
Security Check: A Formal Yet Practical Framework For
Secure Software Architecture

Arnab Ray
Department of Computer Science

SUNY at Stony Brook
Stony Brook, NY 11794-4400, USA

{arnabray}@cs. sunysb, edu

ABSTRACT
With security becoming an important concern for both users as
well as designers of large-scale software systems, it is necessary
to introduce security considerations very early in the system de-
velopment life-cycle namely in the modeling phase itself. But the
main problem in the widespread adoption of security modeling has
been that representations of even moderate-size systems consume
so much memory (due to the infamous state space explosion prob-
lem) that designers are loathe to spend time increasing the com-
plexity of their models by introducing security aspects in the design
phase itself. In this paper we propose a technique called security
check which entails taking small units of a system, putting them in a
"security harness" that exercises relevant executions appropriately
within the unit, and then model checking these more tractable units.
For most systems whose security requirements are localized to in-
dividual system components or interactions between small numbers
of components, security check offers a means of coping with state
explosion. Another major benefit of security check is that it enables
us to detect system vulnerabilities even when the attack behavior
is not known. And for known attack patterns security check can
provide models of suspicious behavior which can then be used for
intrusion detection at a later stage.

1. INTRODUCTION
Traditional research on security focuses on postqmplementation

analysis of software systems. In these approaches, source code may
be annotated to find bugs [9] or be used to generate abstract models
for subsequent analysis [8] [2] [12] [23]. But these approaches
address the issue of security after the entire system has been coded
and even perhaps deployed. Finding security vulnembilities in the
software design at this stage leaves us with two options: either
patch the vulnerability by writing new code or go back to the draw-
ing board and redesign the vulnerable parts of the system. While
the first approach is the most common, it can be argued that this
solution is not good software engineering practice as patches are at
best an ad-hoc solution and a patched system may become so spe-
cialized that it makes component reuse and consequent software

New Security Paradigms Workshop 2003 Ascona Switzerland
© 2004 ACM 1-58113-880-6104/04_.$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this not ice and the full c/ration on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee

maintenance difficult. The second approach however leads to an
increase in development time and cost which is why the first solu-
tion, despite its disadvantages, is the most popular.

This motivates our approach which concentrates only on pre-
implementation models of software systems. The utility of design-
time artifacts is that they allow users to model the system at any
level of detail, without worrying about implementation details, in
order to study high-level structure and behavior and isolate bugs
early in the development life-cycle. The modeling notations typi-
cally reduce, semantically, to different variants of finite-state ma-
chines. Requirements are often given either in temporal logic [15,
19] or also as state machines. The term model checking [3] is
often used to encompass algorithmic techniques for determining
whether or not (formal) system models satisfy (formal) system re-
quirements.

One of the principal problems with model-checking is that for
model-checking sufficiently complex real-world systems, the log-
ical representations of the systems constructed for the purpose of
analysis become so large that even powerful workstations cannot
handle them. The problem is compounded when the system mod-
eled has real-time characteristics. The added obligation of tracking
delays requires the introduction of states. This compounds the in-
evitable exponential state blowup due to interleaving of the traces
of parallel modules, worsening the already exceedingly difficult
state-space explosion problem. As a result, designers prefer to ab-
stract away (ie not deal with) security considerations in the design
phase and postpone it to the post-implementation phase.

To provide a realistic real-time model checking experience for
the designer even when his models include time and the added com-
plexity of security we pursue an approach inspired by unit verifica-
tion [20] called security check. The properties we prove in secu-
rity check are safety properties. We also check something called
quasi-liveness or bounded response which is a reasonable weaken-
ing of classical liveness. Both these classes of properties are in-
herent in any security property specification. While safety deals
with properties of the form "nothing bad will happen"[the private
key can never be revealed] liveness deals with assured-response or
in a temporal setting bounded-response[the system will always re-
spond in " f ' time units even when under a DOS attack]. Security
check works by taking the property to be proved on the system
and suitably crafting a "test process" based on that property(safety
or liveness). The "unit", or modules inside the system to which
the property is applicable, is isolated, all the behavior of the pro-
cess not relevant to the property in question is "sealed" off and this
transformed "unit" is first minimized and then run in parallel with
the test process. Then we check if the test process terminates by
emitting a pre-designated "good" or a "bad" transition. Depending
on the transition the test process emitted we can say if the property

59

is satisfied by the system or not.

1.1 Benefits
The immediate benefits of this approach are obvious. Huge state

spaces become tractable because only the part of the state space
relevant to the property in question is traversed while the uninter-
esting part of the system is abstracted away by "internalizing" the
relevant state transitions.. The conversion of external actions into
internal actions also aids in minimizing the system to the furthest
extent possible when checking the property in question. This "at-
tack" on decreasing the state space by doing a targeted traversal of
the state space leads to a dramatic reduction in the space needed to
store the model. Consequently we get real results in real time.

One of the biggest benefits of our approach is that we can make
safety guarantees even in the presence of unknown attacker behav-
ior. If a component passes a safety property then, because of the
compositional nature of our formalism, we can claim that this com-
ponent will always pass the safety property no matter what environ-
mental context it is placed in. In other words, we can guarantee that
regardless of what an attacker's behavior may be, this safety prop-
erty can never be violated as any attacker behavior will always be
a subset of all possible environment behaviors. This enables us to
reason about the vulnerabilities of the system even when possible
attacks on the system are not known.

Our approach also provides a model of how a component be-
haves when it is exposed to to specific pre-determined attacks. In
this mode of operation, the tests are no longer automata-encodings
of safety/quasi-liveness properties but are attack agents. Attack
agents are also automata with "good" and "bad" transitions respec-
tively encoding the failure or the success of the attack. When an
attack agent runs in parallel composition with the component un-
der study, it exercises a series of traces inside the component. These
traces can be marked as suspicious behavior and used subsequently
for intrusion detection [25] .[The labels on the transitions of the
component system may be system calls in which cases the exer-
cised traces provide one with suspicious sequences of system calls]
Related Work

Compositional approaches to security property checking have
been studied in [11] where the authors present CoSec, a composi-
tional tool for formally analyzing security properties. CoSec also
provides support for checking information flow properties like non-
interference. However, they do not provide any state-space saving
optimizations and consequently their models suffer from the clas-
sical problems mentioned previously.

Symbolic model-checking techniques [3] do not construct an
explicit representation of the state space and so theoretically are a
solution for the state-space-explosion problem. However, the con-
cise representations constructed for symbolic analysis make it dif-
ficult to simulate these models. We feel that one of the primary
advantages of pre-implementation modeling is the ability to cre-
ate working simulateable system prototypes. Symbolic approaches
force us to sacrifice that functionality. In addition there are added
complexities introduced for the symbolic approach if time is being
modeled.
Outline

Section 2 deals with the underlying semantic definitions for the
system. Section 3 defines security check while Section 4 provides
conclusions and future work.

2. DISCRETE-TIME LABELED TRANSITION
SYSTEMS

The basic semantic framework used in our modeling is discrete-

time labeled transition systems. To define these we first introduce
the following.

DEFINITION I. A set A is a set o f visible actions/f/s/s non-
empty and does not contain r or 1.

In what follows visible-action sets will correspond to the atomic
interactions users will employ to build system models. The dis-
tinguished elements r and I correspond to the internal action and
clock-tick (or idling) action. For notational convenience, given a
visible action set A we define:

A{~} = AU{r}

A{i} = AU{1}

A{~,,} = Au{r , 1}

We sometimes call the set A{~-,i} an action set and A{~.} as a
controllable-action set (the reason for the latter being that in many
settings, actions in this set can be "controlled" to a certain extent
by a system environment).

Discrete-time labeled transition systems are defined as follows.

DEFINITION 2. A discrete-time labeled transition system (DTLTS)
is a taple (S, A, -% s l) where:

1. S is a se to f states;

2. A is a visible-action set (cf. Def. 1);

3. ----4 C_ S x A{~,i} x S is the transition relation, and

4. sx E S is the start state.

A DTLTS <S, A, --~, sz) satisfies the maximal-progress property/f

for every s such that s - - 4 s I some s', s ~ s" for any s ".

A DTLTS <S, A, --~, sl} encodes the operational behavior of a real-
time system. States may be seen as "configurations" the system
may enter, while actions represent interactions with the system's
environment that can cause state changes. The transition relation
records which state changes may occur: if is, a, s ~) E---+ then a
transition from state s to s ~ may take place whenever action a is
enabled. Generally speaking, 7- is always enabled; other actions
may require "permission" from the environment in order to be en-
abled. Also, transitions except those labeled by 1 are assumed to be
instantaneous. While unrealistic at a certain level, this assumption
is mathematically convenient, and realistic systems, in which all
transitions "take time", can be easily modeled. We write s ~ s '
when a system in state s transitions, via action a, to state s ~.

If a DTLTS satisfying the maximal progress property is in a state
in which internal computation is possible, then no idling (clock
ticks) can occur.

DTLTSs model the passage of time and interactions with a sys-
tem's environment. Discrete-time process algebras such as Tempo-
ral CCS [16] enrich the basic theory of DTLTSs with operators for
composing individual DTLTSs into systems that may themselves be
interpreted via (global) DTLTSs. Such languages typically include
operators for parallel composition and action scoping, among oth-
ers. The variant of Temporal CCS used in this paper, for instance,
may be defined as follows. Let A be a nonempty set of labels not
containing 7- and 1, and fix A TCCs = A u {~ I ~ E A}, where a
syntactic operator. Intuitively, A contains the set of communication
channels, with visible Temporal CCS actions of the form ~ corre-
sponding to receive actions on port J~ and ~ corresponding to send
actions on port ~. Then (a subset of) Temporal CCS is the set of

60

terms defined by the following grammar, where M is a maximal-
progress DTLTS whose action set is A TCcs and L C A.

P : := M I P ~ I P ~ I P \ L

Intuitively, these constructs may be understood in terms of the com-
munication actions and units of delay (or idling) they may engage
in. P~ IP2 represents the parallel composition of P~ and P~. For
the composite system to idle, both components must be capable of
idling. Non-delay transitions are executed in an interleaved fash-
ion; moreover, if either P~ or P2 is capable of an output (A) on
a channel A that the other is capable of an input on (~), then a
synchronization occurs, with both processes performing their ac-
tions and a r resulting: in this case, no idling is possible until af-
ter the r is performed. If L C A then P \ L defines a process in
which the channels or actions in L may be thought of as "local".
In other words, actions involving the channels in the set L are pre-
vented from interacting the environment outside. The net effect is
to "clip", or remove, transitions labeled by such actions from P.
Other operators, including a hiding operator P[LJ that converts
actions whose labels are in L into r actions, may be defined in
terms of these.

This informal account may be formalized by giving rules for con-
verting Temporal CCS terms into DTLTSs in the standard Struc-
tural Operational Style [18].

Finally, DTLTSs may be minimized by merging semantically
equivalent but distinct states. In this paper a specific equivalence,
Milner's observational equivalence [22], is used for this purpose.
Intuitively, two states in a DTLTS are observationally equivalent if,
whenever one is capable of a transition to a new state, then the other
is capable of a sequence of transitions with the same "visible con-
tent" to a state that is observationally equivalent to the new state.
To define observational equivalence precisely, we use the following
notions.

DEFINITION 3. Let M = (S, A, -% s t) bea DTLTS, with s, s' E
S a n d a E A(~-,1}.

1. s ~ s ~ if there exists s = s o , . . , s,~ = s t such that for all
0 < i < n, s~ ----r si+~.

2. s ~ st ifthereexists s l , s2 suchthat s ~ sl ~') s2
8 t"

3. The visible content, 5, of a is definedby: ~ = e and~ = a i f
a ~ 7 " .

4. A relation R C S x S is a weak bisimulation/f, for every
a E A{,,i} and(s~,s~) E R, thefollowinghold.

(a) I f s l _2+ s[then there exists s~ such that s2 ~ s~
and t t <sl,s2) E R.

(b) l f s2 ~ s~ then there exists sl such that Sl ~ al
and (sl, sl) e R.

5. sx and a2 are observationally equivalent, written sl ,~ s2, i f
there exists a weak bisimulation R with (s l , s21 E R.

Intuitively, s ~ s ~ if there is a sequence of internal transitions
leading from s to s t, while a ~ s t if there is a sequenceof transi-
tions, one labeled by a and the rest by 7", leading from s to s t. The
visible content of r is "empty" (e).

It can be shown that observational equivalence is indeed an equiv-
alence relation on states, and that observationally equivalent states

in a DTLTS can be merged into single states without affecting the
semantics of the over-all DTLTS.1 It is also the ease that, in the con-
text of the Temporal CCS operators mentioned above, DTLTSs may
be freely replaced by their minimized counterparts without affect-
ing the semantics of the overall system description. For finite-state
DTLTSs, polynomial-time algorithms for minimizing DTLTSs with
respect to observational equivalence have been developed [5, 10,
13, 17].

2.1 M o d e l C h e c k i n g
In automated model-checking approaches to system verification

system properties are formulated in a temporal logic; the model
checker then determines whether or not they hold of a given (finite-
state) system description, The given formula defines a behavior
the system should or should not have as it executes. The logic
used for expressing formulas contains operators enabling one to
describe how a system behaves as time passes rather than simply a
characteristic of the system at a particular point in time.

In this work we use a (very small) subset of the modal mu-
calculus [14], a temporal logic for describing properties of (discrete-
time) labeled transition systems. The syntax of the fragment is de-
scribed as follows, where A is a visible-action set (el. Def. 1).

,~ ::= It] ~I (a)(.),~ I [a]{.)¢ I (a)~,,1¢ I ["h-,,)¢
Here a E A{I} u {e}. The full mu-calculus contains other opera-
tors, including conjunction, disJunction and recursion constructs; a
full account may be found in [14].

These formulas are interpreted with respect states in a given
DTLTS. The formulas It and ff represent the constants "true" and
"false" and hold of all, respectively no, states. The remaining op-
erators are modal in that they refer to the transition behavior of
a state. In particular, a state s satisfies {a){))¢ if if there is an-

other state s ' such that s ~ s ' and s' satisfies ~b, while s satisfies
[a]{r}~b if every s t such that a ~ s t satisfies ~b. The operators
(a){, , t) and [a]{~,x) are similar except that they treat clock ticks
as being analogous to r-transitions. More precisely, we define the
following.

DEFINITION 4. Let M = (.5', A, ----~, sz) be a DTLTS, with
a ,s ~ E S anda E Ab-,1 }.

1. s ~ s' i f there exists a = so , sn = s ' (n > o) and
a l , . . . a , such that so .~x> sl " " sn-1 ~ an and ai E
{r, 1} for all 1 < i < n.

¢r x 2. s ~ s t i f there exists s l , 02 such that s ~ sl ~ s~ ~ s t.

So a ~ a ~ if there is a sequence of 7-- and 1-transitions leading

from a to s t, while s ~ s t if there is a sequence of transitions, one
labeled by a and the rest either by ~- or 1, leading from a to s'.

We can now define (a){~- 1) and [a]{~- 1} more precisely. A state

s satisfies (a)b-,1)¢ if there is an s ' such that s ~ s ' and a t sat-

isfies ~b. Dually, s satisfies [a](~,1}¢ ff every s t reachable via a
transition from s satisfies ¢.

The operators (){r}-, []{~}, (){~-,1) and []{r,a) are not prirni-
five mu-calculus operators, but they can be encoded using the prim-
itive operators.

tMore precisely, the notion of observational equivalence can be
lifted to a relation between DTLTSs, rather than just between states
in the same DTLTS. It can then be shown that a DTLTS is observa-
tionally equivalent to its minimized counterpart.

61

In what follows we write M ~ ~ if M is a DTLTS whose start
state satisfies 4.

2.1.1 The Concurrency Workbench of the New Cen-
tury

We use the Concurrency Workbench of the New Century (CWB-
NC) [5, 6, 21] as the verification engine for security check.

The CWB-NC supports several different types of verification,
including mu-calculus modeling checking, various kinds of refine-
ment checking, and several types of semantic equivalence check-
ing. The tool also includes routines for minimizing systems with
respect to different semantic equivalences, including observational
equivalence.

The design of the CWB-NC makes it relatively easy to incorpo-
rate support for different design languages. The Process Algebra
Compiler (PAC) tool [4, 21] provides support for adapting the de-
sign language processed by the CWB-NC.

3. SECURITY CHECK
Security check is a specialization of unit verification which in

turn derives its name from unit testing. In unit testing, software
modules are first tested in isolation before being assembled into full
systems. In order to test a module that may, in the final system, not
have an interface to the external environment, one typically con-
structs a test harness that drives the execution of the software under
test. Unit testing is frequently used in software projects because it
gives engineers an ability to detect bugs at the module level, when
they are easier to diagnose and fix. For unit testing to work, of
course, one must have module-level requirements at hand so that
test results can be analyzed.

In unit verification, the set-up is very similar to unit testing: sin-
gle modules are verified in isolation using "harnesses" to provide
the stimuli that the other modules in the system (or the external en-
vironmen0 would generate once the module is deployed. As with
unit testing, this approach requires the presence module-level re-
quirements so that results can be correctly interpreted.

Security check specializes unit verification by defining tests as
automata encodings of security properties. Security check also ex-
tends the unit verification framework by providing support for at-
tack agents which are then used to extract traces of the module
under test. If the module fails the test(ie the attack is successful)
then the trace obtained in the module can be used to modify the de-
sign to remove the vulnerability. Even when the module passes the
test a simulation-based enunciation of the traces of the module can
enable the designer to note down the internal behavior of the sys-
tem when under attack. Once the system has been deployed, this
information can later be used for detecting intrusions/attacks on the
system.

3.1 Security Properties
A security policy defines a system execution that, for one reason

or another, has been deemed unacceptable. [24]. Formally a se-
curity policy is specified by providing a predicate on sets of execu-
tions. A securitypropertyis a security policy (ie a set of executions)
for which set-inclusion of a particular execution into the set of al-
lowed executions can be determined by the execution alone and not
by other members (executions) of the set. Information flow prop-
erties [26] like non-interference cannot be determined by studying
only a particular execution: to deduce if information flows from a
variable x to another variable y in a given execution, one has to
look at the values y takes in other executions to determine if there
exists a correlation between x and y. It has been shown by Schnei-
der et al that security properties can be checked in a compositional

m a n n e r .

Security check deals primarily with trace properties: properties
of system executions. In other words, we will be concerned with
security properties rather than the more general security policies.
This is because our approach is fundamentally compositional in
approach and we wish to use the compositional property of secu-
rity properties. In this section we sketch a basic theory of security
properties.

As executions may be thought of as sequences, we use standard
mathematical operations on sequences in what follows: if A is a
set, then A* is the set of sequences whose elements come from
A, if or, ors are sequences then or • or' is the sequence obtained by
concatenating them in the given order, ~ is the empty sequence, etc.

DEFINITION 5. Let M = (S, A, ---+, s l) be a DTLTS.

1. Let s, s' E S be states and or E (A{t})* be a sequence of
(non-r) transition labels. Then

s' if [a = e and s ~ s' in Def. 3(1), or
S

a = a . or' andBs" E S.s ~ s" ~ s'. t

2. The language, L(M, s), ors ~ S is defined by:

L(M, s) = {a e (Ao})* I s =g:~,' some s ' e S}.

3. The language, L(M) of M is defined by:

L (M) = L(M, st).

The language of a state in a DTLTS contains the sequences of vis-
ible actions / clock ticks that a user can observe as execution of the
DTLTS proceeds from the state. The language of the DTLTS is just
the language of the start state.

In this case study the properties we are concerned with involve
system executions and come in two varieties: safety and quasi-
liveness. These are defined as follows.

DEFINITION 6. Let M = (S, A, ----~, sz} be a DTLTS.

1. A safety or quasi-liveness property over A is any subset of
(A{t})' .

2. M satisfies safety property S iff L(M) C_ S.

3. M satisfies quasi-liveness property Q iff for every or, S such
that sz ~ s, thereexists or E L(M, s) suchthat o-.or' E Q.

Intuitively, a safety property contains "allowed" execution sequences;
a system satisfies such a property if all the system's executions
are allowed. A quasi-liveness property is more complicated: it
contains sequences that a system, regardless of its current internal
state, should be able to complete. We call these properties quasi-
liveness because the definition of satisfaction does not require that
such "complete-able" executions actually be completed, only that
the system always be capable of doing so. At first blush, this re-
quirement may not seem strong enough to ensure "liveness" in the
tradition sense. However, our intuition is that, if a quasi-liveness
property is satisfied by a system, then in any "reasonable" run-time
setting employing some kind of fair scheduling, a "complete-able"
execution will eventually be completed. These definitions are in-
spired by, but differ in several respect from, the classic definitions
of safety and liveness in [1].

62

3.1.1 Def ining Security Check

The approach we advocate may be used to check whether a sys-
tem satisfies safety / quasi-liveness properties as defined in the pre-
vious section. The method consists of the following general steps,
where M is the module being analyzed and P is the property.

1. Construct a security harness Hv[] .

2. Plug M into Hel l , yielding a new system He[M].

3. Apply a check to He[M] to see if M satisfies P or not.

The checks applied to Hp[M] depend on whether P is a safety or
quasi-liveness property.

In the remainder of this section we flesh out the security check
approach in the context of Temporal CCS. We define what security
harnesses H e [] are and the checks that are applied on H e [M]. We
also discuss optimizations to the procedure that can be undertaken
to improve (often greatly) performance.

3.2 Security Harnesses in Temporal CCS.
Security harnesses are intended to "focus attention" on interest-

ing execution paths in a module being "security checked". The
general form of a security harness is:

(ve I []) \A
where A is the set of all communication labels, Vp is a (determin-
istic) Temporal CCS expression that we sometimes call a security
process, and [] is the "hole" into which the module to be verified is
to be "plugged".

In our setting, security processes (our automata-theoretic encod-
ings of security properties) draw their visible actions from A TcCs
(the Temporal CCS action set introduced in Section 2) augmented
with two special actions, good and bad. The latter are used to de-
termine what properties a security process defines. Recalling that
the semantics of Temporal CCS specifies how Temporal CCS ex-
pressions may be "compiled" into single DTLTSs, in what follows
we assume that our verification processes are single DTLTSs.

In order to characterize the properties associated with a security
process V, we first note that V is intended to run in parallel with
the module being checked. In order to guide the behavior of the
module, V must synchronize with the modules actions, meaning
that when V wants the module to perform an input action a, V
must perform the corresponding output ~. In general, then, since
module properties refer to the actions in the module, to associate
a module property with V we need to reverse input / output roles
in V's execution sequences. To make this precise we introduce the
following notation.

DEFINITION 7. Let a E (A~iC~s) * be a sequence of externally

"A TCCs ~* is defined inductively as controllable actions. Then ~ E ~ O} 1
ATCCS follows, wherea E ~U.} "

2. a . ~r' = ~ . a"--~ where ~ = A and T = 1.

A security process V defines both a safety property, S(V) , and
a quasi-liveness property, Q(V), as follows.

,S(V) = {o" • (Ao})* [
~ r , , o'=.~ = o',. a= ^ a , . bad • L (V) }

Q(V) = {~[o. E L(V) Ao-.goodE L(V)}

Intuitively, if bad is possible as the next action in an execution then
the execution, and all possible ways of extending it, are removed

from S(V). Similarly, action sequences leading to the enabling of
good are included in the property S(V) .

3.2.0.1 Def in ing Safe ty a n d Quas i -L iveness Checks..

From the structure of H e l l one can see that the only actions that
He[M] can perform for any M are r, 1, good and bad. This is
due to the fact that Hp[M] = (Vp [M) \ A , and the \A opera-
tor prevents all but these actions from being performed. This fact
greatly simplifies the task of checking whether or not a safety /
quasi-liveness property encoded within a security process holds of
a module.

THEOREM 1. Let M be a Temporal CCS system model and V
be a security process. Then the following hold.

1. M satisfiesS(V) /ff (V I M) \ A l= [bao]{,4}ff

2. M satisfies Q(V) /ff (V I M) \ A ~ [e](,,x} (good~{,,,} tt

proof'Follows immediately from the definitions of 1, \L, ,5 and
Q. The determinacy of V is important.

This theorem says that the correct "check" for the safety prop-
erty encoded in a security process V is to see whether or not the
"plugged-in" security harness, (V [M) \ A , forever disables the
bad action: formula [bad]{~,l}ff holds exactly when there are no
execution sequences consisting of r ' s , l ' s and a single bad action.
Likewise, to check if V's liveness property holds of M, it suffices
to check that (V [M) \ A satisfies [el{T,1} (good)i~,1}tt: if so, then
regardless of what M does, there is still a possibility of (V [M) \ A
evolving to a state in which good is enabled.

In some cases, it may be more natural to "look for bugs" rather
than to try to prove the nonexistence of bugs. This might be the case
if, for example, one strongly suspects erroneous behavior(ie a vul-
nerability). To determine if a module violates a security process's
safety property, one may perform the following check:

(V I M) \ A ~ (bad){,,,}tt

If the answer is "yes" then a violation exists. Similarly, one may
check

(V [M) \ A ~ (e)f,.,1}[good]{.,.,z}ff

to test whether or not M violates V's quasi-liveness property.

Optimlzafions

So far our basic methodology consists of the following steps.

1. Formulate a security process V.

2. To cheek whether or not V's safety / quasi-liveness property
holds of M, check whether or not simple modal mu-calculus
formulas hold of V "running in parallel with" M.

Two simple optimizations greatly facilitate this process; we de-
scribe these here.

Minimization. Checking whether or not a mu-calculus property
holds of a system requires, in general, a search of the system's state
space. Reducing the size of this state space thus reduces the time
required by this search. In the ease of (V [M) \ A , one way to
reduce states in the parallel composition is to reduce states in V and
M by minimizing them with respect to observational equivalence.

Action Hiding. In a property of the form "the return address
cannot be overwritten", actions not related to writing to the ad-
dress space are unimportant. Mathematically, this is reflected in

63

the structure of a security process: every state has a self-loop for
every unimportant action, since such actions do not "affect" the
verification result.

This observation can be exploited to reduce the state space of
(V I M) \A even further as follows.

1. Partition A into a set I of "interesting" labels and a set U =
A - I of "uninteresting labels?'

2• Hide actions involving uninteresting labels in M, creating
M ~ = M[UJ (and likewise for V, creating V+).

3. Minimize M ' and V' and perform the safety / quasi-liveness
checkon (V' I M') \ I .

Hiding actions turns them into r 's; this process enhances possibil-
ities for minimization, since observational equivalence is largely
sensitive only to "visible" computation. It should also be noted that
TCCS (unlike conventional Stateeharts [7] has a compositional se-
mantics. So properties proved on sub-components can be"lifted" to
more complex systems in a precise way. This compositional prop-
erty plus the optimizations detailed above lead to massive state-
space reductions. [20] and consequently an easier, real-time analy-
sis effort.

A note of caution is in order here. Hiding actions in Temporal
CCS turns them into r actions. Since Temporal CCS has the max-
imal progress property (cf. Def. 2, introducing cycles of r ' s via
hiding can cause timing behavior to be suppressed (a r-cycle can
cause "time to stop"). When hiding actions, care must be taken not
introduce such loops, or divergences, as they are often called. The
CWB-NC model checker may be used to check for the presence or
absence of divergences.

Putting It All Together
What follows summarizes our general approach to checking safety
and quasi-liveness properties with security check• To check a safety
or quasi-liveness property of a module M:

1. Formulate an appropriate security process V.

2. Identify the interesting (I) and uninteresting (U) labels in M.

3. Form M' = M[UJ, which hides the actions involving un-
interesting labels in M. Make sure no divergent behavior is
introduced into M'.

4. Minimize M' , yielding M".

5• Do the same on V if necessary, yielding V".

6. To check V's safety property: determine whether or not (V" I
M ") \ [~ [bad]{,.., j , ff.

7. To check V's quasi-liveness property: determine whether or
not (V"[M ") \ I ~ [¢]{~4}(good){~4}tt.

3.3 Attack Agents
The other type of analysis that security check supports is done

with attack agents. Here we lose the generality of safety/liveness
properties as now we are dealing with known attacks. But the up-
side is that we can do some analysis that was not possible in the
more general case.

The approach is almost similar to the one illustrated previously
except for some differences. The first difference is that here the
security harness consists of the attack agent instead of the security
process. Secondly we do not hide the interesting internal actions as
it is precisely these actions that we want to observe. If a module

fails an attack then that means that the "bad" transition is possible
in the attack agent.[A "good" transition in an attack agent obvi-
ously means that the attack hasn't been successful].Formally that
means:
M fails an attack V iff (V l M) ~ [A]{,,1}(bad)c~,l}tt (where A
is the set of all labels of M) .

The intuition behind this is that no matter what externally vis-
ible actions M performs in the context of the attack agent, there
exists a way by which a "bad" transition can be fired(ie the attack
can succeed). Once we obtain such a result, we are naturally inter-
ested in knowing what trace inside M is responsible for this failure
• This can be done using the search facility of CWB-NC (discussed
later). Even if the test returns a "no" ie M is not vulnerable to
the attack we can use the CWB-NC simulator to step through the
traces in M to check out the transitions exercised by M when put
in parallel with the attack agent. Intrusion detection engines [25]
work by operating through a learning phase in which they learn the
common system call sequences to create a model of "acceptable
behavior" and then by flagging a warning whenever a system call
occurs that does not fall into the model of acceptable behavior. In
our approach, we create models of 'suspicious behavior" ie behav-
iors exhibited by the system when under attack. This is done in the
pre-implementation phase thus obviating the need for a learning
phase during implementation• Specifically if we have a model in
security check whose transitions are labeled by system calls, then
"suspicious behavior" would consist of a set of all system call se-
quences that are exhibited by the system when under attack.

3.4 Tool Support
The CWB-NC tool includes several routines that support the unit

verification procedure described above, Primary among these are
two different routines for checking whether or not mu-calculus for-
mulas hold of systems. One, the basic model checker, returns a
"yes / no" answer quickly. Another, the search utility, searches
from the start state of a system for another state satisfying a given
property: if one is found, then the simulator is "loaded" with a
shortest-possible sequence of execution steps leading from the start
state to the state in question. This enables the user to step through
the given execution sequence to examine how the found state was
reached. In particular, to determine if a module M violates the
safety property of security process V, it suffices to search from
the start state of (V [M) \A for a state satisfying (bad)tt (a mu-
calculus formula holding of states from which bad is immediately
enabled). If such a state is found, then the safety property is vi-
olated, and the execution sequence loaded into the simulator may
be examined to determine why. In the case of quasi-liveness, the
same process may be searched for a state satisfying [good]{~.4}ff:
if such a state exists then the quasi-liveness property is violated.
And in the case that M fails an attack we search from the start state
of (V [M) for a state satisfying [bad]tt This will give a trace to
the state which is responsible for the module failing the attack.

The tool also contains a sort utility that, given a Temporal CCS
system description, returns all the externally controllable (i.e. non-
r) actions the system can performed. The sort command provides a
convenient utility for checking whether or not a safety holds: check
whether or not the harnessed process's sort contains bad. It also
may be used to check for violations of quasi-liveness properties: if
the harnessed process's sort does not contain good, then the prop-
erty is violated. The latter is only a sufficient condition: just be-
cause good is in the sort of such a process does not guarantee that
the quasi-liveness property is satisfied.

The CWB-NC also includes a routine for minimizing systems

64

with respect to observational equivalence.

4. FUTURE WORK AND CONCLUSIONS
With respect to future work, we plan to illustrate our approach

with some case-studies. While in this paper security processes are
monolithic entities, we intend to generalize this concept to a more
distributed setting ie a security property may now be encoded by
several automata working in conjunction with each other connected
to different parts of the system. We also intend to look at ways for
modeling security properties in UML. Another interesting avenue
of research is to see how to modify this state-space constraintment
methodology so as to be able to check general information flow
properties like non-interference.

Security check does not seek to replace post implementation static
or dynamic analysis. It is obvious that many security flaws creep in
during the coding stage and not in the design phase. Security check
cannot deal with such vulnerabilities as they come later in the soft-
ware development life-cycle. But there are certain security flaws
which arise due to faulty design decisions and these may be reme-
died by security check. In conclusion, this paper make a case for
software designers to deal with security issues at the design phase
itself by providing them with a methodology for checking security
properties in an efficient, practical way.

Acknowledgments
I wish to thank my advisor Dr Rance Cleaveland for guidance and
also Rahul Agarwal for his helpful comments.

5. REFERENCES
[1] B. Alpem and E Schneider. Recognizing safety and liveness.

Distributed Computing, 2(3): 117-126, 1987.
[2] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic

model checker for boolean programs. SPIN 2000 Workshop
on Model Checking of Software, 2000.

[3] E.M. Clarke, O. Gmmberg, and D.A. Peled. Model
Checking. MIT Press, Cambridge, Massachusetts, 2000.

[4] R. Cleaveland, E. Madelaine, and S. Sims. A front-end
generator for verification tools, pages 153-173.

[5] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency
Workbench: A semantics-based tool for the verification of
finite-state systems. ACM Transactions on Programming
Languages and Systems, 15(1):36-72, January 1993.

[6] R. Cleaveland and S. Sims. The NCSU Concurrency
Workbench. pages 394--397.

[7] D.Harel. Statecharts:a visual formalism for complex systems.
Science of Computer Programming,8, pages 231-274, 1987.

[8] Dawson Engler, Benjamin Chelf, Anciy Chou, and Seth
Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. Operating Systems
Design and Implementation, 2002.

[9] David Evans, John Guttag, Jim Homing, and Yang Meng
Tan. Lclint: A tool for using specifications to check code.
SIGSOFT Symposium on the Foundations of Software
Engineering,, December 1994.

[10] J.-C. Fernandez. An implementation of an efficient algorithm
for bisimulation equivalence. Science of Computer
Programming, 13:219-236, 1989/1990.

[I 1] R. Focardi and R. Gorriefi. The compositional security
checker:a tool for the verification of information flow
security policies. IEEE Transactions on Software
Engineering 23(9):550-571, September 1997.

[12] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and

Gregoire Sutre. Lazy abstraction. ACMPrinciples Of
Programming Languages, 2002.

[13] P. Kanellakis and S.A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Information
and Computation, 86(1):43--68, May 1990.

[14] D. Kozen. Results on the propositional p-calculus.
Theoretical Computer Science, 27(3):333-354, December
1983.

[15] Z. Manna and A. Pnueli. The TemporalLogic of Reactive
and Concurrent Systems. Spfinger-Vedag, Berlin, 1992.

[16] Faron Moiler and Chris Tofts. A temporal calculus of
communicating systems. Proceedings of CONCUR'90, 1990.

[17] R. Paige and R.E. Taajjan. Three partition refinement
algorithms. SlAM Journal of Computing, 16(6):973-989,
December 1987.

[18] G.D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Computer Science
Department, Aarhus University, Aarhus, Denmark, 1981.

[19] A. Pnueli. The temporal logic of programs. In 18 th" Annual
Symposium on Foundations of Computer Science, pages
46-57, Providence, Rhode Island, October/November 1977.
IEEE.

[20] Amab Ray and Rance Cleaveland. Unit verification: The
cara experiences. To be published in Software Tools For
Technology Transfer.

[21] R.Cleaveland and S.Sims. Generic tools for verifying
concurrent systems. Science of Computer Programming,
41(1):39-47, 2002.

[22] R.Milner. A calculus of communicating systems. Lecture
Notes in Computer Science, 1980.

[23] Fred Schneider. A language-based approach to security.
informatics: 10 years back, 10 years ahead. Lecture Notes in
Computer Science, Volume 2000 (Reihnard Vfilhelm, ed.),
Springer- Verlag, 2000.

[24] Fred Schneider. Enforcable security policies. ACM
Transactions on Information and System Security, January
2000.

[25] R. Sekar and P. Uppuluri. Synthesizing fast intrusion
detection/prevention systems from high-level specifications.
USENIX Security Symposium, 1999.

[26] E Simon. Aggregation and separation as non-interference
properties. The Journal Of Computer Security, 1(2):159-188,
1992., 1992.

65

