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ABSTRACT We bring two new ideas to the table that we believe show promise
We argue in favor of the explicit inclusion of suspicion as a N improving the state of the art: first, a deductive point of view,
concrete concept to be used in the analysis of audit data in ordelVhere clues are identified, their consequences investigated, and
to guide the search for evidence of misuse. Our approach isSUPPOrting evidence may or may not be found, and second, the
similar to that of a human forensic analyst, who first notices Inclusion of suspicion as an explicit concept that guides our
details that seem slightly odd, and then investigates further andS€a7ch. We have developed these ideas into a working prototype
cross checks information in an attempt to build a coherent system that we are in the process of evaluating. Aﬁer descrlblr_lg
explanation for the observed details. We use deductive reasonin@’ Méthodology, we present the results of our first test of this
combined with expert knowledge about system behavior, potential SYStem with a realistic example.

attacks and evidence, and patterns of suspicion to link individual

. Section two describes our philosophy of forensics and evidence,
clues together in an automated way.

as well as the state of existing practice and research. In section
dhree, we discuss deduction and modeling, including how
considerations is presented, including details of how suspicionsUncertainty and suspicion figure into our approach. Section four
and deductions are represented, and how these structures afdiSCUSSes some concrete details of our algorithm. Section five
updated as new evidence is discovered. Finally, we describe hovfiescribes the details of our implementation, while in section six
this algorithm performs in practice on a realistic example where W€ Show our algorithm at work with a brief example.
five discrete pieces of evidence are brought together automatically
thoac(raeg(t:i E:rléglfled and coherent description of what is believed 02 FORENSIC ANALYSIS

Vi u .

A prototype implementation that was designed based on thes

The philosophy and point of view we wish to adopt is that of a
forensic analyst: we are interested in the collection of evidence of
1. INTRODUCTION possible misuse, and putting those clues together into a coherent
Detecting intrusions into computer systems is one of the oldestpicture that describes what has occurred on the system in
research areas in computer security, and despite decades afuestion. We assume that evidence is being collected and
research and increasingly sophisticated commercial systems, ipreserved in a secure way, so that the timeliness of the analysis
remains a difficult problem. In the past decade, the amount ofand the level of scrutiny it receives can be varied as needed.
sensor and audit data available from systems has increasediowever, since we would like our forensic investigations to be
dramatically, but attacks are intrinsically difficult to recognize able to occur with as little human intervention as possible, we will
from raw sensor data, unless the sensor was explicitly designedassume sensors with useful audit capabilities are deployed on the
with that class of attack in mind. Nevertheless, it has been widelysystem, and that evidence may be being analyzed in real-time as it
recognized that intrusions do generally leave a variety of cluescomes in. In this case, the role of our investigations is not to
behind in the audit stream, and figuring out how to recognize assist a human forensic analyst, but to supply information and
those clues in a way that leads to a reasonably low false positivecontext to a separate component that may generate autonomic
rate has been a popular research topic. responses. We assume that questions of security policy, posture
and response are the responsibility of that component and
In contrast to much of security research, which has often independent of the situational awareness supplied by our analysis
emphasized ironclad proofs and complete specifications in orderengine.
to attempt to provide very high security assurance (and more often . .
than not, has failed to do so), we are investigating the idea that it2.1 Analysis of Evidence
may be possible to systematically “smell a rat” even when there isWe assume that the evidence we are analyzing is most likely
no “smoking gun”. fragmentary and incomplete. In the trivial case that a sensor
explicitly detects an attack with high confidence (for example, an
attachment is determined to be a known virus or a network packet
NSPW 2004 Nova Scotia Canada contains an ex_ploit for a known buffer overfl_ow yulnerability),
© 2005 ACM 1-59593-076-0/05/05....$5.00 for these events will be noted and added to the situational awareness,
Permission to make digital or hard copies of part or al of this work for 3 r€but analysis of such scenarios is fairly straightforward, and all the
personal or classroom use is granted without fee provided that copies are D@t information needed to provide a concise and descriptive analysis
not made or distributed for profit or commercial advantage and that copies 2PY of exactly what has occurred is already provided by the sensor
bear this notice and thefull cit ation on thefirst page. To copy otherwise,to 5'S: jtself.  Instead, as in traditional forensics, we are interested in
republish, to post on servers, or to redistribute to lists, requires prior clues that may well seem fairly innocent when viewed

specific permission and/or afee. individually, but suggest a coherent story of misuse or abuse when
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viewed in context. It is important to note thaistis more than
just correlating alert information or collecting giees of

anomalous behavior in a “leaky bucket” until a #eld is

reached; we are biased towards clusters of evidénae are

consistent with a coherent “story” that explainsdewce in the
context of a larger pattern of behavior. This tves advantages:
first, it avoids the statistical difficulties assated with the base
rate fallacy that often plague intrusion detectisgohemes
[Axelsson 99], and second, since our analysis eiylirelies

upon analysis of evidence in context and with regar the

inferred pattern of activity, a concise and cohedascription of
what we believe is happening can be generated wWreeanalysis
succeeds. Furthermore, the entire deduction cltain be

explained at each level, down to the individuak f concrete
evidence that led to a particular deduction, aredrtthe each piece
of evidence played in leading the analysis engioe the

conclusion it reached.

2.2 Existing Forensic Analysis Toolsand

Previous Work

It is interesting to note that there has been ardence between
intrusion detection tools and the tools used bysehaloing

forensic analysis of systems, despite the fact thath are

examining evidence to find indications of whethed show a

system has been compromised. This is particulaoteworthy

considering that early intrusion detection reseavah inspired by
attempts to automate tasks traditionally perforntgd system

administrators, like monitoring the system log (Haent 88] for a

summary).

Forensic analysts generally use a wide varietystoaiost of
which can be described as evidence collection taoisl often
were not explicitly designed for use as securitigo These tools
bypass friendly interfaces in order to provide @ipinformation

about the low level structure of various resouroésinterest.

While tools packages specifically designed for fisie analysts
do exist, these concentrate mainly on issues ofleenie
preservation, and provide minimal assistance inadigt analyzing
the evidence itself. In addition to those toolsyvariety of

configuration scanning (for example, COPS [Farme}) %nd

hardening tools have been developed, which anahaeecurity
configuration of the machine. These are sometuseul from a
forensics point of view as they provide informatiabout the
security configuration of the machine. But there surprisingly
few tools that help a forensic analyst actually gz the vast
amount of evidence that can be obtained using thesks.

Recently, some special case tools (like chkrodikitlson04])

have started to appear, but these are highly dgedaand tuned
to detecting common clues and inconsistencies itiditate a
system has been compromised.

Previous host-based intrusion detection work haaded mainly
on analyzing system level events (see, for exaifbdémeyro8])
in order to detect unauthorized access or modifinabf the
system. This is partly because for an externakckitthe system
itself is what comes under attack, but it is aladlg because that
is the only level where sensor data has been widedjilable.
Intrusion detection can be partitioned into two Mmaategories:
anomaly detection and misuse detection. A grealt aferesearch
has been focused on anomaly detection as an imtrutgtection
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technique, based on the assumption that even pgyio
unanticipated attacks will cause the system to wefraa way that
can be distinguished from normal behavior. A serigf

increasingly complex schemes have been investigateting

from simple n-gram based techniques [Forrest96Bayesian

statistics [Anderson95, Porras97], data mining @&e
Barbara01], and neural nets [Ryan98]. While tegearch shows
great promise in detecting anomalous applicatiohabier and

automatically learning how to do so from traininatal all it can
do is detect anomalous behavior. That anomalouavi@hmay

be either benign and or it may be malicious. Unifoately,

benign anomalous behavior is several orders of iatg more

common than malicious behavior, leading to higlsdapositive
rates for anomaly detection schemes. This is aldmental

limitation of the anomaly detection approach [Asels99].

Furthermore, there is no guarantee that all malgibehavior is
anomalous; even at the system level certain attéikksrace

conditions are expected to be missed by anomalgctien

[Forest96]. In fact, a clever attacker can cradtditack in such a
way that a known anomaly detection system will cosider it

anomalous [Wagner02, Tan02a, Tan02b].

Misuse detection attempts to detect the attacksnsbkles
[Garvey91]. A wide variety of methods have beevestigated,
ranging from pattern matching [Kumar94] to rulesdzh on state
transitions [ligun95, Eckmann00]. These approactezsl sensor
data from the level where the attack is actuallguogng in order
to reliably distinguish between attacks and norpeddavior.

We believe that looking for clues that suggest mnusion has
taken place could potentially be easier than reieagm explicit
attacks. The most troublesome characteristic w@fcks is that
they are more likely to take advantage of behavidrthe system
that are complex, poorly specified, or even forgotindeed many
attacks take advantage of the interaction of séveoanplex
features of the system. Understanding normal sy$iehavior is
difficult enough with current technology; understarg an attack,
especially an unknown attack, well enough to recagrand
detect it under these circumstances is extreméigult.

On the other hand, in both the real and virtuallgyoit is very

difficult to do anything without leaving some evite behind. In
addition, attempts to conceal or remove evidenceigdly create
new evidence, and if detected, this evidence gtresg evidence
about the perpetrator’s intent. Even in the virtwarld, where

creating exact replicas and performing irreversitééetions are
theoretically much easier, secure deletion toadsadiren detected
due to the patterns they leave over what was eraiséite traces
left behind on the system even after the tool isnstalled.

Security is often difficult because the defensestnhe perfect,
while the attacker needs to find only one flaw. @mphasis on
forensics as a second line of defense reverseddhden, by
requiring the attacker and his tools to be perfedijle the

defender needs only a few clues to recognize amsion is

underway.

2.3 Motivation and Goals

These observations have lead us to build a sysiamidentifies
individual clues based on a concrete model of simpiand then
connects them deductively based on its understgndinthe
system and potential patterns of intrusive behavidir first, such



a system would act mainly as an aid to forensidyatsglooking
through audit logs, as well as assisting securnitfgssionals in
detecting and understanding intrusions.

A secondary motivation is based on our belief tinat biggest
barrier to useful autonomic responses is a lacknfifrmation
about context and intent with respect to deteatéisive events.
Without such information, responses are blind aag well do as
much damage as they prevent. It is important Bpard to
situations, not single events, and we hope that sucevidence
analysis system will be able to create the necgssitwational
awareness to allow effective responses to be pthnaed
executed.

To test these ideas, we have begun building araysépable of
reasoning about evidence of intrusions based onnotions of
suspicion, and have started performing experimemtsee how
feasible this approach is.

3. DEDUCTION AND MODELING

While it may seem appealing to build a system teguires no
knowledge or understanding of the system it isqutirtg and can
detect attacks independent of any understandingpaténtial
security threats, a system which does take thisrimdtion into
account almost certainly will be more effectiveurdy, a human
analyst who is asked to detect intrusions withawt iaformation
about potential threats and the system itself waldpbct to this
restriction and recognize that it would hinder fability to
concentrate on relevant information and make restsen
deductions. While a generic system that does elgtupon such
information may be able to more easily detect aerttasses of
unknown attacks, it is necessarily blind to othdasses,
depending on what characteristics of the attadksvahem to be
seen by the generic system (for example, the gtoeraf
sufficiently anomalous events that are seen byayepl sensors). .
This trade-off is explicitly stated in early anomalietection
papers (e.g. [Forrest 96]), but is curiously ab$emh many more
recent ones. By adopting a deductive approachvitieece, we
restrict ourselves to scenarios involving evidemeecan see and
actions we understand. It seems unlikely one dmrbetter at

detecting new attacks than that, except under apeci

circumstances.

It has long been understood that deductive reagoisnthe

foundation for forensics (interestingly, Sir ArthGonan Doyle’s
Sherlock Holmes was inspired by medical diagnasisther field

where deductive reasoning plays a crucial rolel. may be

particularly effective on computers, due to theetetministic

nature, though with increasing system complexiig tlifference

may be slowly fading. In fact, deductive reasonias already
been applied to the problem of evidence evaluatiooyugh in a
different context [Keppins03]. The success of sowthods in

analyzing hypotheses about real world crime scesaiggests to
us that similar methods are likely to prove frditfthen applied to
analysis of intrusions.

With respect to the models we base our deductionsve view
them as necessarily incomplete. A model thatfialithrepresents
every aspect of a system is no longer a modelaksitmulation.
Therefore we must expect that deductions basechermmbdels

89

may prove false in certain cases. We rely on thdets only for
information about the relationship between dedugtidhe likely
intent of inferred actions, and suggestions abol&twevidence
may mean. We are interested in context and explamstioot
ironclad proofs.

3.1 Uncertainty

As mentioned earlier, we view incompleteness aseeessary
characteristic of our models, and so we need talde to deal
with uncertainty in our deductions. This partieytaoblem is not
unique to us, however, and is well known amongehalso work

in model-based reasoning. We can easily attackrtaioties to
our inferences and manage them in a self-consistesy.
However if we rely on this as our only measure rdertainty, we
will have the same problems encountered by manistital
intrusion detection schemes [Axelsson 99]. In approach,
suspicion is distinct from uncertainty in that segm evaluates
the likelihood that a given event or pattern ofréges evidence
of malicious behavior, while uncertainty exprestes likelihood
that deductions are correct and the likelihood tieserved
behavior is normalunder the assumption that no malicious
behavior is presentThis avoids problems associated with the fact
that the probability of an event being maliciousi@mally very
low, but rises dramatically when an attack is unagr

The more subtle problem is that much of the unoextanvolved
in forensic evaluations is not just quantitative nature, but
qualitative. Many of the concepts that are uséfuéxpressing
security knowledge and policies are by nature samagviuzzy
and context-dependent. Much of this, we beliegepécause
security is a field that exists only because o&eklof complete
information, and hence an ability to deal flexillith uncertainty
is often deeply embedded in the concepts usedsitribe security
concerns. For example, security experts talk about
trustworthiness instead of correctness. We hauaddhat many
of the concepts we have introduced in our modets lz@st
described as shades of gray instead of black arig whncepts.
For example, the concept of a “foreign executabte” an
“untrusted executable” is important in many of autes, since
both the concepts of origin and executability arseful
generalizations that cover a wide variety of scesarEach of the
attributes can be evaluated and inferred from alkl evidence,
but the degree to which a resource is untrusted, ewen the
degree to which a resource is executable can vary directly
executable? or does it merely contain potentiatkecatable
content? is it raw machine instructions, or songhér level
language?). And these differences in degree dantdahe degree
to which an object is suspicious. Introducing sustibjective
evaluations will certainly require some tuning nder for them to
be effective, but we feel that such a faithful esgemtation of our
evaluation of the evidence is crucial to buildingyatem that can
make sensible judgments about the relative impoetari various
bits of evidence.

3.2 Suspicion

There are a variety of nuances to the notion opisien, most of
which we will not concern ourselves with here. Treason is
because we are content to leave a suspicion asttiomevhere
“we know it when we see it". This is not particiya
inappropriate, as we are proposing to let expeefine exactly
what sorts of things raise their suspicions. Amadter all,



suspicions are necessarily imprecise, since mailyesf turn out
to be wrong. However, consider the filename:

“C:\Program Files\Winzip\logdfile.txt<binary 0><8@aces>.exe”

One could take the position that this is a perjeedlid Windows

filename, and without more information about thetestof the file
system or the context in which it occurs, nothingrenthan that
can be said. Itis likely, however, that most siég@xperts would
immediately point out that it is a very suspicidilsname, and
that several aspects of its construction sugget imtended to
seem like it is inside C:\Program Files, whichsit't, and that it is
a text file, when it is in fact an executable. abidition to alerting
us to the fact that something may be going on fesere ,we should
probably investigate further, the filename also gass some
plausible scenarios that should be investigatedrta@ly, if we

were to later see the same file name truncateddeabinhary zero,
we might reasonably conclude that a string-handing probably
had been exploited. It is this sort of knowledgewt what types
of evidence cause one to become concerned, andtyges of

checks and further investigations one might do #atthink has
the potential to significantly improve the performaa of intrusion
detection systems.

Once we have described our expert knowledge ofystem and
relevant security concepts, we use suspicion t& twgether
events into patterns of behavior. Events with aprt
characteristics are suspicious. Furthermore, icefiatterns of
inferences also cause us to become suspicious af@mitmight

be occurring. Also, suspicions may be linked tigtowleduced
relations between events or inferred actions, ooufh concrete
objects: files, processes, and so on. Our ovsualpicion is then
a function of the degree to which each resourcentgvor

inference is suspicious and the number of indepem@asons we
have for being suspicious of it. The inferenceesuspecify how
objects and events become suspicious. For exarfiefile is

added as a startup file, we become suspiciouseoptbcess that
added it, as well as the file that was added. dditen, we

consider the possible alternatives that eitherfilkethe process
was started from or the process itself was sometmwpromised.
As we become suspicious of new objects, this guaessearch
for more evidence, since the rules concerning eseepay
special attention to suspicious objects and eviengs prescribed
deductive manner. For example, if we become simmcof a

file, we become suspicious of other events invahiinas well as
processes started from it. In this way, cluesalliceir search for
more clues, as the clues we find become more &gnifin the

context in which they appear. Once our searcloisptete, these
clues and their relationships can be presented nineasily

understood form for further evaluation.

It should also be noted that suspicion, in humangfers from
various flaws. For example, once they become simpy,
humans often become too sensitized to new susgiciand
humans are prone to fixating on a single explanatinstead of
investigating all possibilities dispassionately. nterestingly,
computers excel at dispassionately investigatirigrrzdtives in
parallel, and will not become more suspicious withe unless
taught to do so. So it is possible that computeay be more
resistant to pathological suspicions. In fact, patars may be
capable of assisting human investigators in detengiwhich of
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their suspicions are reasonable, and which comtraiailable
evidence or are merely paranoia.

3.2.1 Characterization of Suspicious Events

We rely on human experts to design and implementtles that
the system uses in order to determine which ewaetsuspicious
and which are not. Of course, this brings up thestjon of how
the human experts should decide what sorts of sveme
suspicious. As a preliminary categorization, wegast the
following list of aspects of events that might causne to be
suspicious:

(1) Security Relevance: There has to at least be the remote
possibility of the event contributing to violatiaf one or more
security requirements. So, for example, any sbfiddling with
critical resources is immediately suspicious, whilgocuous
changes to files which are not relied upon by angtfcritical,
probably is not.

(2) Contextual Mismatch: Events that seem out of place, or do
not fit naturally into what appears to be happening. cannot
easily be explained away based on context) ardcosp.

(3) Potential Malicious Explanation: The event has
characteristics that can plausibly be explainednblicious intent,
regardless of whether we understand why the clarsiits are
actually there. For example, a long series of N@Pa network
packet is suspicious, since it could be a NOP diidea buffer
overflow.

(4) Possible Stealth or Bypass: Events that suggest an attempt to
bypass or evade access control or monitoring apiGgous. But
there are legitimate uses for these capabilitiesr example, use
of encryption often is an indicator of a covert, liciaus
communication channel, but it may also be usedsémurity or
privacy reasons.

(5) Implausible Non-independence (“Once is Happenstance.
Twice is Coincidence. The third time is Enemy attidFleming
59]) Events in processes that are expected tontependent
show logical or temporal coincidences that sugtiest are acting
in concert.

(6) Guilt by Association: Otherwise less suspicious events draw
more scrutiny when they are related to more suspicevents.

(7) Guilt by Causation: Being the root cause for a suspicious
event makes you suspicious.

(8) Minimal Compromise Hypothesis: Similar to the well-
known minimal fault hypothesis from fault diagnosiSvents that
could plausibly explain the origin of two or morespicious
clusters are more suspicious.

(9) Boundary Integrity: Events involving multiple security
principals, especially if they have different plage levels, are
suspicious.

(10) Novelty: Anomalous events are suspicious, not malicious.



This list is by no means exhaustive, and each edalcategories
have distinctive characteristics, so we will bedstigating this
characterization more fully in the future.

4. KNOWLEDGE REPRESENTATION
4.1 Static Knowledge Models

The deduction rules are organized into a varietydifferent
models, each concerned with analyzing a differapieat of the
system, our understanding of intrusions, or susepidiself. All
the models operate based on a common set of canaeqnt can
reason based on each other’s deductions as wiieasown. In
particular, the suspicion module, which contains/aaiety of
generic rules about how suspicion should be prapdgaften
interacts with other models, which contain ruleswbwhich
particular events or inferred actions they find pEcisus.
Currently most rules are either part of the suspiagnodule, the
system model, which is responsible for understapdimd making
inferences about what certain low level events ynffdr example,
that an attempt to connect to port 25 is likelyagiempt to contact
a mail server), or the trojan model, which encagtssl knowledge
about actions which are commonly seen in wormstajans.

4.2 Dynamic Knowledge Models

As rules fire in response to observed events, thezetwo main
data structures that are updated and maintained déductive
graph and the suspicion graph.

4.2.1 Deductive Graph

The deductive graph is a directed acyclic graph icludes as
nodes all the observed events, as well as thenactizat have
been inferred from those events, and any other dieths that
have been made. The directed edges indicate wiades were
deduced from which other nodes, so that the ceigairtan be
updated as conclusions are confirmed or invalidat€dirrently,
we are using a very simple scheme for propagatimtugpdating
certainties (similar to what was used in EMYCINrvdelle 84]),
since our results so far do not depend cruciallywat sort of
updating scheme is used. We plan to substitute cae m
sophisticated scheme in the future if one provdsetaoecessary.

4.2.2 Suspicion Graph

The suspicion graph, on the other hand, keeps thtlie objects
we are suspicious of and their interrelationships/e may be
suspicious of individual events, inferred actiooisresources like
files, processes and so on. Edges between indivithdes exist
when two objects have been deductively linked tfoget In the
case where we have found no linkages, just a sicajtef

suspicious events, the graph will be completelgatimected. In
most cases, it will have a variety of connected ponents of
varying size. Each node also has a suspicion vathih

indicates exactly how intrinsically suspicious thigect is (that is,
the suspiciousness absent independent confirmatiQuirently,
we are using a very simple model where objects aitieer

suspicious (value = 1) or very suspicious (valug)=We tend to
pay less attention to small, connected componernts low

overall values, and pay more attention to largenmanents. We
are in the process of evaluating a variety of rogtfor measuring
the overall “suspiciousness” of the complexes aghale. One
option is that the suspiciousness is related to rthmber of
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directly observable suspicious events the nodeked to. We've
also considered using the sum of the suspiciousofetbe entire
complex.

4.2.3 Interrelationship

Since the suspicions in the suspicion graph arelyped by
deductions in the deductive graph, the two strestuare
interrelated and updates to one can cause updaateg bther as
well. Newly deduced suspicions are added to tispision graph
as they are made, but the suspicion graph alsoeindes the
deductive graph in the following way: as the suispiof a node
increases due to being linked with other events isuspicion
complex, we proportionally increase the certainty the
conclusion that the object was suspicious, andethg#smnges
propagate upward through the deductive graph amehgeh the
certainties of other inferences. In this way, aoméd suspicions
modify our view of what is happening, while unconfed
suspicions retain their original (usually low) eénties.

5. CURRENT IMPLEMENTATION

The current implementation uses the SafeFamily peafBalzer
00] as a sensor in order to watch processes asettenute. As
interesting events are observed, they are forwarttedthe
Cybersafe analyzer, which is loaded inside of thetral control
process that interacts with all the wrapped prazessn the
machine.

5.1 SafeFamily Wrapper

The SafeFamily wrapper is an existing access cbmtezhanism
that enforces application specific rules during cexien of
arbitrary Windows COTS applications and the wrappaready
support the ability to simply gather informationoab resource
accesses without enforcing any rules. The reseulta can be
monitored in this way include all files, registryeys, COM
servers, spawning of new processes, and network
communications. In addition, the wrappers havenkrregmented
with some Cybersafe specific sensors to detectaicervther
events of interest.

The SafeFamily wrapper operates entirely in usedenavithin
the monitored application itself, allowing highlyffieient
monitoring of all the application’s resource regsesn addition,
the monitoring mechanism has been hardened ardasa@resist
attempts to disable or modify the monitoring medsmneven if
the application itself has been compromised. A#ources are
identified by the name given to them by the windi&emel itself,
allowing reliable identification of resources evienthe presence
of alternate or short (DOS) path components or Harkis.
Sensor information produced by the wrapper is foewarded to
a central process that observes all relevant adjgit behavior on
the machine.

5.2 JESS-based analysisengine

The models and maintenance of the graphs are inepiet using
the Java Expert System Shell (JESS) [Friedman@3i]l Events
are translated into a form appropriate for the JE§Sementation
by the Cybersafe analyzer, which also includes @lsromponent
that allows the engine to make native system taltpuery certain
aspects of the underlying filesystem and operatysgem.



6. EXAMPLE

In order to test our prototype implementation, weltba small

example that performs a number of activities otliest, to see
how well the analysis engine can deduce theiricglahips and
provide a coherent explanation of what has occurred

6.1 Description

In our scenario, an enticing looking document exish a file
server somewhere on a corporate intranet. Werefdr to this
file as Document.qqq, where “qqq” is an arbitraitg £xtension
that is mapped to an application we have create@his
application (CybersafeVictim.exe) will play the eadf a COTS or
custom application that is used widely within thgamization.
Unfortunately for any innocent user who choosesnt@stigate
the file, sitting in the same directory is Innodestking.dll,
which happens to have the same name as a dynabnaryli
CybersafeVictim.exe depends upon. Since CybersetieVexe
attempts to load this particular library using ktige path (a flaw
that has been found in a wide variety of appligatiancluding
Microsoft Word), and the current directory is paftthe default
library search path on Windows, the malicious \@rsirom the
file server will be loaded instead of the intendibdary. Note that
under the default settings of Windows, Innocentlingidll
happens to be invisible to the user by virtue sfeiktension, and
we assume it is marked as a hidden file in ordduttiher reduce
the chances of it being noticed. Once Innocentirapkll is
loaded into CybersafeVictim.exe on the victim's imae, we
assume it performs the following actions:

(1) creates a new network share on the victim'’shimsc

(2) copies InnocentLooking.dll and Document.qqqtlie new
directory.

(3) marks InnocentLooking.dll as hidden.

(4) contacts a remote host in order to inform iatthhe
propagation has succeeded.

This sort of behavior is not atypical for a netwargjan that is
simply interested in propagating to as many hossossible.

6.2 Analysis

During the scenario above, the SafeFamily wrapjpserves the
events as they happen, and generates the follogwiagts that it
forwards to the Cybersafe analyzer:

(1) file_library_load_relative
InnocentLooking.dll \\Server\Share\lInnocentLookiily

(2) create_network_share
VictimMachine
Share
C:\Share

(3) file_copy
\\Server\Share\InnocentLooking.dll
C:\Share\lnnocentLooking.dll

(4) file_hide
C:\ Share\lnnocentLooking.dll

(5) communications_access
12.34.56.78 port 80
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The Cybersafe analyzer processes these eventgyasdbur. In
order to keep the example simple, we will only dibsc the
deductions that occur, and will not discuss théaiaties attached
to them.

In response to the first event, the following ruies:

(1a) A file_library_load_relative event that tries toad a library
that satisfies certain conditions is marked vergpscious. The
file is also very suspicious.

trojan_dll_1:

?e <- event file_library _load_relative

Abstract_File_Name File

trojan_dll_check(Abstract_File_Name, File, )

=> suspicious event ?e very_suspicious

=> suspicious file File very_suspicious
(1b) Files on network shares are foreign.

file_foreign:

get_drive_type(File, network_share)

=> event foreign_file File
(1c)Foreign executables are suspicious.

ext_suspicious_2:

?e <- event foreign_file File

executable(extension(File), 4)

=> suspicious file File suspicious

In this particular case, we have chosen an attagkdur sensors
can see and that our rules (in particular, the thie fired in 1a)

can understand. However, when we evaluate whathawe

learned at the end, we will also compare our reswith what our

analysis would have shown if we had been unawarehisf

particular method of attack.

We also intentionally chose an attack where theteays
technically behaves exactly as its designers iéndBecause of
this, despite the fact that in this case what weehabserved is
“highly suspicious”, there is no clear cut rule aboander what
circumstances loading a library via a relative pathstrictly

illegal; some Windows applications even rely ors théhavior in
order to function properly. So while this behavisr highly

suspect, confirming evidence would be helpful befdeclaring it
malicious. This allows the system to handle situnet that are
inherently ambiguous, and only become meaningfabintext.

The remaining two rules merely encode suspiciormiabemote
executables; even if we did not understand thisiquaar attack
vector, we still would be suspicious of the file question.
Though our current rule set does not do so, thesrabuld be
extended to understand the implications of loadsongpicious
dynamic libraries into a process.

In response to the second event, the following fitds:
(2a) Creating a network share is suspicious.
trojan_ns_2B:

?e <- event create_network_share NetworkShare
=> suspicious event ?e suspicious

Here, we notice the creation of a new network shatech we
also find suspicious. As this is the parent doecfor the files in



several following events, it would be possible ttice a link
between these events. However, the current seiled does not,
since the system model does not yet understandntpeinéd

relationships between files and directories.

In response to the third event, the following rifles

(3a) Any foreign file that is copied or moved is stiltdign.
trojan_fs_1:
event copy_file Source_File Destination_File
event foreign_file Source_File
=> event foreign_file Destination_File
(3b) Foreign executables are suspicious.
ext_suspicious_2:
event foreign_file File
executable(extension(File), 4)
=> suspicious file File suspicious
(3c) Writing an executable to a network share is suspisi The
file being written is also suspicious.
trojan_ns_4:
?e <- event copy_file Source_File Destination_File
get_drive_type(Destination_File, network_share),
executable(Source_File)
=> suspicious event ?e suspicious
=> suspicious file Source_File
(3d) Any suspicious file that is copied or moved is misps to
the same degree.
forward_propagate_suspicious_file _1:
?e <- event copy_file Source_File, Destinatiore Fil
?s <- suspicious Source_File Suspicious
=> suspicious file Destination_File Suspicious

Two of these rules (3a and 3d) are simply housekgeples that
propagate certain attributes of files as they apged around the
filesystem. In the case of suspicion, this alseatas a link
between them as their suspiciousness is causélgde The only
other rule we haven't seen before notes that acutable is being
written to a network share, which identifies theemv as
suspicious in and of itself.

In response to the fourth event, the following sufiee:

(4a) Any file_hide event is suspicious
file_hide_1:
?e <- event file_hide File
=> suspicious event ?e suspicious

This is yet another action that in many contextspésfectly
legitimate, but can also indicate that somethingg@sng on,
especially in the absence of any legitimate reasoexpect it.
Here, the rule conclusion gives us yet another prddent
confirmation of our suspicions about the stringgeénts related to
this particular file.

In response to the fifth event, no rules fire sitteaction appears
simply to be a connection to a web server of soong with the
number of applications that make use of this sbftiactionality
these days, it would be impractical to warn abaughsbehavior
except in very sensitive environments. We inclitdhere because
after seeing so many suspicious actions, one niighivatching
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outgoing connections more carefully than would ralfynbe the

case, and react to such an event where it woule lbfverwise
gone unnoticed. At the very least, our suspiciabsut the

process could be presented for evaluation befaetbcess was
allowed to contact an external machine.

library load

Figure 2: Suspicion Graph

A partial view of the final suspicion graph is shoim Figure 2.

F1 is the file \Server\Share\InnocentLooking.dlhile F2 is the

file C:\Share\InnocentLooking.dll. The remainirauf nodes are
events 1 through 4. The dotted line indicatesila that could be
made, but is not made by the current implementatibime file F1

is considered very suspicious; the rest of the scate merely
suspicious. The graph clearly shows the contexwibét has

occurred, and the relationships between the variessurces and
events. Furthermore, the explicit relationshipd tire reasons for
their existence can be clearly explained (see beldgven if the

explicit attack had not been detected, the retteactivity would

still have been linked together; only the libranad node would
be missing.

7. CONCLUSION

Based on this example, we believe an explicit cpnhcef

suspicion shows promise in assisting a model-basedsion

detection system. In addition, deductive linkswastn our
suspicions both help us confirm that our suspiciares correct,
and also clarify the relationships between eveatthat they can
be clearly explained to a human analyst, or angrotbnsumer of
our conclusions. The separation of the deductiaply and the
suspicion graph allows us to use certainties agtationly with
normal behavior in the deductive graph, and foowdusively on

relationships between potential indications of pialis behavior
in the suspicion graph, only updating our view g tvorld once
our suspicions have been confirmed.
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