
Towards Agile Security Assurance

Konstantin Beznosov
University of British Columbia

2356 Main Mall
Vancouver, BC, V6T 4Z1 Canada

+1 (604) 822-9181

beznosov@ece.ubc.ca

Philippe Kruchten
University of British Columbia

2356 Main Mall
Vancouver, BC, V6T 4Z1 Canada

+1 (604) 827-5654

pbk@ece.ubc.ca

ABSTRACT
Agile development methodologies are gaining acceptance in the
software industry. If they are to be used for constructing security-
critical solutions, what do we do about assurance? This paper
examines how conventional security assurance suits agile meth-
odologies for developing software-intensive systems. It classifies
security assurance methods and techniques with regards to their
clash with agile development. Suggestions are made for alleviat-
ing mismatches between these two methods..

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and protection. D.2.4 [Software Engineering]: Soft-
ware/program verification. K.6.1 [Management of Computing
and Information Systems]: Project and people management —
lifecycle. K 6.3 [Software Engineering]: Software management –
software process.

General Terms
Management, Documentation, Security.

Keywords
Agile methods, security, assurance, security assurance, security
engineering, software development process

1. INTRODUCTION
For the last 20 years, developers of software intensive systems
have dreamed to apply the technical-rational approach to project
management by using a sequential (or waterfall) lifecycle, includ-
ing rigorous up-front planning, up-front design, and a constant
care to monitor and drive the project to conform to the plan. On
one hand this approach has served certain software-development
activities well. Having planning and design artifacts available
early on for experts to examine has facilitated the task of certify-
ing system conformity to external standards, and has apparently
made the life of the acquirer of software-intensive system easier.
A discipline that took advantage of this sequential lifecycle model

is security assurance, and this applies equally to safety certifica-
tion in avionics or medical instrumentation.
On the other hand, the reality for software projects is sadly differ-
ent from the dream. As demonstrated by the “Chaos” report from
the Standish group [1], the actual success rate of software projects
is very low, with less than 50% success, and much of it due to
management practices. Software design is more akin to research
than to construction or manufacturing, and many of the manage-
ment paradigms adopted form those engineering fields were sim-
ply not adapted for the software domain.
In reaction, this state of affairs spawned the emergence of a new
breed of approaches to managing software projects, known collec-
tively as “Agile methods.” These methods proceed iteratively:
they rely on gradual emergence of the design and the require-
ments, and emphasize direct person-to-person communication
rather than the heavy written documentation of the waterfall life-
cycle. They exploit the “soft” nature of software to modify it,
shape it gradually like play-dough, and place and exploit many
feedback loops in the process. Rather than “plan-build-
implement,” the new methods proceed by “speculate-collaborate-
learn” [2].
These methods are showing some industry successes and seem
indeed more suitable for software development. They have been
considered for application in both security engineering [3, 30] and
safety engineering [29, 32]. Unfortunately, they also run counter
to the accepted practices in system certification, in independent
validation and verification, and in software acquisition, where the
practices appear totally contrary to agile approaches. How can
agility and security assurance adopt each other?
In this paper, we focus on security assurance and examine how its
practices fit or don’t fit in the context of agile methods. Specifi-
cally, we classify conventional security assurance methods and
techniques into four groups depending on the degree of their clash
with agile development practices. It turns out that roughly half of
these methods and techniques either match the practices or could
potentially support agility through automation. For the other half,
we suggest ways of alleviating the conflict. Note that in this paper
we are not casting any judgment on the quality or suitability of
agile process; we can only acknowledge that they are here to stay,
and they provide a new baseline for software process evolution.
Neither is it our intent to explicitly challenge this or that aspect of
the traditional approaches to security assurance.

The rest of the paper is organized as follows: Section 2 gives
necessary background on security assurance and introduces some

NSPW 2004 Nova Scotia Canada
© 2005 ACM 1-59593-076-0/05/05…$5.00
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cit ation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

47

fundamental characteristics of agile methods. Section 3 identifies
the areas where agile methods seem to conflict with the normal
way of dealing with security assurance. Finally, Section 4 offers
some avenues to compromise: how to combine the various prac-
tices in ways that do not completely remove but rather alleviate
the pain points. Section 5 draws conclusions.

2. BACKGROUND AND RELATED WORK
This section provides background material on the subjects of the
paper; the methods and techniques of the conventional security
assurance and the agile development; and reviews related work.

2.1 Security assurance
Security assurance provides confidence in the security-related
properties and functionalities, as well as the operation and ad-
ministration procedures, of a developed solution. Conventional
assurance methods (a detailed description is provided in Appendix
1) can be roughly grouped into the use of best practices in a form
of (un)official guidelines; design and architectural principles; use
of appropriate tools and technologies; dynamic testing and static
analysis; and, most importantly, internal and third-party review,
evaluation, and vulnerability testing. While being the keys to
achieving confidence that a solution meets its security require-
ments, a third party’s objectivity (and therefore independence)
and expertise (and therefore high costs) result in a side-effect,
documentation-focused development, which is in conflict with
agile development methods. Before going into more detail about
the conflicting points, let us provide background on agile devel-
opment.

2.2 Agile methods
Over the last 8 years or so, new families of software engineering
methods have emerged, under different labels: Agile methods,
which gelled around the agile manifesto [4]. In these families of
methods we find Crystal [5], Adaptive Development [2], Feature-
driven Development, Scrum, Lean Software development, and the
most famous, because of its provocative name, eXtreme Pro-
gramming (XP). These processes are quite different from each
other, each has its special central features and appeals to different
types of projects, but they chare a certain number of common
characteristics.
They are all fundamentally iterative. They do not replicate the
traditional linear sequence of requirements, design, implementa-
tion, and test, rather they repeat this sequence again and again,
exploiting the fact that software is extremely soft, modifiable, and
has no associated manufacturing cost.
The traditional waterfall lifecycle includes some feedback loops,
some refinements, as developers cannot get everything right in
one pass, but generally rework is considered a “bad thing” that
should be minimized at all costs.
The agile methods’ iterative nature, which can be traced back to
the Spiral Model of Barry Boehm [36], allows them to be more
accommodating to changes on several fronts:

• emergence of requirements (“customer on site”) and, to match
it,

• emergence of the design (refactoring, no big up-front design
(BUFD)), which goes hand-in-hand with less focus on “big
up-front planning,” and

• early and gradual construction of a test suite (test-driven devel-
opment).

Also, in reaction to previous attempts to make the software devel-
opment process a rigid, rigorous construction or administrative
endeavour, all agile methods exhibit a great aversion for “soft-
ware bureaucracy,” and favour direct communication between
participants rather than reliance on written artifacts. This is very
visible in practices such as “pair programming”, “customer on
site,” or the daily “scrum” (where all team members rapidly
gather for a stand-up 10 minute meeting to assess progress). Di-
rect communication becomes a limiting factor when the size of
team increases beyond 12 or 15 people and then some intermedi-
ate media must be defined. A somewhat unfortunate result is that
agile organizations tend to rely heavily on tacit knowledge, which
makes the transfer of software to other organizations more diffi-
cult.
Finally, many agile methods put much more emphasis on the
person, who is not just a cogwheel in an anonymous software-
producing machine.
We will revisit these aspects of agile software development meth-
ods: iterative lifecycle, emergence, direct communication and
tacit knowledge, in the context of security engineering to examine
how they work for or against the current practices in this domain.

2.3 Related work
Other researchers have examined ways to reconcile the ap-
proaches. Abrams had looked at fitting security engineering in an
evolutionary acquisition process [30].
A working group of the National Cyber Security Summit pro-
duced recommendations on processes for developing more secure
software, but failed to take into account specificities of iterative
or agile processes [31]. More importantly, the report authors ig-
nore the fact that software development companies just cannot
afford and have little legal and/or economic incentives to employ
the processes and methods the report is advocating. The work
reported in this paper looks into the ways of making the engineer-
ing of secure software more affordable, which is also recom-
mended by Spafford in [34, 35].
Wäyrynen et al. started to investigate the issue of adapting XP to
support security engineering [28], which is the opposite to the
question we consider in this paper, that is, how to adapt security
assurance to fit agile software development. Nevertheless, their
conclusions could be helpful for making security assurance and
agile development meet half way:
1. Include a security engineer in the development team for as-

sessing security risks, proposing security-related user stories,
and for performing “real-time” security reviews of the sys-
tem design and code through pair programming.

2. Document the security engineer’s pair programming activi-
ties to build an assurance argument.

3. Document the security architecture for the sake of assurance
argument.

4. Complement pair programming with static verification and
automatic policy enforcement.

48

3. PAIN POINTS
When examining the normal practices of security assurance in the
context of the agile methods we just briefly characterized, we run
into a number of difficulties, conflicts, or “pain points”: 1) reli-
ance on third-party reviews, 2) reliance on third-party evaluation,
and 3) reliance on third-party testing. By “third party,” we mean
specialists coming “after the show,” expecting to inspect, analyze,
validate, test, and then certify a more or less finished product:
complete requirements, complete design, and finished implemen-
tation, almost ready –to ship.
Current security assurance practices clash with agile development
on four fronts:

1. Tacit Knowledge/Documentation: Direct communication
and tacit knowledge: the specialists have not been on site, so

they must rely on extensive documentation,

2. Lifecycle: An iterative lifecycle, as the third-party would (in
theory) have been involved at each iteration

3. Refactoring: Refactoring, and other major architectural
changes.

4. Testing: The testing philosophy.

3.1 Direct communication and tacit knowl-
edge
A fundamental practice in the assurance business is to keep de-
velopers and security evaluators “at arm’s length” from each other
so that they do not affect each other’s ideas. Since security assur-
ance must be completely neutral and objective, its practitioners
and the developers should not become too closely involved except

Table 1 – Classification of impedance mismatches

Security assurance method or technique

M
at

ch
 (2

)

In
de

pe
n-

de
nt

 (8
)

(s
em

i)-
au

to
m

at
ed

(4

)

M
is

-m
at

ch

(1
2)

Guidelines X

Specification analysis X R
e-

qu
ir

e-
m

en
ts

Review X

Application of specific architectural approaches X

Use of secure design principles X

Formal validation X

Informal validation X

Internal review X

D
es

ig
n

External review X

Informal correspondence analysis X

Requirements testing X

Informal validation X

Formal validation X

Security testing X

Vulnerability and penetration testing X

Test depth analysis X

Security static analysis X

High-level programming languages and tools X

Adherence to implementation standards X

Use of version control and change tracking X

Change authorization X

Integration procedures X

Use of product generation tools X

Internal review X

External review X

Im
pl

em
en

ta
tio

n

Security evaluation X

49

during their information gathering sessions. This leads to devel-
opers often focusing on the functional development with a “tunnel
vision” that becomes quite blind to security flaws.

3.2 Iterative lifecycle
Involving a third party is expensive and adds to the development
time, for example, from a few days to a few months, depending
on the project size and complexity. Iterations, and especially fre-
quent iterations common to agile processes, significantly increase
the cost of involving a third party at each iteration. While the
security assurance efforts proceed, development should continue,
but you are going at risks, and defeating some of the benefits of
the inspection.

3.3 Refactoring
Since refactoring leads to the redesign, from the bottom up—
often to eliminate code redundancies—modules may be assigned
new functionality, which may not work well with security con-
straints. Unfortunately, refactoring is one of the cornerstones of
agile development, and it is increasingly supported by tools and
methods [33].

3.4 Testing philosophy
The focus of testing is very different for agile methods—
functionality testing prepared early and performed routinely
throughout development—and for security testing, which pro-
ceeds on totally different premises—focus on the least exercised
parts of the system (as opposed to general functional testing);
focus on pathological aspects, boundary values, and least used
aspects.
Complete security testing also involves a test depth analysis, to
understand how thorough the tests are. To do this, developers
need to document all the tests, which forces early documentation
of the requirement and the design, and this brings us again further
away from the user stories/emergence of requirements, and closer
to BUFD.
The clashes we have identified between the agile methods phi-
losophy and security assurance may not be specific to security
engineering only. The certification processes for safety-critical
systems, particularly those required for medical instrumentation
(21 CFR part 11, or ISO 14791), or the aerospace industry
(ARINC DO178B) lead to similar concerns for the same reasons:
an independent inspection process relying on written documenta-
tion, and the cost of doing inspection iteratively (each iteration
defeating partially what had been assessed previously).

4. RECONCILING THE OPPOSITE:
MATCHING ASSURANCE WITH
AGILITY

What can be done to try to reconcile, or accommodate the meth-
ods of security assurance with the practices of agile development?
The assurance methods, applied naïvely, would create deterring
delays between critically short iterations as well as prohibitively
inflate the development budgets. They would also turn away the
developers, most who are averse to trading development for
documentation. Ideally, adopted security assurance methods and
techniques would allow evolving the confidence in the system in
regards to security in same iterative, incremental, and emerging
fashion, and through same direct communication and tacit knowl-

edge practices as agile development does. In a real word, where
there are neither magic nor silver bullets, a compromise that
would decrease time and budget overheads (due to security assur-
ance employed at every iteration) and yet provide “good enough”
assurance, is necessary. In this section we present some strategies
toward a compromise.

4.1 Classifying security assurance methods
It is important to note that not all assurance methods and tech-
niques are in conflict with agile development. We found it useful
for the purpose of this discussion to distinguish the following
groups:
Natural match. Some agile practices fit well with security assur-
ance. For example, pair programming advocated by XP naturally
facilitates internal design and code review, and motivates devel-
opers to follow coding standards [6, 7], including standards for
writing “secure code.” Additionally, developers receive immedi-
ate feedback from their peers, which could very well be on the
principles and guidelines of secure design (listed in Appendix 1).
As Wäyrynen et al. [28] suggest, the practice of pair program-
ming could be further enhanced by involving a security engineer
who can use this opportunity for reviewing the design and the
code.
Independence of the development methodology. Some security
assurance methods, techniques, and tools can (and have to) be
applied throughout the lifecycle independently of the develop-
ment methodology.
Consider version control and change tracking. Thanks to the rapid
evolution of tools, version control and change tracking could now
be found in the toolbox of any active programmer, and even small
one-person projects (see www.sourceforge.net for numerous ex-
amples) exercise some form of change control.

Can be (semi-)automated. Some methods and techniques can be
(semi-)automated so that they can be applied during each iteration
without creating significant budgetary or time overheads for an
agile project. Examples are static analysis of the source code with
regards to security-related defensive coding standards, system
testing for known vulnerabilities, and penetration testing.

Mismatch. Approximately half of the conventional assurance
methods and techniques directly clash with the principles and
practices of agile development. Most of these techniques create
mismatch due to their reliance on extensive documentation served
as a subject of analysis, verification, and validation activities. The
most salient one is security evaluation, such as Common Criteria
[8].
We summarize the classification in Table 1.

4.2 Proposed strategies
Since the first two groups of security assurance methods and tech-
niques, “matching” and “independent,” can evidently be inte-
grated with agile development, this section focuses on the other
two groups. Let us first consider the group of methods and tech-
niques that can be (semi-)automated.

4.2.1 For semi-automatable methods
For this group, tool support can and should be boosted. As with
unit testing, which became pervasive after the corresponding li-
braries and tools (jUnit, CPPUnit), had matured, automation of
security static analysis and dynamic testing, vulnerability and

50

penetration testing, as well as requirements testing could lead to
the wide acceptance of these methods by agile developers. Auto-
mation efforts should strive to reduce the overhead of these meth-
ods to so little that they could be applied as often as unit tests are.
However, there will be a cost for fixing actual problems found.
Automation only addresses half of the problem for this group of
security assurance methods.
No matter how much automation is achieved, with security dy-
namic testing, for example, the development of application-
specific tests requires security expertise and security-oriented
testing philosophy, which cannot be expected from an average
developer. On the other hand, the same is true for application
domains. For instance, in order for a complex banking application
to be well designed and implemented, the developers are expected
to have extensive knowledge in the domain of finance.
A possible way to close this gap is through codifying in the tools
themselves the knowledge necessary for applying assurance meth-
ods and techniques from this group. Fault injection [9] and auto-
matic test generation [10, 11] techniques, as an example, could be
integrated into the security dynamic testing tools. Tests could also
be automatically generated from the code to test for boundary
values, and to cover least exercised parts or execution paths in a
system.
This reliance on tools however is conditioned by several factors:
existence of cost-effective tools; quality of the tools, in particular
usability, economic and legal incentives to use them; and the
breadth of adoption of these tools by the software industry.
Whereas with automatable assurance methods the way out of the
tunnel is visible, the fourth group is the most challenging.

4.2.2 For mismatching methods
Security assurance methods in this group rely on either extensive
documentation of the system, or the involvement of external secu-
rity or formal verification experts, or both. As a result the meth-
ods are the most difficult to reconcile with agile development due
to their daunting budgetary and time overheads, as well as the
focus on documentation. For instance, in a recent study reported
by Veterling et al. [12] it took 3 months for 18 developers to com-
plete one iteration of developing a relatively small application (20
use cases) conformable to level 2 (i.e., structurally tested) of
Common Criteria, which did not even include time for third party
evaluation. What can be done to adopt these methods to agile
development with its short iterations?
We envision two possibilities for matching assurance methods
from the fourth group with agility: The simplest to suggest and
the most difficult to implement is the invention of new agile-
friendly security assurance methods to replace the ones from this
group. Although we cannot offer any insights yet on what exactly
such methods could be, they would have to remove the pain
points detailed in Section 3 by supporting 1) direct communica-
tion and tacit knowledge, 2) short and frequent iterations, 3)
emerging design through active refactoring with shared code
ownership, and 4) test driven development with tests cases deter-
mined by user stories. This direction seems to be a promising area
for future research. The other possibility is less spectacular but
more practical.
Taking into account the observation that in agile development the
biggest questions need to be answered as early as possible, we
suggest to apply the assurance methods from this group at least

twice in the development lifecycle: once after first several itera-
tions in a project, and once closer to the end, i.e., several itera-
tions before the system is expected to be shipped. The latter ap-
plication point is clearly necessary in order to obtain security
assurance in the final product. The former enables early confi-
dence in the security properties of the main design and architec-
tural decisions, and reduces the possibility of the “big bang” to-
ward the end of the project. Time and resources permitting, addi-
tional applications of the methods from this group in between
these two is desirable but can be omitted. The main drawback of
this compromise, however, is that this will still lead to too much
agile-adverse documentation.

Wäyrynen and her colleagues [28] have also proposed to bring
security engineers early in the process, maybe only part-time, to
inform and educate the rest of the development team and sensitize
them to security issues. And Brian Snow noted that “a single se-
curity engineer could support in this manner 5 to 20 development
teams, if brought in early and used properly.” A core activity of
agile security assurance should be the early identification of the
types of design and code changes that are likely to cause security
problems, and to use these as guidelines when iterating through-
out the lifecycle. Brian also noted that one should prohibit secu-
rity evaluators from suggesting improvements, so that they do not
get too involved and attached to certain elements of the design,
losing their objectivity in the way. However this may go against
the general spirit of agile methods, which encourage high-
bandwidth communication, collective code ownership, etc.

5. CONCLUSIONS
This paper makes an initial step toward integrating security assur-
ance methods and techniques into the agile development prac-
tices. It classifies conventional methods and techniques used for
security assurance in regards to their acceptability for agile devel-
opment. It also proposes ways to accommodate the conflicting
techniques.
Instead of trying to bend the development process in support for
security assurance [12, 13, 28], we look at the problem from the
opposite end: can we imagine ways of satisfying the demands of
security assurance without making the development documenta-
tion focused, and totally integrated in the agile practices and arti-
facts (user stories, code, testing practices), complemented by se-
curity-specific analysis tools that would provide assistance and
support for the detection of flaws, and the production of test suites
specific to security?
At this point, we can only propose a compromise between the two
camps. Is it good enough to alleviate the conflict discussed in
Section 3? What needs to be done to get to the point where tools
integrated in development environments would incrementally and
continuously check, test, and analyze the various artifacts—code,
design, requirements—in regards to security, pretty much the way
today tools like CruiseControl1 support continuous configuration
management, regression testing, and integration? Is it possible to
incorporate seamless generation of the evidence necessary for
external review, testing, and evaluation (such CC [8]) into agile
practices? These are our questions for the future work.

1 http://cruisecontrol.sourceforge.net/ and

http://www.martinfowler.com/articles/continuousIntegration.html

51

As noted by an anonymous reviewer, maybe the impedance mis-
match that we face is a blessing in disguise; it could cause us to
challenge the “good old heavyweight assurance processes” that
have been enshrined in many standards and acquisition policies,
and may lead to their replacement by other approaches and proc-
esses that are “good enough” and more suitable for rapidly devel-
oped and deployed commercial software.

References
[1] Standish Group, The Chaos Report, West Yarmouth, MA:

The Standish Group, 1995.
[2] J. A. Highsmith, Adaptive Software Development: A Col-

laborative Approach to Managing Complex Systems, New
York: Dorset House, 2000.

[3] K. Beznosov, "Extreme Security Engineering: On Employ-
ing XP Practices to Achieve 'Good Enough Security' without
Defining It," presented at First ACM Workshop on Business
Driven Security Engineering (BizSec), Fairfax, VA, USA,
2003.

[4] Agile Alliance, "Manifesto for Agile Software Develop-
ment," 2001.

[5] A. Cockburn, Agile Software Development, Boston: Addi-
son-Wesley, 2002.

[6] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries,
"Strengthening the Case for Pair-Programming," IEEE Soft-
ware, vol. 17, pp. 19-25, 2000.

[7] R. W. Jensen, "A Pair Programming Experience," in
CrossTalk, 2003.

[8] CC, "Common Criteria for Information Technology Security
Evaluation," 2.1 ed, 1999.

[9] J. Voas and G. McGraw, Software Fault Injection: Inoculat-
ing Programs Against Errors, New York: John Wiley and
Sons, 1997.

[10] G. Wimmel and J. Jürjens, "Specification-Based Test Gen-
eration for Security-Critical Systems Using Mutations," pre-
sented at the 4th International Conference on Formal Engi-
neering Methods, 2002.

[11] G. Fink and M. Bishop, "Property Based Testing: A New
Approach to Testing for Assurance," in ACM SIGSOFT
Software Engineering Notes, vol. 22, 1997.

[12] M. Vetterling, G. Wimmel, and A. Wisspeintner, "Secure
Systems Development Based on the Common Criteria: The
PalME Project," presented at the Tenth ACM SIGSOFT
Symposium on Foundations of Software Engineering,
Charleston, South Carolina, USA, 2002.

[13] R. Breu, K. Burger, M. Hafner, J. Jürjens, G. Popp, G.
Wimmel, and V. Lotz, "Key Issues of a Formally Based
Process Model for Security Engineering," presented at 16th
International Conference on Software & Systems Engineer-
ing & their Applications (ICSSEA), 2003.

[14] C. o. t. E. Communities, "Information Technology Security
Evaluation Criteria," 1.2 ed, 1991.

[15] J. Anderson, "Computer Security Technology Planning
Study," Air Force Electronic Systems Division ESD-TR-73-
51, Vols. I and II, 1972.

[16] M. Bishop, Computer Security: Art and Science. Boston:
Pearson Education, Inc., 2003.

[17] P. G. Neumann, R. J. Feiertag, K. N. Levitt, and L. Robin-
son, "Software Development and Proofs of Multi-level Secu-
rity," presented at International Conference on Software En-
gineering, 1976.

[18] S. Software, "RATS: Rough Auditing Tool for Security,"
2004.

[19] D. Evans and D. Larochelle, "Improving Security Using
Extensible Lightweight Static Analysis," in IEEE Software,
vol. 19, 2002, pp. 42-51.

[20] D. A. Wheeler, "Flawfinder," 2001.
[21] J. Viega, G. McGraw, T. Mutdosch, and E. W. Felten, "Stati-

cally Scanning Java Code: Finding Security Vulnerabilities,"
in IEEE Software, vol. 17, 2000, pp. 68-77.

[22] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, "ITS4: A
Static Vulnerability Scanner for C and C++ Code," presented
at Annual Computer Security Applications Conference, New
Orleans, Louisiana, USA, 2000.

[23] J. Viega and G. McGraw, Building Secure Software: How to
Avoid Security Problems the Right Way, Boston: Addison-
Wesley, 2001.

[24] G. Hoglund and G. McGraw, Exploiting Software: How to
Break Code, Boston: Pearson Higher Education, 2004.

[25] G. McGraw and E. Felten, Java Security: Hostile Applets,
Holes & Antidotes, New York: John Wiley & Sons, 1996.

[26] G. McGraw and E. W. Felten, Securing Java: Getting Down
to Business with Mobile Code, 2nd ed, New York: John Wiley
& Sons, 1999.

[27] K. Beck, "Embracing Change with Extreme Programming,"
IEEE Computer, vol. 32, pp. 70-77, 1999.

[28] J. Wäyrynen, M. Bodén, and G. Boström, "Security Engi-
neering and eXtreme Programming: an Impossible mar-
riage?," in Extreme programming and agile methods-
XP/Agile Universe 2004, C. Zannier, H. Erdogmus, and L.
Lindstrom, Eds. LNSC3134, Berlin: Springer-Verlag, 2004,
pp. 117-128.

[29] M. Poppendieck and R. Morsicato, "Using XP for Safety-
Critical Software," Cutter IT Journal, vol. 15, no. 9, 2002,
pp. 12-16.

[30] M. D. Abrams, "Security Engineering in an Evolutionary
Acquisition Environment," in Proceedings of New Security
Paradigms Workshop, Charlottsville, VA, 1998, pp. 11-20.

[31] S. T. Redwine and N. Davis, ed., Processes to Produce Se-
cure Software Towards more Secure Software, Software
Process Subgroup of the Task Force on Security across the
Software Development Lifecycle National Cyber Security
Summit, 2004.

[32] P. Amey and R. Chapman, "Static verification and extreme
programming," in Proceedings of 2003 annual international
conference on Ada, San Diego, CA, USA, 2003, ACM Press,
pp. 4-9.

[33] J. Kerievsky, Refactoring to Patterns, Boston: Addison-
Wesley, 2004.

52

[34] E. H. Spafford, "Cyber Terrorism: The New Asymmetric
Threat," USA House Armed Services Committee, Subcom-
mittee on Terrorism, Unconventional Threats and Capabili-
ties, Testimony July 24 2003.

[35] E. H. Spafford, "Exploring Common Criteria: Can it Ensure
that the Federal Government Gets Needed Security in Soft-
ware?" USA House Government Reform Committee Sub-

committee on Technology, Information Policy, Intergovern-
mental Relations and the Census, Testimony September 17
2003.

[36] B.W. Boehm, "A Spiral Model of Software Development
and Enhancement," ACM SIGSOFT Software Engineering
Notes, vol. 11, 1986, pp. 22-42.

Appendix 1: Conventional Security
Assurance
In simple words, security assurance is confidence that a system
(or, generally speaking, a solution) meets its security require-
ments. Mostly of interest to the solution’s users and owners, this
confidence is based on specific evidence collected and evaluated
through the application of assurance techniques. The techniques
consist of a) guidelines for developing security requirements,
doing design, implementation, and operation/administration of
the solution in question, b) methods for gathering assurance-
related evidence, and c) evaluating the evidence. While some
techniques, e.g., internal and external reviews, are employed
across the whole development and operational processes, others
could roughly be grouped according to the lifecycle stages in
which they are applied.

Requirements assurance
Requirements assurance methods are concerned with justifying
that the security requirements specification is complete, consis-
tent, and technically sound. This type of assurance is commonly
achieved through following requirements development guide-
lines and (informally) analyzing the specification. For example,
ITSEC [14], a security evaluation criteria used by some Euro-
pean countries, defines suitability analysis that aids in justifying
that the security functional requirements are sufficient to miti-
gate the threats to the system.

Design assurance
Particular architectural and design principles combined with
guidelines on the content of design specification, as well as
informal and formal techniques for justifying that the design
meets the requirements, are employed for design security assur-
ance. Specifically, security assurance methodologies call for
modularity, layering, and security kernel [15], among others, as
architectural approaches that help to analyze and evaluate sys-
tem design in the context of security. Among recommended
design principles are the following (adopted from [16]):
 least privilege. A subject should be given only those privi-

leges that it needs to complete its task.
 fail-safe defaults. Unless a subject is given explicit access to

an object, it should be denied access to that object. This prin-
ciple is a foundation of closed-world security policies.

 economy of mechanism. Security mechanisms should be as
simple as possible.

 complete mediation. All accesses to objects should be
checked to ensure that they are allowed.

 open design. Security of a mechanism should not depend on
the secrecy of its design or implementation.

 separation of privilege. System should not grant permission
based on a single condition.

 least common mechanism. The mechanisms used to access
resources should not be shared to minimize the possibility for
attackers to exchange information via the shared mechanisms.

 psychological acceptability. Security mechanisms should not
make the resource more difficult to access than if the security
mechanisms were not present.

To aid with assuring a design, corresponding documentation is
recommended to specify (informally, semi-formally, or for-
mally) security functions that enforce security in the system;
external interfaces through which protected resources and ser-
vices are accessed; and internal design that defines an imple-
mentation of the external interfaces. The primary purpose of the
design security specification is to support the validation of the
design against the requirements.
Aside from formal techniques (e.g., HDM [17]) based on proof
and model checkers and employed almost exclusively in high-
assurance efforts, the following informal methods are used for
design validation:
 requirements tracing: identifying and documenting specific

security requirements that are met by (parts of) the design
specification,

 informal correspondence: showing and documenting that
external functional specifications, internal design specifica-
tions, and implementation code are consistent with each
other, and

 informal arguments: helping go beyond tracing design into
requirements and to gain confidence in how well the require-
ments are met by the design.

Implementation assurance
In addition to internal and external reviews, requirements testing
and informal correspondence analysis, as well as formal proof
techniques, implementation assurance is achieved by the follow-
ing means:
a) Security testing, similar to the testing of other system proper-
ties and functionalities, can be functional or structural (a.k.a.,
black- and white-box testing (respectively), as well as unit and
system (a.k.a., end-to-end) testing. Whereas testing of applica-
tion logic targets common cases and most used functions of a
system, successful security testing requires more attention to the
least used aspects of a system, pathological cases, and boundary
values of the input data.
b) Special types of security testing are focused on finding known
vulnerabilities in a solution. Although catching some vulner-
abilities can and commonly is automated [18-22], others, such
as those caused by errors in the design or improper use of secu-

53

rity libraries and services [23, 24], require manual efforts of
experts. However, even experts can fail to test a security-critical
element or execution path of a solution. Confidence in the com-
pleteness of security testing is gained through test depth analy-
sis, which provides an argument that testing at all levels is suffi-
cient. Such analysis relies upon (and produces more) test docu-
mentation, which is also used for internal and external reviews.
c) High-level programming languages and tools designed with
security in mind and when used properly, can help gain confi-
dence in an implementation. Run-time environments, JVM and
.NET for instance, have been designed to help developers avoid
common problems, for systems implemented in vanilla C and
C++, such as buffer overflows, string manipulation issues, and
memory handling problems. Although systems running in these
virtual machines are not automatically free from vulnerabilities
[25, 26], they are commonly perceived to help with increasing
implementation assurance.
d) The enforcement of implementation standards not only helps
with gaining confidence in the general quality of an implemen-
tation but also with security assurance. As a case in point, de-
fensive coding standards that target potential vulnerabilities are
starting to appear in the “trenches” [23].
e) Another common approach to increasing security assurance
calls for the use of powerful configuration management tools

with the capabilities of version control and change tracking,
automated integration procedures, product generation, and au-
thorization of changes to a system. The latter capability encour-
ages the discrimination of developers on the basis of which parts
of the implementation can be modified by which developer(s).
The discrimination is in the conflict with the philosophy of
some widely used agile methodologies, such as eXtreme Pro-
gramming (XP) [27], which “preaches” collective ownership of
the code where every developer should feel free to refactor any
part of the system to improve or simplify it.
The major source of confidence in the security of high-
assurance systems, as well as the main objective of many offi-
cial assurance efforts, is security evaluation. The dominating
security evaluation framework, Common Criteria (CC) [8] de-
scribes security related functionality to be included into a sys-
tem, and assurance requirements on its development. The re-
quirements are organized into evaluation assurance levels
(EAL). The highest level, EAL7, requires formal representation
of the high-level design and formal proofs of correspondence
with the security requirements. CC certification is legally re-
quired for military and some government contracts. The CC,
however, does not give any guidance on how to fulfill them
during the development process [12].

54

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Security assurance
	Agile methods
	Related work

	PAIN POINTS
	Direct communication and tacit knowledge
	Iterative lifecycle
	Refactoring
	Testing philosophy

	RECONCILING THE OPPOSITE: �MATCHING ASSURANCE WITH AGILITY
	Classifying security assurance methods
	Proposed strategies
	For semi-automatable methods
	For mismatching methods

	CONCLUSIONS
	References
	Requirements assurance
	Design assurance
	Implementation assurance

