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ABSTRACT 
With security becoming an important concern for both users as 
well as designers of large-scale software systems, it is necessary 
to introduce security considerations very early in the system de- 
velopment life-cycle namely in the modeling phase itself. But the 
main problem in the widespread adoption of security modeling has 
been that representations of even moderate-size systems consume 
so much memory (due to the infamous state space explosion prob- 
lem) that designers are loathe to spend time increasing the com- 
plexity of their models by introducing security aspects in the design 
phase itself. In this paper we propose a technique called security 
check which entails taking small units of a system, putting them in a 
"security harness" that exercises relevant executions appropriately 
within the unit, and then model checking these more tractable units. 
For most systems whose security requirements are localized to in- 
dividual system components or interactions between small numbers 
of components, security check offers a means of coping with state 
explosion. Another major benefit of security check is that it enables 
us to detect system vulnerabilities even when the attack behavior 
is not known. And for known attack patterns security check can 
provide models of suspicious behavior which can then be used for 
intrusion detection at a later stage. 

1. INTRODUCTION 
Traditional research on security focuses on postqmplementation 

analysis of software systems. In these approaches, source code may 
be annotated to find bugs [9] or be used to generate abstract models 
for subsequent analysis [8] [2] [12] [23]. But these approaches 
address the issue of security after the entire system has been coded 
and even perhaps deployed. Finding security vulnembilities in the 
software design at this stage leaves us with two options: either 
patch the vulnerability by writing new code or go back to the draw- 
ing board and redesign the vulnerable parts of the system. While 
the first approach is the most common, it can be argued that this 
solution is not good software engineering practice as patches are at 
best an ad-hoc solution and a patched system may become so spe- 
cialized that it makes component reuse and consequent software 
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maintenance difficult. The second approach however leads to an 
increase in development time and cost which is why the first solu- 
tion, despite its disadvantages, is the most popular. 

This motivates our approach which concentrates only on pre- 
implementation models of software systems. The utility of design- 
time artifacts is that they allow users to model the system at any 
level of detail, without worrying about implementation details, in 
order to study high-level structure and behavior and isolate bugs 
early in the development life-cycle. The modeling notations typi- 
cally reduce, semantically, to different variants of finite-state ma- 
chines. Requirements are often given either in temporal logic [15, 
19] or also as state machines. The term model checking [3] is 
often used to encompass algorithmic techniques for determining 
whether or not (formal) system models satisfy (formal) system re- 
quirements. 

One of the principal problems with model-checking is that for 
model-checking sufficiently complex real-world systems, the log- 
ical representations of the systems constructed for the purpose of 
analysis become so large that even powerful workstations cannot 
handle them. The problem is compounded when the system mod- 
eled has real-time characteristics. The added obligation of tracking 
delays requires the introduction of states. This compounds the in- 
evitable exponential state blowup due to interleaving of the traces 
of parallel modules, worsening the already exceedingly difficult 
state-space explosion problem. As a result, designers prefer to ab- 
stract away (ie not deal with) security considerations in the design 
phase and postpone it to the post-implementation phase. 

To provide a realistic real-time model checking experience for 
the designer even when his models include time and the added com- 
plexity of security we pursue an approach inspired by unit verifica- 
tion [20] called security check. The properties we prove in secu- 
rity check are safety properties. We also check something called 
quasi-liveness or bounded response which is a reasonable weaken- 
ing of classical liveness. Both these classes of properties are in- 
herent in any security property specification. While safety deals 
with properties of the form "nothing bad will happen"[ the private 
key can never be revealed] liveness deals with assured-response or 
in a temporal setting bounded-response[ the system will always re- 
spond in " f '  time units even when under a DOS attack]. Security 
check works by taking the property to be proved on the system 
and suitably crafting a "test process" based on that property(safety 
or liveness). The "unit", or modules inside the system to which 
the property is applicable, is isolated, all the behavior of the pro- 
cess not relevant to the property in question is "sealed" off and this 
transformed "unit" is first minimized and then run in parallel with 
the test process. Then we check if the test process terminates by 
emitting a pre-designated "good" or a "bad" transition. Depending 
on the transition the test process emitted we can say if the property 
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is satisfied by the system or not. 

1.1 Benefits 
The immediate benefits of this approach are obvious. Huge state 

spaces become tractable because only the part of the state space 
relevant to the property in question is traversed while the uninter- 
esting part of the system is abstracted away by "internalizing" the 
relevant state transitions.. The conversion of external actions into 
internal actions also aids in minimizing the system to the furthest 
extent possible when checking the property in question. This "at- 
tack" on decreasing the state space by doing a targeted traversal of 
the state space leads to a dramatic reduction in the space needed to 
store the model. Consequently we get real results in real time. 

One of the biggest benefits of our approach is that we can make 
safety guarantees even in the presence of unknown attacker behav- 
ior. If a component passes a safety property then, because of the 
compositional nature of our formalism, we can claim that this com- 
ponent will always pass the safety property no matter what environ- 
mental context it is placed in. In other words, we can guarantee that 
regardless of what an attacker's behavior may be, this safety prop- 
erty can never be violated as any attacker behavior will always be 
a subset of all possible environment behaviors. This enables us to 
reason about the vulnerabilities of the system even when possible 
attacks on the system are not known. 

Our approach also provides a model of how a component be- 
haves when it is exposed to to specific pre-determined attacks. In 
this mode of operation, the tests are no longer automata-encodings 
of safety/quasi-liveness properties but are attack agents. Attack 
agents are also automata with "good" and "bad" transitions respec- 
tively encoding the failure or the success of the attack. When an 
attack agent runs in parallel composition with the component un- 
der study, it exercises a series of traces inside the component. These 
traces can be marked as suspicious behavior and used subsequently 
for intrusion detection [25] .[The labels on the transitions of the 
component system may be system calls in which cases the exer- 
cised traces provide one with suspicious sequences of system calls] 
Related Work 

Compositional approaches to security property checking have 
been studied in [11] where the authors present CoSec, a composi- 
tional tool for formally analyzing security properties. CoSec also 
provides support for checking information flow properties like non- 
interference. However, they do not provide any state-space saving 
optimizations and consequently their models suffer from the clas- 
sical problems mentioned previously. 

Symbolic model-checking techniques [3] do not construct an 
explicit representation of the state space and so theoretically are a 
solution for the state-space-explosion problem. However, the con- 
cise representations constructed for symbolic analysis make it dif- 
ficult to simulate these models. We feel that one of the primary 
advantages of pre-implementation modeling is the ability to cre- 
ate working simulateable system prototypes. Symbolic approaches 
force us to sacrifice that functionality. In addition there are added 
complexities introduced for the symbolic approach if time is being 
modeled. 
Outline 

Section 2 deals with the underlying semantic definitions for the 
system. Section 3 defines security check while Section 4 provides 
conclusions and future work. 

2. DISCRETE-TIME LABELED TRANSITION 
SYSTEMS 

The basic semantic framework used in our modeling is discrete- 

time labeled transition systems. To define these we first introduce 
the following. 

DEFINITION I. A set A is a set o f  visible actions/f/s/s non- 
empty and does not contain r or 1. 

In what follows visible-action sets will correspond to the atomic 
interactions users will employ to build system models. The dis- 
tinguished elements r and I correspond to the internal action and 
clock-tick (or idling) action. For notational convenience, given a 
visible action set A we define: 

A{~} = AU{r} 

A{i} = AU{1} 

A{~,,} = Au{r ,  1} 

We sometimes call the set A{~-,i} an action set and A{~.} as a 
controllable-action set (the reason for the latter being that in many 
settings, actions in this set can be "controlled" to a certain extent 
by a system environment). 

Discrete-time labeled transition systems are defined as follows. 

DEFINITION 2. A discrete-time labeled transition system (DTLTS) 
is a taple (S, A,  -% s l )  where: 

1. S is a se to f  states; 

2. A is a visible-action set (cf. Def. 1); 

3. ----4 C_ S x A{~,i} x S is the transition relation, and 

4. sx E S is the start state. 

A DTLTS <S, A,  --~, sz) satisfies the maximal-progress property/f 

for every s such that s - - 4  s I some s', s ~ s" for any s ". 

A DTLTS <S, A, --~, sl} encodes the operational behavior of a real- 
time system. States may be seen as "configurations" the system 
may enter, while actions represent interactions with the system's 
environment that can cause state changes. The transition relation 
records which state changes may occur: if is, a, s ~) E---+ then a 
transition from state s to s ~ may take place whenever action a is 
enabled. Generally speaking, 7- is always enabled; other actions 
may require "permission" from the environment in order to be en- 
abled. Also, transitions except those labeled by 1 are assumed to be 
instantaneous. While unrealistic at a certain level, this assumption 
is mathematically convenient, and realistic systems, in which all 
transitions "take time", can be easily modeled. We write s ~ s '  
when a system in state s transitions, via action a, to state s ~. 

If a DTLTS satisfying the maximal progress property is in a state 
in which internal computation is possible, then no idling (clock 
ticks) can occur. 

DTLTSs model the passage of time and interactions with a sys- 
tem's environment. Discrete-time process algebras such as Tempo- 
ral CCS [16] enrich the basic theory of DTLTSs with operators for 
composing individual DTLTSs into systems that may themselves be 
interpreted via (global) DTLTSs. Such languages typically include 
operators for parallel composition and action scoping, among oth- 
ers. The variant of Temporal CCS used in this paper, for instance, 
may be defined as follows. Let A be a nonempty set of labels not 
containing 7- and 1, and fix A TCCs = A u {~ I ~ E A}, where a 
syntactic operator. Intuitively, A contains the set of communication 
channels, with visible Temporal CCS actions of the form ~ corre- 
sponding to receive actions on port J~ and ~ corresponding to send 
actions on port ~. Then (a subset of) Temporal CCS is the set of 
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terms defined by the following grammar, where M is a maximal- 
progress DTLTS whose action set is A TCcs and L C A. 

P : :=  M I P ~ I P ~ I P \ L  

Intuitively, these constructs may be understood in terms of the com- 
munication actions and units of delay (or idling) they may engage 
in. P~ IP2 represents the parallel composition of P~ and P~. For 
the composite system to idle, both components must be capable of 
idling. Non-delay transitions are executed in an interleaved fash- 
ion; moreover, if either P~ or P2 is capable of an output (A) on 
a channel A that the other is capable of an input on (~), then a 
synchronization occurs, with both processes performing their ac- 
tions and a r resulting: in this case, no idling is possible until af- 
ter the r is performed. If L C A then P \ L  defines a process in 
which the channels or actions in L may be thought of as "local". 
In other words, actions involving the channels in the set L are pre- 
vented from interacting the environment outside. The net effect is 
to "clip", or remove, transitions labeled by such actions from P.  
Other operators, including a hiding operator P[LJ  that converts 
actions whose labels are in L into r actions, may be defined in 
terms of these. 

This informal account may be formalized by giving rules for con- 
verting Temporal CCS terms into DTLTSs in the standard Struc- 
tural Operational Style [18]. 

Finally, DTLTSs may be minimized by merging semantically 
equivalent but distinct states. In this paper a specific equivalence, 
Milner's observational equivalence [22], is used for this purpose. 
Intuitively, two states in a DTLTS are observationally equivalent if, 
whenever one is capable of a transition to a new state, then the other 
is capable of a sequence of transitions with the same "visible con- 
tent" to a state that is observationally equivalent to the new state. 
To define observational equivalence precisely, we use the following 
notions. 

DEFINITION 3. Let M = (S, A,  -% s t )  bea DTLTS, with s, s' E 
S a n d a  E A(~-,1}. 

1. s ~ s ~ if  there exists s = s o , . . ,  s,~ = s t such that for all 
0 < i < n, s~ ----r si+~. 

2. s ~ st ifthereexists s l ,  s2 suchthat s ~ sl ~') s2 
8 t" 

3. The visible content, 5, of  a is definedby: ~ = e and~ = a i f  
a ~ 7 " .  

4. A relation R C S x S is a weak bisimulation/f, for every 
a E A{,,i} and(s~,s~)  E R, thefollowinghold. 

(a) I f  s l  _2+ s[ then there exists s~ such that s2 ~ s~ 
and t t <sl,s2) E R. 

(b) l f  s2 ~ s~ then there exists sl such that Sl ~ al 
and (sl, sl) e R. 

5. sx and a2 are observationally equivalent, written sl ,~ s2, i f  
there exists a weak bisimulation R with (s l ,  s21 E R.  

Intuitively, s ~ s ~ if there is a sequence of internal transitions 
leading from s to s t, while a ~ s t if there is a sequenceof transi- 
tions, one labeled by a and the rest by 7", leading from s to s t. The 
visible content of r is "empty" (e). 

It can be shown that observational equivalence is indeed an equiv- 
alence relation on states, and that observationally equivalent states 

in a DTLTS can be merged into single states without affecting the 
semantics of the over-all DTLTS.1 It is also the ease that, in the con- 
text of the Temporal CCS operators mentioned above, DTLTSs may 
be freely replaced by their minimized counterparts without affect- 
ing the semantics of the overall system description. For finite-state 
DTLTSs, polynomial-time algorithms for minimizing DTLTSs with 
respect to observational equivalence have been developed [5, 10, 
13, 17]. 

2.1 M o d e l  C h e c k i n g  
In automated model-checking approaches to system verification 

system properties are formulated in a temporal logic; the model 
checker then determines whether or not they hold of a given (finite- 
state) system description, The given formula defines a behavior 
the system should or should not have as it executes. The logic 
used for expressing formulas contains operators enabling one to 
describe how a system behaves as time passes rather than simply a 
characteristic of the system at a particular point in time. 

In this work we use a (very small) subset of the modal mu- 
calculus [ 14], a temporal logic for describing properties of (discrete- 
time) labeled transition systems. The syntax of the fragment is de- 
scribed as follows, where A is a visible-action set (el. Def. 1). 

,~ ::= It] ~I  (a)(.),~ I [a]{.)¢ I (a)~,,1¢ I ["h-,,)¢ 
Here a E A{I} u {e}. The full mu-calculus contains other opera- 
tors, including conjunction, disJunction and recursion constructs; a 
full account may be found in [14]. 

These formulas are interpreted with respect states in a given 
DTLTS. The formulas It and ff represent the constants "true" and 
"false" and hold of all, respectively no, states. The remaining op- 
erators are modal in that they refer to the transition behavior of 
a state. In particular, a state s satisfies {a){))¢ if if there is an- 

other state s '  such that s ~ s '  and s'  satisfies ~b, while s satisfies 
[a]{r}~b if every s t such that a ~ s t satisfies ~b. The operators 
(a){, , t)  and [a]{~,x) are similar except that they treat clock ticks 
as being analogous to r-transitions. More precisely, we define the 
following. 

DEFINITION 4. Let M = (.5', A,  ----~, sz) be a DTLTS, with 
a ,s  ~ E S anda E Ab-,1 }. 

1. s ~ s' i f  there exists a = so . . . .  , sn = s ' (n  > o) and 
a l , . . . a ,  such that so .~x> sl " "  sn-1 ~ an and ai E 
{r,  1} for  all 1 < i < n. 

¢r x 2. s ~ s t i f  there exists s l ,  02 such that s ~ sl  ~ s~ ~ s t. 

So a ~ a ~ if there is a sequence of 7-- and 1-transitions leading 

from a to s t, while s ~ s t if there is a sequence of transitions, one 
labeled by a and the rest either by ~- or 1, leading from a to s'. 

We can now define (a){~- 1) and [a]{~- 1} more precisely. A state 

s satisfies (a)b-,1)¢ if there is an s '  such that s ~ s '  and a t sat- 

isfies ~b. Dually, s satisfies [a](~,1}¢ ff every s t reachable via a 
transition from s satisfies ¢. 

The operators ( ){r}-, [ ]{~}, (){~-,1) and [ ]{r,a) are not prirni- 
five mu-calculus operators, but they can be encoded using the prim- 
itive operators. 

tMore precisely, the notion of observational equivalence can be 
lifted to a relation between DTLTSs, rather than just between states 
in the same DTLTS. It can then be shown that a DTLTS is observa- 
tionally equivalent to its minimized counterpart. 
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In what follows we write M ~ ~ if M is a DTLTS whose start 
state satisfies 4. 

2.1.1 The Concurrency Workbench of the New Cen- 
tury 

We use the Concurrency Workbench of the New Century (CWB- 
NC) [5, 6, 21] as the verification engine for security check. 

The CWB-NC supports several different types of verification, 
including mu-calculus modeling checking, various kinds of refine- 
ment checking, and several types of semantic equivalence check- 
ing. The tool also includes routines for minimizing systems with 
respect to different semantic equivalences, including observational 
equivalence. 

The design of the CWB-NC makes it relatively easy to incorpo- 
rate support for different design languages. The Process Algebra 
Compiler (PAC) tool [4, 21] provides support for adapting the de- 
sign language processed by the CWB-NC. 

3. SECURITY CHECK 
Security check is a specialization of unit verification which in 

turn derives its name from unit testing. In unit testing, software 
modules are first tested in isolation before being assembled into full 
systems. In order to test a module that may, in the final system, not 
have an interface to the external environment, one typically con- 
structs a test harness that drives the execution of the software under 
test. Unit testing is frequently used in software projects because it 
gives engineers an ability to detect bugs at the module level, when 
they are easier to diagnose and fix. For unit testing to work, of 
course, one must have module-level requirements at hand so that 
test results can be analyzed. 

In unit verification, the set-up is very similar to unit testing: sin- 
gle modules are verified in isolation using "harnesses" to provide 
the stimuli that the other modules in the system (or the external en- 
vironmen0 would generate once the module is deployed. As with 
unit testing, this approach requires the presence module-level re- 
quirements so that results can be correctly interpreted. 

Security check specializes unit verification by defining tests as 
automata encodings of security properties. Security check also ex- 
tends the unit verification framework by providing support for at- 
tack agents which are then used to extract traces of the module 
under test. If the module fails the test(ie the attack is successful) 
then the trace obtained in the module can be used to modify the de- 
sign to remove the vulnerability. Even when the module passes the 
test a simulation-based enunciation of the traces of the module can 
enable the designer to note down the internal behavior of the sys- 
tem when under attack. Once the system has been deployed, this 
information can later be used for detecting intrusions/attacks on the 
system. 

3.1 Security Properties 
A security policy defines a system execution that, for one reason 

or another, has been deemed unacceptable. [24]. Formally a se- 
curity policy is specified by providing a predicate on sets of execu- 
tions. A securitypropertyis a security policy (ie a set of executions) 
for which set-inclusion of a particular execution into the set of al- 
lowed executions can be determined by the execution alone and not 
by other members (executions) of the set. Information flow prop- 
erties [26] like non-interference cannot be determined by studying 
only a particular execution: to deduce if information flows from a 
variable x to another variable y in a given execution, one has to 
look at the values y takes in other executions to determine if there 
exists a correlation between x and y. It has been shown by Schnei- 
der et al that security properties can be checked in a compositional 

m a n n e r .  

Security check deals primarily with trace properties: properties 
of system executions. In other words, we will be concerned with 
security properties rather than the more general security policies. 
This is because our approach is fundamentally compositional in 
approach and we wish to use the compositional property of secu- 
rity properties. In this section we sketch a basic theory of security 
properties. 

As executions may be thought of as sequences, we use standard 
mathematical operations on sequences in what follows: if A is a 
set, then A* is the set of sequences whose elements come from 
A, if or, ors are sequences then or • or' is the sequence obtained by 
concatenating them in the given order, ~ is the empty sequence, etc. 

DEFINITION 5. Let M = (S, A, ---+, s l )  be a DTLTS. 

1. Let s, s' E S be states and or E (A{t})* be a sequence of 
(non-r) transition labels. Then 

s' if [ a = e and s ~ s' in Def. 3(1), or 
S 

a = a .  or' andBs" E S.s ~ s"  ~ s'. t 

2. The language, L( M, s), ors ~ S is defined by: 

L(M, s) = {a e (Ao})* I s =g:~,' some s ' e  S}. 

3. The language, L( M)  of M is defined by: 

L ( M )  = L(M,  st).  

The language of a state in a DTLTS contains the sequences of vis- 
ible actions / clock ticks that a user can observe as execution of the 
DTLTS proceeds from the state. The language of the DTLTS is just 
the language of the start state. 

In this case study the properties we are concerned with involve 
system executions and come in two varieties: safety and quasi- 
liveness. These are defined as follows. 

DEFINITION 6. Let M = (S, A, ----~, sz} be a DTLTS. 

1. A safety or quasi-liveness property over A is any subset of 
(A{t})' .  

2. M satisfies safety property S iff L( M)  C_ S. 

3. M satisfies quasi-liveness property Q iff for every or, S such 
that sz ~ s, thereexists or E L( M, s) suchthat o-.or' E Q. 

Intuitively, a safety property contains "allowed" execution sequences; 
a system satisfies such a property if all the system's executions 
are allowed. A quasi-liveness property is more complicated: it 
contains sequences that a system, regardless of its current internal 
state, should be able to complete. We call these properties quasi- 
liveness because the definition of satisfaction does not require that 
such "complete-able" executions actually be completed, only that 
the system always be capable of doing so. At first blush, this re- 
quirement may not seem strong enough to ensure "liveness" in the 
tradition sense. However, our intuition is that, if a quasi-liveness 
property is satisfied by a system, then in any "reasonable" run-time 
setting employing some kind of fair scheduling, a "complete-able" 
execution will eventually be completed. These definitions are in- 
spired by, but differ in several respect from, the classic definitions 
of safety and liveness in [1]. 

62 



3.1.1 Def ining Security Check 

The approach we advocate may be used to check whether a sys- 
tem satisfies safety / quasi-liveness properties as defined in the pre- 
vious section. The method consists of the following general steps, 
where M is the module being analyzed and P is the property. 

1. Construct a security harness Hv[] .  

2. Plug M into Hel l ,  yielding a new system He[M]. 

3. Apply a check to He[M] to see if M satisfies P or not. 

The checks applied to Hp[M] depend on whether P is a safety or 
quasi-liveness property. 

In the remainder of this section we flesh out the security check 
approach in the context of Temporal CCS. We define what security 
harnesses H e  [ ] are and the checks that are applied on H e  [M]. We 
also discuss optimizations to the procedure that can be undertaken 
to improve (often greatly) performance. 

3.2 Security Harnesses in Temporal CCS. 
Security harnesses are intended to "focus attention" on interest- 

ing execution paths in a module being "security checked". The 
general form of a security harness is: 

(ve I [ ] ) \A 
where A is the set of all communication labels, Vp is a (determin- 
istic) Temporal CCS expression that we sometimes call a security 
process, and [] is the "hole" into which the module to be verified is 
to be "plugged". 

In our setting, security processes (our automata-theoretic encod- 
ings of security properties) draw their visible actions from A TcCs 
(the Temporal CCS action set introduced in Section 2) augmented 
with two special actions, good and bad. The latter are used to de- 
termine what properties a security process defines. Recalling that 
the semantics of Temporal CCS specifies how Temporal CCS ex- 
pressions may be "compiled" into single DTLTSs, in what follows 
we assume that our verification processes are single DTLTSs. 

In order to characterize the properties associated with a security 
process V, we first note that V is intended to run in parallel with 
the module being checked. In order to guide the behavior of the 
module, V must synchronize with the modules actions, meaning 
that when V wants the module to perform an input action a, V 
must perform the corresponding output ~. In general, then, since 
module properties refer to the actions in the module, to associate 
a module property with V we need to reverse input / output roles 
in V's execution sequences. To make this precise we introduce the 
following notation. 

DEFINITION 7. Let a E (A~iC~s) * be a sequence of  externally 

"A TCCs ~* is defined inductively as controllable actions. Then ~ E ~ O} 1 
ATCCS follows, wherea E ~U.} " 

2. a . ~r' = ~ . a"--~ where ~ = A and T = 1. 

A security process V defines both a safety property, S(V) ,  and 
a quasi-liveness property, Q(V), as follows. 

,S(V) = {o" • (Ao})* [ 
~ r , ,  o'=.~ = o',. a= ^ a , .  bad • L (V) }  

Q(V) = {~[o. E L(V) Ao-.goodE L(V)} 

Intuitively, if bad is possible as the next action in an execution then 
the execution, and all possible ways of extending it, are removed 

from S(V).  Similarly, action sequences leading to the enabling of 
good are included in the property S(V) .  

3.2.0.1 Def in ing  Safe ty  a n d  Quas i -L iveness  Checks..  

From the structure of H e l l  one can see that the only actions that 
He[M]  can perform for any M are r, 1, good and bad. This is 
due to the fact that Hp[M] = (Vp [ M ) \ A ,  and the \A  opera- 
tor prevents all but these actions from being performed. This fact 
greatly simplifies the task of checking whether or not a safety / 
quasi-liveness property encoded within a security process holds of 
a module. 

THEOREM 1. Let M be a Temporal CCS system model and V 
be a security process. Then the following hold. 

1. M satisfiesS(V) /ff (V I M ) \ A  l= [bao]{,4}ff 

2. M satisfies Q(V) /ff (V I M ) \ A  ~ [e](,,x} (good~{,,,} tt 

proof'Follows immediately from the definitions of 1, \L,  ,5 and 
Q. The determinacy of V is important. 

This theorem says that the correct "check" for the safety prop- 
erty encoded in a security process V is to see whether or not the 
"plugged-in" security harness, (V [ M ) \ A ,  forever disables the 
bad action: formula [bad]{~,l}ff holds exactly when there are no 
execution sequences consisting of r ' s ,  l ' s  and a single bad action. 
Likewise, to check if V's liveness property holds of M, it suffices 
to check that (V [ M ) \ A  satisfies [el{T,1} (good)i~,1}tt: if so, then 
regardless of what M does, there is still a possibility of (V [ M ) \ A  
evolving to a state in which good is enabled. 

In some cases, it may be more natural to "look for bugs" rather 
than to try to prove the nonexistence of bugs. This might be the case 
if, for example, one strongly suspects erroneous behavior(ie a vul- 
nerability). To determine if a module violates a security process's 
safety property, one may perform the following check: 

(V I M ) \ A  ~ (bad){,,,}tt 

If the answer is "yes" then a violation exists. Similarly, one may 
check 

(V [  M ) \ A  ~ (e)f,.,1}[good]{.,.,z}ff 

to test whether or not M violates V's quasi-liveness property. 

Optimlzafions 

So far our basic methodology consists of the following steps. 

1. Formulate a security process V. 

2. To cheek whether or not V's safety / quasi-liveness property 
holds of M, check whether or not simple modal mu-calculus 
formulas hold of V "running in parallel with" M. 

Two simple optimizations greatly facilitate this process; we de- 
scribe these here. 

Minimization. Checking whether or not a mu-calculus property 
holds of a system requires, in general, a search of the system's state 
space. Reducing the size of this state space thus reduces the time 
required by this search. In the ease of (V [ M ) \ A ,  one way to 
reduce states in the parallel composition is to reduce states in V and 
M by minimizing them with respect to observational equivalence. 

Action Hiding. In a property of the form "the return address 
cannot be overwritten", actions not related to writing to the ad- 
dress space are unimportant. Mathematically, this is reflected in 
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the structure of a security process: every state has a self-loop for 
every unimportant action, since such actions do not "affect" the 
verification result. 

This observation can be exploited to reduce the state space of 
(V I M) \A  even further as follows. 

1. Partition A into a set I of "interesting" labels and a set U = 
A - I of "uninteresting labels?' 

2• Hide actions involving uninteresting labels in M, creating 
M ~ = M[UJ (and likewise for V, creating V+). 

3. Minimize M '  and V'  and perform the safety / quasi-liveness 
checkon (V'  I M') \ I .  

Hiding actions turns them into r 's;  this process enhances possibil- 
ities for minimization, since observational equivalence is largely 
sensitive only to "visible" computation. It should also be noted that 
TCCS (unlike conventional Stateeharts [7] has a compositional se- 
mantics. So properties proved on sub-components can be"lifted" to 
more complex systems in a precise way. This compositional prop- 
erty plus the optimizations detailed above lead to massive state- 
space reductions. [20] and consequently an easier, real-time analy- 
sis effort. 

A note of caution is in order here. Hiding actions in Temporal 
CCS turns them into r actions. Since Temporal CCS has the max- 
imal progress property (cf. Def. 2, introducing cycles of r ' s  via 
hiding can cause timing behavior to be suppressed (a r-cycle can 
cause "time to stop"). When hiding actions, care must be taken not 
introduce such loops, or divergences, as they are often called. The 
CWB-NC model checker may be used to check for the presence or 
absence of divergences. 

Putting It All Together 
What follows summarizes our general approach to checking safety 
and quasi-liveness properties with security check• To check a safety 
or quasi-liveness property of a module M: 

1. Formulate an appropriate security process V. 

2. Identify the interesting (I) and uninteresting (U) labels in M. 

3. Form M'  = M[UJ, which hides the actions involving un- 
interesting labels in M. Make sure no divergent behavior is 
introduced into M'.  

4. Minimize M' ,  yielding M". 

5• Do the same on V if necessary, yielding V". 

6. To check V's safety property: determine whether or not (V" I 
M " ) \ [  ~ [bad]{,.., j , ff. 

7. To check V's quasi-liveness property: determine whether or 
not (V"[  M " ) \ I  ~ [¢]{~4}(good){~4}tt. 

3.3 Attack Agents 
The other type of analysis that security check supports is done 

with attack agents. Here we lose the generality of safety/liveness 
properties as now we are dealing with known attacks. But the up- 
side is that we can do some analysis that was not possible in the 
more general case. 

The approach is almost similar to the one illustrated previously 
except for some differences. The first difference is that here the 
security harness consists of the attack agent instead of the security 
process. Secondly we do not hide the interesting internal actions as 
it is precisely these actions that we want to observe. If a module 

fails an attack then that means that the "bad" transition is possible 
in the attack agent.[A "good" transition in an attack agent obvi- 
ously means that the attack hasn't been successful].Formally that 
means: 
M fails an attack V iff (V l M) ~ [A]{,,1}(bad)c~,l}tt (where A 
is the set of all labels of M) .  

The intuition behind this is that no matter what externally vis- 
ible actions M performs in the context of the attack agent, there 
exists a way by which a "bad" transition can be fired(ie the attack 
can succeed). Once we obtain such a result, we are naturally inter- 
ested in knowing what trace inside M is responsible for this failure 
• This can be done using the search facility of CWB-NC (discussed 
later). Even if the test returns a "no" ie M is not vulnerable to 
the attack we can use the CWB-NC simulator to step through the 
traces in M to check out the transitions exercised by M when put 
in parallel with the attack agent. Intrusion detection engines [25] 
work by operating through a learning phase in which they learn the 
common system call sequences to create a model of "acceptable 
behavior" and then by flagging a warning whenever a system call 
occurs that does not fall into the model of acceptable behavior. In 
our approach, we create models of 'suspicious behavior" ie behav- 
iors exhibited by the system when under attack. This is done in the 
pre-implementation phase thus obviating the need for a learning 
phase during implementation• Specifically if we have a model in 
security check whose transitions are labeled by system calls, then 
"suspicious behavior" would consist of a set of all system call se- 
quences that are exhibited by the system when under attack. 

3.4 Tool Support 
The CWB-NC tool includes several routines that support the unit 

verification procedure described above, Primary among these are 
two different routines for checking whether or not mu-calculus for- 
mulas hold of systems. One, the basic model checker, returns a 
"yes / no" answer quickly. Another, the search utility, searches 
from the start state of a system for another state satisfying a given 
property: if one is found, then the simulator is "loaded" with a 
shortest-possible sequence of execution steps leading from the start 
state to the state in question. This enables the user to step through 
the given execution sequence to examine how the found state was 
reached. In particular, to determine if a module M violates the 
safety property of security process V, it suffices to search from 
the start state of (V [ M) \A  for a state satisfying (bad)tt (a mu- 
calculus formula holding of states from which bad is immediately 
enabled). If such a state is found, then the safety property is vi- 
olated, and the execution sequence loaded into the simulator may 
be examined to determine why. In the case of quasi-liveness, the 
same process may be searched for a state satisfying [good]{~.4}ff: 
if such a state exists then the quasi-liveness property is violated. 
And in the case that M fails an attack we search from the start state 
of (V [ M) for a state satisfying [bad]tt This will give a trace to 
the state which is responsible for the module failing the attack. 

The tool also contains a sort utility that, given a Temporal CCS 
system description, returns all the externally controllable (i.e. non- 
r) actions the system can performed. The sort command provides a 
convenient utility for checking whether or not a safety holds: check 
whether or not the harnessed process's sort contains bad. It also 
may be used to check for violations of quasi-liveness properties: if 
the harnessed process's sort does not contain good, then the prop- 
erty is violated. The latter is only a sufficient condition: just be- 
cause good is in the sort of such a process does not guarantee that 
the quasi-liveness property is satisfied. 

The CWB-NC also includes a routine for minimizing systems 

64 



with respect to observational equivalence. 

4. FUTURE WORK AND CONCLUSIONS 
With respect to future work, we plan to illustrate our approach 

with some case-studies. While in this paper security processes are 
monolithic entities, we intend to generalize this concept to a more 
distributed setting ie a security property may now be encoded by 
several automata working in conjunction with each other connected 
to different parts of the system. We also intend to look at ways for 
modeling security properties in UML. Another interesting avenue 
of research is to see how to modify this state-space constraintment 
methodology so as to be able to check general information flow 
properties like non-interference. 

Security check does not seek to replace post implementation static 
or dynamic analysis. It is obvious that many security flaws creep in 
during the coding stage and not in the design phase. Security check 
cannot deal with such vulnerabilities as they come later in the soft- 
ware development life-cycle. But there are certain security flaws 
which arise due to faulty design decisions and these may be reme- 
died by security check. In conclusion, this paper make a case for 
software designers to deal with security issues at the design phase 
itself by providing them with a methodology for checking security 
properties in an efficient, practical way. 
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