 
element takes the hash of a <key> (see 3.3.6) as its content. The 
type attribute determines the hash algorithm, with SHA-1 as the 
default. 

The expr attribute contains the key expression proper. Each expr 
can refer to variables bound in the current certificate or any 
previous certificate. In other words, once a variable is bound, it 
remains bound for the rest of the certificate chain. 

The expr attribute states which combinations of keys can jointly 
exercise the certificate's power. Any key in a key expression can 
issue a certification signature on the next certificate in the chain, 
or a validation signature on the current certificate. A 
certification signature is the key's way of assenting to a 
particular exercise of power, A validation signature is the key's 
way of expressing trust in the other keys in the key expression, 
and delegating its decision-making powers to them. 

Below is the key expression from the <rootCert> of the 
<certChain> listed in the Appendix: 

<keyExpression expr="((2 of A,B,C) and (D or E))"> 

<keyHash key= "A" > fQgRO4g3...</keyHash> 

<keyHash key="B">ESOYtIc4...</keyHash> 

<keyHash key=" C "> Zbu+HppY...</keyHas h> 

<keyHash key=" D">LwzxiFBw...</keyHash> 

<keyHash key=" E ">bYL j 56 fo...</keyHash> 

</keyExpression> 

A, B, and C are CA keys. D and E are VA keys. This distinction 
is not encoded in the key expression, but is a matter of 
operational behavior. Below is the key expression from the next 
and last certificate in the same chain: 

<keyExpression expr="(F and (D or E))"> 

<keyHash key=" F" >H+gs lrt 4...</keyHash> 

</keyExpression> 

This expression draws upon the VAs D and E which were 
previously bound, and introduces the end-entity key F. In the 
last certificate in a chain, the first key in the expression is always 
the end-entity key, and the other keys are restricted to producing 
validation signatures. 

Since D and E are listed in key expressions in two certificates, a 
single signature from either of them could be used to validate 
both certificates. 

Below is pseudo-BNF for the expr string. The last key 
expression in the chain must match the lastExpr: 

expr : := andExpr I orExpr I threshExpr [ vat 

lastExpr ::= "(" var " and " expr ") " I var 

andExpr : := "(" expr " and " expr ")" 

orExpr ::= "(" expr " or " expr ")" 

threshExpr ::= "(" number " of " exprList ")" 

exprList : := expr I expr "," exprList 

number ::= "1"-"26" 

var ::= "A"-"Z" 

3.3.5.2 The <protocols> Element  
Each <cert> may have a <protocols> element, listing the 
protocols which the key expression can issue certificates for, or 
which the end-entity key can be used with. 

<protocols> 

<protocol>+ 

</protocols> 

If <protocols> is omitted, the <keyExpression> is usable with 
all protocols. Each <protocol> element consists of a URI. 
Some examples: 

• urn:ie~:smime:signing 
urn:ie~:smime:encryption 

• urn:ietf:https:client 
urn :ietf : https :server 

The first example gives values for use in email signing and email 
encryption certificates. The second gives values for use in web 
client and web server certificates. 

The <protocols> element in each <cert> must be a subset of the 
previous <cert>'s <protocols>. A protocol is considered a 
subset of another if it contains the other protocol as a prefix. To 
make comparing lists of protocols easy, we require procotols to 
appear in lexicographic order. 

3.3.6 The <keys> Element  
The <keys> element contains a list of keys: 

<keys> 

<key>+ 

< / key> 

Each <key> will be qualified with a default namespace which 
determines its type, and thus its contents. For example: 

<key ID=? xlmns="http://trevp, net/rsa"> 

<e>Aw==</e> 

<n>8blhBiWQ...</n> 

</key> 

A more precise type, such as http://trevp.net/rsa-pkcsl-shal, 
would limit the key for use with a particular algorithm. 

The ID attribute matches the key with a corresponding 
<keyHash>. Not all <keyHash> elements need to have a 
corresponding <key> - only keys that have produced signatures 
need to be listed in <keys>. The entire <key> element will be 
hashed to determine the <keyHash>'s content. 
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3.3.7 The <signatures> Element  
The <signatures> element contains a list of signatures: 

<signatures> 

<signature salt key caInCerts? vaInCerts? 

untrustedKeys? expiresOn? nonce? type>+ 

</signatures> 

The salt attribute is a random value added by the signer to 
prevent collision attacks. 

The key attribute identifies the key performing this signature. 

The calnCerts attribute lists every <cert> for which this key, in 
this signature, is performing the function of a CA. The valnCerts 
attribute lists every <cert> for which this key, in this signature, 
is performing the function of a VA. These attributes can be 
present simultaneously. For every cert in valncerts or calnCerts, 
the variable matching the signer's key is set to true. 

The untrustedKeys attribute can only occur when valnCerts is 
present. It lists keys which the VA believes to be compromised 
or untrustworthy. For every cert in valnCerts, the variables 
matching untrustedKeys are fixed to false, regardless of any other 
signatures. 

The expiresOn and nonce attributes are mutually exclusive. The 
expiresOn attribute gives the date and time when this signature 
expires. It uses the dateTime UTC format from XML-Schema 
[2]. 

The nonce attribute contains a nonce which must be derived from 
the protocol the <certChain> is being used within. For 
example, if a <certChain> is being used for client authentication 
in TLS, the nonce might be a SHA-I hash of the 
ServerHello.Random value. If neither expiresOn nor nonce is 
present, the signature never expires. 

The type attribute specifies the asymmetric algorithm used for 
the signature. This must contain the relevant key's xm/ns 
attribute as a prefix. 

The <signature> content is a base64-encoded signature value. 
The signature is calculated by hashing a concatenation of: 

• The <signature> start tag, including all its attributes. 

• The <rootCert> and <cert> elements, starting with 
the <rootCert>'s start tag, and ending with the end tag 
of the Xth <cert>, where X is the last <cert> covered 
by this signature. 

To calculate X, take the largest number V in the 
valnCerts list and the largest number C in the 
calnCerts list. Add one to C. Set X = max(V,C). 

This construction serves two purposes: 

• Hashing the <signature> start tag, with its salt value, 
before the certificates, means that the signature will be 
calculated on a hash result that can't be controlled by 
an attacker. 

• Hashing all the certificates from the root to the Xth 
means that all important context is covered by the 

signature, so there's no possibility of certificate chain 
manipulations like those that X.509 is susceptible to. 

Below is an example <signatures> from the Appendix that 
would satisfy the previous example key expressions: 

<signatures> 

<signature 

salt =" EcG9PmUr..." 

key= "A" 

caInCerts=" 0" 

expiresOn ='' 2004-10-16T12 : 00 : 00Z" 

type=" http: //trevp. net/rsa-pkc s 1-shal "> 

fVE2PzBL...< / signature> 

<signature 

salt=" DjRGtNc j..." 

key=" B" 

caInCerts=" 0" 

nonce=" bTc 0Rnei..." 

type=" http: //trevp. net/rsa-pkcs 1-shal"> 

5 r zFzG7 Z...< / signature> 

<signature 

salt=" v3drGwA+... " 

key=" D" 

vaInCerts=" 0 I" 

untrustedKeys= "C" 

expiresOn=" 2004-08-21T08 : 38 : 06Z" 

type=" http: / /trevp. net / rs a-pkc s i-s ha I "> 

bJwzqrEh..< / signature> 

</signatures> 

3.3.8 The <certChain> Validation Algorithm 
To validate a <certChain> requires the following steps: 

1) Check that the <rootCert> yields a cryptolD consistent with 
its zeroCount attribute, and equal to the cryptolD attribute. 

2) Check that the chainlD attribute equals the SHA-1 hash of 
the <certs> element. 

3) Check that every <protocols> is a subset of the previous. 

4) Check that every <key> matches its <keyHash>. 

5) Check that any signature nonce value are correct. 

6) Check that any signature expiresOn values are in the future. 

7) Check that the signatures verify correctly. 

8) Set each variable in each key expression to false. 

9) For each calnCerts and valnCerts number in each signature, 
set the variable for the signer's key in the relevant key 
expression to true. 

10) For each valnCerts number in each signature, set the 
variables for the untrustedKeys in the relevant key expression to 
false. 

11) Set the first variable in the last key expression to true. 

12) Check that each key expression evaluates to true. 
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3.3.9 The <certChains> Element  
The cryptoID URL will contain a single <certChains> dement: 

<certChains xmlns="http://trevp, net/eryptoID-> 

(<certChain> I <certChainDelta> ) * 

<signature> 

</eertChains> 

A <certChainDelta> is just a <certChain> minus the certs, and 
containing only <signature> elements that weren't in the 
original <certChain> and any new <key> dements needed to 
verify them: 
<¢ertChainDelta xmlns="http://trevp, net/cryptoID" 

cryptoID 

cryptoID URL? 

ehainID> 

<keys> ? 

<signatures> 

</eertChain> 

The <signature> element in <certChains> authenticates both 
the <certChains> and the cryptolD URL itself: 
<signature salt chain eryptoID URL expiresOn 

type>+ 

The chain attnbute refers to a preceding <certChain> which 
must be certified for use with the protocol 
"http://trevp.net/cryptolD_URL/". The cryptolD_URL attribute 
lists the URL where this <certChains> is stored. The signature 
hash is calculated over the <signature> element followed by its 
sibling <certChain> and <certChainDelta> dements. 

If Bob is given a cryptolD URL purported to belong to Alice, Bob 
can verify the <certChains> against Alice's cryptolD to ensure 
that the URL is correct. When Bob enters a cryptoID URL into 
his address book, software should perform this check 
automatically. 

3.3.10 Rationales 
We end this section by trying to justify some design decisions. 

3.3.10.1 CAs and VAs 
One innovation in cryptolD certificates is to integrate the roles of 
CAs and VAs. A <keyExpression> does not assign any key a 
particular role - any key in the expression can issue either 
certification or validation signatures. 

We view validation signatures as an optimization: if one key 
trusts another, the first key could echo all the certification 
signatures performed by the other. A validation signature simply 
lets the first key express this trust, so the first key doesn't have 
to be contacted each time the other key signs a certificate. 

3.3.10,2 Partial Validation Signatures 
Through the untrustedKeys attribute, a VA can express partial 
trust in a key expression. Instead of refusing to validate an 
expression just because an inessential key has been 
compromised, a VA can issue a validation signature that simply 
excludes the compromised key. 

3.3.10.3 Key Hashes 
We could have placed keys directly inside certificates, instead of 
using <keyHash> elements. One advantage of referring to keys 
through their hashes is that unused keys can be omitted. Another 
rationale is that since the certificates have to be hashed for every 
signature, we wanted to keep the certificates themselves small. 

3.3.10.4 Hashing of Preceding Certificates 
The signature on any <cert> covers all preceding certificates. 
This makes the certificate format simple, since each <cert> 
doesn't have to identity its issuer, reiterate the cryptolD it 
belongs under, or re-bind variables. Also, it prevents any 
splicing of one certificate chain with another. 

3.3.10.5 CAs vs. EEs 
A cryptolD certificate can be used directly in a protocol, or it can 
issue certificates for that protocol. Some certificate systems 
allow each certificate only one of these uses. However, this 
distinction is not enforceable: with a CA certificate you can issue 
yourself an EE certificate, and with an EE certificate you can 
give away the private key or else proxy requests for other people. 

4. CONCLUSION 
Conventionally, certificates have been used for key distribution. 
We argued that they are unsuited for this - they can only delegate 
in limited ways, and the resulting structures are too complex. 
Instead, users should exchange small fingerprints as if they were 
addresses. These fingerprints would be easy for users to handle 
and easy for software to support. 

Certificates work better when used for private key management - 
here there's no need to delegate over namespaces or 
authorizations, and there's no need for structures more complex 
than chains. The only function of key management certificates is 
to allow multiple subkeys under a single fingerprint, and to limit 
the damage done if subkeys are compromised. This allows the 
user to have a root key which is managed in a highly secure 
fashion, while subkeys are used for day-to-day business. 

We then argued that current certificate systems are too 
complicated for such a simple use, and lack certain desirable 
features, so we designed a system focused on this case. The 
result is the cryptolD - a small, multipurpose, long-lived 
identifer which places key distribution where it should be - in 
the hands of users. 
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A P P E N D I X  - E x a m p l e  <certChain> 
<certChain xmlnsf"http://trevp.net/cryptoID" 

cryptoID="bde7o.rsr3c.sgopr.m48mg" 

cryptoIDURL="http://trevp.net/certChains.xml" 

chainID="eROUmyjO/xOGWGKztULrpxXvlOk="> 

<certs> 

<rootCert ID="0" zeroCount="0" modifier="4075"> 

<keyExpression expr="((2 of A,B,C) and (D or E))"> 

<keyHash key="A">fQgRO4g3Uf4sL+uBULegUiYmSXI=</keyHash> 

<keyHash key="B">ESOYtIc4EluT3MNVUeCSyhAJrz4=</keyHash> 

<keySash key="C">Zbu+HPpYeoPYOl15xQiZx08xhnk=</keyHash> 

<keyHash key="D">LwzxiFBwO/twxueL8MFPfxvXyPs=</keyHash> 
<keyHash key="E">bYLj56fooumc2Gfo8/buc+6kwE8=</keyHash > 

</keyExpression> 

</rootCert> 

<cert ID="I"> 

<keyExpression expr="(F and (D or E))"> 

<keyHash key="F">H+gslrt4az3pTwSYuJAfKEztSDY=</keyHash> 

</keyExpression> 

<protocols> 

<protocol>urn:ietf:smime:signing</protocol> 

</protocols> 

</cert> 

</certs> 

<keys> 

<key ID="A" xmlns="http://trevp.net/rsa"> 

<e>Aw==</e> 

<n>rXXEojht..</n> 

</key> 

<key ID="B " xmlns="http://trevp.net/rsa"> 

<e>Aw==</e> 

<n>ypn595ta...</n> 

</key> 

<key ID="D" xmlns="http://trevp.net/rsa"> 

<e>Aw==</e> 

<n>i/HmEGNX...</n> 

</key> 

<key ID="F" xmlns="http://trevp.net/rsa-pkcsl-shal "> 

<e>Aw==</e> 

<n>mnxT1CgQ...</n> 

</key> 

</keys> 

<signatures> 
<signature salt="EcG9PmUryEgbXcoLgEECLA" key="A" caInCerts="0" 

expiresOn="2004-10-16T12:00:00Z" 

type="http://trevp.net/rsa-pkcsl-shal">fVE2PzBL...</signature> 

<signature salt="DjRGtNcjSNRFqiwyQnuJ9g" key="B" caInCerts="0" 

nonce="b7c0RNeicxeOFC2zJ6HTDZN58c0=" 

type="http://trevp.net/rsa-pkcsl-sha1">5rzFzG7Z...</signature> 

<signature salt="v3drGwA+WyKSbzoZHA0moA" key="D" vaInCerts="01" untrustedKeys="C" 

expiresOn="2004-08-21T08:38:06Z" 
type="http://trevp.net/rsa-pkcsl-shal">bJwzqrEh...</signature> 

</signatures> 

</certChain> 
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