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ABSTRACT 
We argue in favor of the explicit inclusion of suspicion as a 
concrete concept to be used in the analysis of audit data in order 
to guide the search for evidence of misuse.  Our approach is 
similar to that of a human forensic analyst, who first notices 
details that seem slightly odd, and then investigates further and 
cross checks information in an attempt to build a coherent 
explanation for the observed details.  We use deductive reasoning 
combined with expert knowledge about system behavior, potential 
attacks and evidence, and patterns of suspicion to link individual 
clues together in an automated way.   

A prototype implementation that was designed based on these 
considerations is presented, including details of how suspicions 
and deductions are represented, and how these structures are 
updated as new evidence is discovered.  Finally, we describe how 
this algorithm performs in practice on a realistic example where 
five discrete pieces of evidence are brought together automatically 
to create a unified and coherent description of what is believed to 
have occurred. 

1. INTRODUCTION 
Detecting intrusions into computer systems is one of the oldest 
research areas in computer security, and despite decades of 
research and increasingly sophisticated commercial systems, it 
remains a difficult problem.  In the past decade, the amount of 
sensor and audit data available from systems has increased 
dramatically, but attacks are intrinsically difficult to recognize 
from raw sensor data, unless the sensor was explicitly designed 
with that class of attack in mind.  Nevertheless, it has been widely 
recognized that intrusions do generally leave a variety of clues 
behind in the audit stream, and figuring out how to recognize 
those clues in a way that leads to a reasonably low false positive 
rate has been a popular research topic.   

In contrast to much of security research, which has often 
emphasized ironclad proofs and complete specifications in order 
to attempt to provide very high security assurance (and more often 
than not, has failed to do so), we are investigating the idea that it 
may be possible to systematically “smell a rat” even when there is 
no “smoking gun”.  

We bring two new ideas to the table that we believe show promise 
in improving the state of the art: first, a deductive point of view, 
where clues are identified, their consequences investigated, and 
supporting evidence may or may not be found, and second, the 
inclusion of suspicion as an explicit concept that guides our 
search.  We have developed these ideas into a working prototype 
system that we are in the process of evaluating.  After describing 
our methodology, we present the results of our first test of this 
system with a realistic example. 

Section two describes our philosophy of forensics and evidence, 
as well as the state of existing practice and research.  In section 
three, we discuss deduction and modeling, including how 
uncertainty and suspicion figure into our approach.  Section four 
discusses some concrete details of our algorithm.  Section five 
describes the details of our implementation, while in section six 
we show our algorithm at work with a brief example. 

2. FORENSIC ANALYSIS 
The philosophy and point of view we wish to adopt is that of a 
forensic analyst: we are interested in the collection of evidence of 
possible misuse, and putting those clues together into a coherent 
picture that describes what has occurred on the system in 
question.  We assume that evidence is being collected and 
preserved in a secure way, so that the timeliness of the analysis 
and the level of scrutiny it receives can be varied as needed.  
However, since we would like our forensic investigations to be 
able to occur with as little human intervention as possible, we will 
assume sensors with useful audit capabilities are deployed on the 
system, and that evidence may be being analyzed in real-time as it 
comes in.  In this case, the role of our investigations is not to 
assist a human forensic analyst, but to supply information and 
context to a separate component that may generate autonomic 
responses.  We assume that questions of security policy, posture 
and response are the responsibility of that component and 
independent of the situational awareness supplied by our analysis 
engine. 

2.1 Analysis of Evidence 
We assume that the evidence we are analyzing is most likely 
fragmentary and incomplete.  In the trivial case that a sensor 
explicitly detects an attack with high confidence (for example, an 
attachment is determined to be a known virus or a network packet 
contains an exploit for a known buffer overflow vulnerability), 
these events will be noted and added to the situational awareness, 
but analysis of such scenarios is fairly straightforward, and all the 
information needed to provide a concise and descriptive analysis 
of exactly what has occurred is already provided by the sensor 
itself.  Instead, as in traditional forensics, we are interested in 
clues that may well seem fairly innocent when viewed 
individually, but suggest a coherent story of misuse or abuse when 
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viewed in context.  It is important to note that this is more than 
just correlating alert information or collecting degrees of 
anomalous behavior in a “leaky bucket” until a threshold is 
reached; we are biased towards clusters of evidence that are 
consistent with a coherent “story” that explains evidence in the 
context of a larger pattern of behavior.  This has two advantages: 
first, it avoids the statistical difficulties associated with the base 
rate fallacy that often plague intrusion detection schemes 
[Axelsson 99], and second, since our analysis explicitly relies 
upon analysis of evidence in context and with regard to the 
inferred pattern of activity, a concise and coherent description of 
what we believe is happening can be generated when the analysis 
succeeds.  Furthermore, the entire deduction chain can be 
explained at each level, down to the individual bits of concrete 
evidence that led to a particular deduction, and the role each piece 
of evidence played in leading the analysis engine to the 
conclusion it reached. 

2.2 Existing Forensic Analysis Tools and 
Previous Work 
It is interesting to note that there has been a divergence between 
intrusion detection tools and the tools used by those doing 
forensic analysis of systems, despite the fact that both are 
examining evidence to find indications of whether and how a 
system has been compromised.  This is particularly noteworthy 
considering that early intrusion detection research was inspired by 
attempts to automate tasks traditionally performed by system 
administrators, like monitoring the system log (see [Lunt 88] for a 
summary). 

Forensic analysts generally use a wide variety tools, most of 
which can be described as evidence collection tools, and often 
were not explicitly designed for use as security tools.  These tools 
bypass friendly interfaces in order to provide explicit information 
about the low level structure of various resources of interest.  
While tools packages specifically designed for forensic analysts 
do exist, these concentrate mainly on issues of evidence 
preservation, and provide minimal assistance in actually analyzing 
the evidence itself.  In addition to those tools, a variety of 
configuration scanning (for example, COPS [Farmer 90]) and 
hardening tools have been developed, which analyze the security 
configuration of the machine.  These are sometimes useful from a 
forensics point of view as they provide information about the 
security configuration of the machine.  But there are surprisingly 
few tools that help a forensic analyst actually analyze the vast 
amount of evidence that can be obtained using these tools.  
Recently, some special case tools (like chkrootkit [Nelson04]) 
have started to appear, but these are highly specialized and tuned 
to detecting common clues and inconsistencies that indicate a 
system has been compromised. 

Previous host-based intrusion detection work has focused mainly 
on analyzing system level events (see, for example [Hofmeyr98]) 
in order to detect unauthorized access or modification of the 
system.  This is partly because for an external attack, the system 
itself is what comes under attack, but it is also partly because that 
is the only level where sensor data has been widely available.  
Intrusion detection can be partitioned into two main categories: 
anomaly detection and misuse detection.  A great deal of research 
has been focused on anomaly detection as an intrusion detection 

technique, based on the assumption that even previously 
unanticipated attacks will cause the system to behave in a way that 
can be distinguished from normal behavior.  A series of 
increasingly complex schemes have been investigated, ranging 
from simple n-gram based techniques [Forrest96] to Bayesian 
statistics [Anderson95, Porras97], data mining [Lee98, 
Barbara01], and neural nets [Ryan98].  While this research shows 
great promise in detecting anomalous application behavior and 
automatically learning how to do so from training data, all it can 
do is detect anomalous behavior. That anomalous behavior may 
be either benign and or it may be malicious.  Unfortunately, 
benign anomalous behavior is several orders of magnitude more 
common than malicious behavior, leading to high false positive 
rates for anomaly detection schemes.  This is a fundamental 
limitation of the anomaly detection approach [Axelsson99].  
Furthermore, there is no guarantee that all malicious behavior is 
anomalous; even at the system level certain attacks like race 
conditions are expected to be missed by anomaly detection 
[Forest96].  In fact, a clever attacker can craft his attack in such a 
way that a known anomaly detection system will not consider it 
anomalous [Wagner02, Tan02a, Tan02b]. 

Misuse detection attempts to detect the attacks themselves 
[Garvey91].  A wide variety of methods have been investigated, 
ranging from pattern matching [Kumar94] to rules based on state 
transitions [Ilgun95, Eckmann00].  These approaches need sensor 
data from the level where the attack is actually occurring in order 
to reliably distinguish between attacks and normal behavior. 

We believe that looking for clues that suggest an intrusion has 
taken place could potentially be easier than recognizing explicit 
attacks.  The most troublesome characteristic of attacks is that 
they are more likely to take advantage of behaviors of the system 
that are complex, poorly specified, or even forgotten; indeed many 
attacks take advantage of the interaction of several complex 
features of the system.  Understanding normal system behavior is 
difficult enough with current technology; understanding an attack, 
especially an unknown attack, well enough to recognize and 
detect it under these circumstances is extremely difficult. 

On the other hand, in both the real and virtual world, it is very 
difficult to do anything without leaving some evidence behind.  In 
addition, attempts to conceal or remove evidence generally create 
new evidence, and if detected, this evidence gives strong evidence 
about the perpetrator’s intent.  Even in the virtual world, where 
creating exact replicas and performing irreversible deletions are 
theoretically much easier, secure deletion tools are often detected 
due to the patterns they leave over what was erased or the traces 
left behind on the system even after the tool is uninstalled.  
Security is often difficult because the defenses must be perfect, 
while the attacker needs to find only one flaw.  An emphasis on 
forensics as a second line of defense reverses the burden, by 
requiring the attacker and his tools to be perfect, while the 
defender needs only a few clues to recognize an intrusion is 
underway. 

2.3 Motivation and Goals 
These observations have lead us to build a system that identifies 
individual clues based on a concrete model of suspicion and then 
connects them deductively based on its understanding of the 
system and potential patterns of intrusive behavior.  At first, such 
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a system would act mainly as an aid to forensic analysts looking 
through audit logs, as well as assisting security professionals in 
detecting and understanding intrusions. 

 

A secondary motivation is based on our belief that the biggest 
barrier to useful autonomic responses is a lack of information 
about context and intent with respect to detected intrusive events.  
Without such information, responses are blind and may well do as 
much damage as they prevent.  It is important to respond to 
situations, not single events, and we hope that such an evidence 
analysis system will be able to create the necessary situational 
awareness to allow effective responses to be planned and 
executed. 

 

To test these ideas, we have begun building a system capable of 
reasoning about evidence of intrusions based on our notions of 
suspicion, and have started performing experiments to see how 
feasible this approach is. 

3. DEDUCTION AND MODELING 
While it may seem appealing to build a system that requires no 
knowledge or understanding of the system it is protecting and can 
detect attacks independent of any understanding of potential 
security threats, a system which does take this information into 
account almost certainly will be more effective.  Surely, a human 
analyst who is asked to detect intrusions without any information 
about potential threats and the system itself would object to this 
restriction and recognize that it would hinder his ability to 
concentrate on relevant information and make reasonable 
deductions.  While a generic system that does not rely upon such 
information may be able to more easily detect certain classes of 
unknown attacks, it is necessarily blind to other classes, 
depending on what characteristics of the attacks allow them to be 
seen by the generic system (for example, the generation of 
sufficiently anomalous events that are seen by deployed sensors). .  
This trade-off is explicitly stated in early anomaly detection 
papers (e.g. [Forrest 96]), but is curiously absent from many more 
recent ones.  By adopting a deductive approach to evidence, we 
restrict ourselves to scenarios involving evidence we can see and 
actions we understand.   It seems unlikely one can do better at 
detecting new attacks than that, except under special 
circumstances. 

It has long been understood that deductive reasoning is the 
foundation for forensics (interestingly, Sir Arthur Conan Doyle’s 
Sherlock Holmes was inspired by medical diagnosis, another field 
where deductive reasoning plays a crucial role).  It may be 
particularly effective on computers, due to their deterministic 
nature, though with increasing system complexity this difference 
may be slowly fading.  In fact, deductive reasoning has already 
been applied to the problem of evidence evaluation, though in a 
different context [Keppins03].  The success of such methods in 
analyzing hypotheses about real world crime scenarios suggests to 
us that similar methods are likely to prove fruitful when applied to 
analysis of intrusions. 

With respect to the models we base our deductions on, we view 
them as necessarily incomplete.  A model that faithfully represents 
every aspect of a system is no longer a model, but a simulation.  
Therefore we must expect that deductions based on the models 

may prove false in certain cases.  We rely on the models only for 
information about the relationship between deductions, the likely 
intent of inferred actions, and suggestions about what evidence 
may mean.  We are interested in context and explanations, not 
ironclad proofs. 

3.1 Uncertainty 
As mentioned earlier, we view incompleteness as a necessary 
characteristic of our models, and so we need to be able to deal 
with uncertainty in our deductions.  This particular problem is not 
unique to us, however, and is well known among those who work 
in model-based reasoning.  We can easily attach uncertainties to 
our inferences and manage them in a self-consistent way.  
However if we rely on this as our only measure of uncertainty, we 
will have the same problems encountered by many statistical 
intrusion detection schemes [Axelsson 99].  In our approach, 
suspicion is distinct from uncertainty in that suspicion evaluates 
the likelihood that a given event or pattern of events is evidence 
of malicious behavior, while uncertainty expresses the likelihood 
that deductions are correct and the likelihood the observed 
behavior is normal under the assumption that no malicious 
behavior is present.  This avoids problems associated with the fact 
that the probability of an event being malicious is normally very 
low, but rises dramatically when an attack is underway. 

The more subtle problem is that much of the uncertainty involved 
in forensic evaluations is not just quantitative in nature, but 
qualitative.  Many of the concepts that are useful in expressing 
security knowledge and policies are by nature somewhat fuzzy 
and context-dependent.  Much of this, we believe, is because 
security is a field that exists only because of a lack of complete 
information, and hence an ability to deal flexibly with uncertainty 
is often deeply embedded in the concepts used to describe security 
concerns.  For example, security experts talk about 
trustworthiness instead of correctness.  We have found that many 
of the concepts we have introduced in our models are best 
described as shades of gray instead of black and white concepts.  
For example, the concept of a “foreign executable” or an 
“untrusted executable” is important in many of our rules, since 
both the concepts of origin and executability are useful 
generalizations that cover a wide variety of scenarios.  Each of the 
attributes can be evaluated and inferred from available evidence, 
but the degree to which a resource is untrusted, and even the 
degree to which a resource is executable can vary (is it directly 
executable? or does it merely contain potentially executable 
content?  is it raw machine instructions, or some higher level 
language?).  And these differences in degree can affect the degree 
to which an object is suspicious.  Introducing such subjective 
evaluations will certainly require some tuning in order for them to 
be effective, but we feel that such a faithful representation of our 
evaluation of the evidence is crucial to building a system that can 
make sensible judgments about the relative importance of various 
bits of evidence. 

3.2 Suspicion 
There are a variety of nuances to the notion of suspicion, most of 
which we will not concern ourselves with here.  The reason is 
because we are content to leave a suspicion as something where 
“we know it when we see it”.  This is not particularly 
inappropriate, as we are proposing to let experts define exactly 
what sorts of things raise their suspicions.  And, after all, 
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suspicions are necessarily imprecise, since many of them turn out 
to be wrong.  However, consider the filename: 

“C:\Prográm Files\Winzip\logfile.txt<binary 0><80 spaces>.exe” 

One could take the position that this is a perfectly valid Windows 
filename, and without more information about the state of the file 
system or the context in which it occurs, nothing more than that 
can be said.  It is likely, however, that most security experts would 
immediately point out that it is a very suspicious filename, and 
that several aspects of its construction suggest it is intended to 
seem like it is inside C:\Program Files, which it isn’t, and that it is 
a text file, when it is in fact an executable.  In addition to alerting 
us to the fact that something may be going on here, and we should 
probably investigate further, the filename also suggests some 
plausible scenarios that should be investigated.  Certainly, if we 
were to later see the same file name truncated at the binary zero, 
we might reasonably conclude that a string-handling bug probably 
had been exploited.  It is this sort of knowledge about what types 
of evidence cause one to become concerned, and what types of 
checks and further investigations one might do that we think has 
the potential to significantly improve the performance of intrusion 
detection systems. 

Once we have described our expert knowledge of the system and 
relevant security concepts, we use suspicion to link together 
events into patterns of behavior.  Events with certain 
characteristics are suspicious.  Furthermore, certain patterns of 
inferences also cause us to become suspicious about what might 
be occurring.  Also, suspicions may be linked through deduced 
relations between events or inferred actions, or through concrete 
objects: files, processes, and so on.  Our overall suspicion is then 
a function of the degree to which each resource, event, or 
inference is suspicious and the number of independent reasons we 
have for being suspicious of it.  The inference rules specify how 
objects and events become suspicious.  For example, if a file is 
added as a startup file, we become suspicious of the process that 
added it, as well as the file that was added.  In addition, we 
consider the possible alternatives that either the file the process 
was started from or the process itself was somehow compromised.  
As we become suspicious of new objects, this guides our search 
for more evidence, since the rules concerning evidence pay 
special attention to suspicious objects and events in a prescribed 
deductive manner.  For example, if we become suspicious of a 
file, we become suspicious of other events involving it as well as 
processes started from it.  In this way, clues direct our search for 
more clues, as the clues we find become more significant in the 
context in which they appear.  Once our search is complete, these 
clues and their relationships can be presented in an easily 
understood form for further evaluation. 

It should also be noted that suspicion, in humans, suffers from 
various flaws.  For example, once they become suspicious, 
humans often become too sensitized to new suspicions, and 
humans are prone to fixating on a single explanation, instead of 
investigating all possibilities dispassionately.  Interestingly, 
computers excel at dispassionately investigating alternatives in 
parallel, and will not become more suspicious with time unless 
taught to do so.  So it is possible that computers may be more 
resistant to pathological suspicions.  In fact, computers may be 
capable of assisting human investigators in determining which of 

their suspicions are reasonable, and which contradict available 
evidence or are merely paranoia. 

3.2.1 Characterization of Suspicious Events 
We rely on human experts to design and implement the rules that 
the system uses in order to determine which events are suspicious 
and which are not.  Of course, this brings up the question of how 
the human experts should decide what sorts of events are 
suspicious.  As a preliminary categorization, we suggest the 
following list of aspects of events that might cause one to be 
suspicious: 

(1) Security Relevance: There has to at least be the remote 
possibility of the event contributing to violation of one or more 
security requirements.  So, for example, any sort of fiddling with 
critical resources is immediately suspicious, while innocuous 
changes to files which are not relied upon by anything critical, 
probably is not. 

(2) Contextual Mismatch: Events that seem out of place, or do 
not fit naturally into what appears to be happening (i.e. cannot 
easily be explained away based on context) are suspicious. 

(3) Potential Malicious Explanation: The event has 
characteristics that can plausibly be explained by malicious intent, 
regardless of whether we understand why the characteristics are 
actually there.  For example, a long series of NOPs in a network 
packet is suspicious, since it could be a NOP slide for a buffer 
overflow. 

(4) Possible Stealth or Bypass: Events that suggest an attempt to 
bypass or evade access control or monitoring are suspicious.  But 
there are legitimate uses for these capabilities.  For example, use 
of encryption often is an indicator of a covert, malicious 
communication channel, but it may also be used for security or 
privacy reasons. 

(5) Implausible Non-independence (“Once is Happenstance. 
Twice is Coincidence. The third time is Enemy action.” [Fleming 
59])  Events in processes that are expected to be independent 
show logical or temporal coincidences that suggest they are acting 
in concert. 

(6) Guilt by Association: Otherwise less suspicious events draw 
more scrutiny when they are related to more suspicious events. 

(7) Guilt by Causation: Being the root cause for a suspicious 
event makes you suspicious. 

(8) Minimal Compromise Hypothesis: Similar to the well-
known minimal fault hypothesis from fault diagnosis.  Events that 
could plausibly explain the origin of two or more suspicious 
clusters are more suspicious. 

(9) Boundary Integrity: Events involving multiple security 
principals, especially if they have different privilege levels, are 
suspicious. 

(10) Novelty: Anomalous events are suspicious, not malicious. 

90



This list is by no means exhaustive, and each of these categories 
have distinctive characteristics, so we will be investigating this 
characterization more fully in the future. 

4. KNOWLEDGE REPRESENTATION 
4.1 Static Knowledge Models 
The deduction rules are organized into a variety of different 
models, each concerned with analyzing a different aspect of the 
system, our understanding of intrusions, or suspicion itself.  All 
the models operate based on a common set of concepts, and can 
reason based on each other’s deductions as well as their own.  In 
particular, the suspicion module, which contains a variety of 
generic rules about how suspicion should be propagated, often 
interacts with other models, which contain rules about which 
particular events or inferred actions they find suspicious.  
Currently most rules are either part of the suspicion module, the 
system model, which is responsible for understanding and making 
inferences about what certain low level events imply (for example, 
that an attempt to connect to port 25 is likely an attempt to contact 
a mail server), or the trojan model, which encapsulates knowledge 
about actions which are commonly seen in worms and trojans. 

4.2 Dynamic Knowledge Models 
As rules fire in response to observed events, there are two main 
data structures that are updated and maintained, the deductive 
graph and the suspicion graph. 

4.2.1 Deductive Graph 
The deductive graph is a directed acyclic graph that includes as 
nodes all the observed events, as well as the actions that have 
been inferred from those events, and any other deductions that 
have been made.  The directed edges indicate which nodes were 
deduced from which other nodes, so that the certainties can be 
updated as conclusions are confirmed or invalidated.  Currently, 
we are using a very simple scheme for propagating and updating 
certainties (similar to what was used in EMYCIN [van Melle 84]), 
since our results so far do not depend crucially on what sort of 
updating scheme is used.  We plan to substitute a more 
sophisticated scheme in the future if one proves to be necessary. 

4.2.2 Suspicion Graph 
The suspicion graph, on the other hand, keeps track of the objects 
we are suspicious of and their interrelationships.  We may be 
suspicious of individual events, inferred actions, or resources like 
files, processes and so on.  Edges between individual nodes exist 
when two objects have been deductively linked together.  In the 
case where we have found no linkages, just a scattering of 
suspicious events, the graph will be completely disconnected.  In 
most cases, it will have a variety of connected components of 
varying size.  Each node also has a suspicion value which 
indicates exactly how intrinsically suspicious the object is (that is, 
the suspiciousness absent independent confirmation).  Currently, 
we are using a very simple model where objects are either 
suspicious (value = 1) or very suspicious (value = 5).  We tend to 
pay less attention to small, connected components with low 
overall values, and pay more attention to larger components.  We 
are in the process of evaluating a variety of metrics for measuring 
the overall “suspiciousness” of the complexes as a whole.  One 
option is that the suspiciousness is related to the number of 

directly observable suspicious events the node is linked to.  We’ve 
also considered using the sum of the suspiciousness of the entire 
complex. 

4.2.3 Interrelationship 
Since the suspicions in the suspicion graph are produced by 
deductions in the deductive graph, the two structures are 
interrelated and updates to one can cause updates to the other as 
well.  Newly deduced suspicions are added to the suspicion graph 
as they are made, but the suspicion graph also influences the 
deductive graph in the following way: as the suspicion of a node 
increases due to being linked with other events in a suspicion 
complex, we proportionally increase the certainty of the 
conclusion that the object was suspicious, and these changes 
propagate upward through the deductive graph and change the 
certainties of other inferences.  In this way, confirmed suspicions 
modify our view of what is happening, while unconfirmed 
suspicions retain their original (usually low) certainties. 

5. CURRENT IMPLEMENTATION 
The current implementation uses the SafeFamily wrapper [Balzer 
00] as a sensor in order to watch processes as they execute.  As 
interesting events are observed, they are forwarded to the 
Cybersafe analyzer, which is loaded inside of the central control 
process that interacts with all the wrapped processes on the 
machine. 

5.1 SafeFamily Wrapper 
The SafeFamily wrapper is an existing access control mechanism 
that enforces application specific rules during execution of 
arbitrary Windows COTS applications and the wrappers already 
support the ability to simply gather information about resource 
accesses without enforcing any rules.  The resources that can be 
monitored in this way include all files, registry keys, COM 
servers, spawning of new processes, and network 
communications.  In addition, the wrappers have been augmented 
with some Cybersafe specific sensors to detect certain other 
events of interest. 

The SafeFamily wrapper operates entirely in user mode, within 
the monitored application itself, allowing highly efficient 
monitoring of all the application’s resource requests.  In addition, 
the monitoring mechanism has been hardened and is able to resist 
attempts to disable or modify the monitoring mechanism even if 
the application itself has been compromised.  All resources are 
identified by the name given to them by the windows kernel itself, 
allowing reliable identification of resources even in the presence 
of alternate or short (DOS) path components or hard links.  
Sensor information produced by the wrapper is then forwarded to 
a central process that observes all relevant application behavior on 
the machine. 

5.2 JESS-based analysis engine 
The models and maintenance of the graphs are implemented using 
the Java Expert System Shell (JESS) [Friedman-Hill 03].  Events 
are translated into a form appropriate for the JESS implementation 
by the Cybersafe analyzer, which also includes a small component 
that allows the engine to make native system calls to query certain 
aspects of the underlying filesystem and operating system. 
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6. EXAMPLE 
In order to test our prototype implementation, we built a small 
example that performs a number of activities of interest, to see 
how well the analysis engine can deduce their relationships and 
provide a coherent explanation of what has occurred. 

6.1 Description 
In our scenario, an enticing looking document exists on a file 
server somewhere on a corporate intranet.  We will refer to this 
file as Document.qqq, where “qqq” is an arbitrary file extension 
that is mapped to an application we have created.  This 
application (CybersafeVictim.exe) will play the role of a COTS or 
custom application that is used widely within the organization.  
Unfortunately for any innocent user who chooses to investigate 
the file, sitting in the same directory is InnocentLooking.dll, 
which happens to have the same name as a dynamic library 
CybersafeVictim.exe depends upon.  Since CybersafeVictim.exe 
attempts to load this particular library using a relative path (a flaw 
that has been found in a wide variety of applications including 
Microsoft Word), and the current directory is part of the default 
library search path on Windows, the malicious version from the 
file server will be loaded instead of the intended library.  Note that 
under the default settings of Windows, InnocentLooking.dll 
happens to be invisible to the user by virtue of its extension, and 
we assume it is marked as a hidden file in order to further reduce 
the chances of it being noticed.  Once InnocentLooking.dll is 
loaded into CybersafeVictim.exe on the victim’s machine, we 
assume it performs the following actions: 

(1) creates a new network share on the victim’s machine. 
(2) copies InnocentLooking.dll and Document.qqq to the new 

directory. 
(3) marks InnocentLooking.dll as hidden. 
(4) contacts a remote host in order to inform it that the 

propagation has succeeded. 
 

This sort of behavior is not atypical for a network trojan that is 
simply interested in propagating to as many hosts as possible.  

6.2 Analysis 
During the scenario above, the SafeFamily wrapper observes the 
events as they happen, and generates the following events that it 
forwards to the Cybersafe analyzer: 

(1) file_library_load_relative 
 InnocentLooking.dll \\Server\Share\InnocentLooking.dll 
(2) create_network_share  
 VictimMachine 
 Share 
 C:\Share 
(3) file_copy 
 \\Server\Share\InnocentLooking.dll 
 C:\Share\InnocentLooking.dll 
(4) file_hide 
 C:\ Share\InnocentLooking.dll 
(5) communications_access 
 12.34.56.78 port 80 
 

The Cybersafe analyzer processes these events as they occur.  In 
order to keep the example simple, we will only describe the 
deductions that occur, and will not discuss the certainties attached 
to them. 

In response to the first event, the following rules fire: 

(1a)  A file_library_load_relative event that tries to load a library 
that satisfies certain conditions is marked very suspicious.  The 
file is also very suspicious. 
 trojan_dll_1:  
 ?e <- event file_library_load_relative  
  Abstract_File_Name  File 
 trojan_dll_check(Abstract_File_Name, File, _) 
 => suspicious event ?e very_suspicious  
 => suspicious file File very_suspicious 
(1b) Files on network shares are foreign. 
 file_foreign: 
 get_drive_type(File, network_share) 
 => event foreign_file File 
 (1c) Foreign executables are suspicious. 
 ext_suspicious_2: 
 ?e <- event foreign_file File 
 executable(extension(File), 4) 
 => suspicious file File suspicious 
 
In this particular case, we have chosen an attack that our sensors 
can see and that our rules (in particular, the rule that fired in 1a) 
can understand.  However, when we evaluate what we have 
learned at the end, we will also compare our results with what our 
analysis would have shown if we had been unaware of this 
particular method of attack. 

We also intentionally chose an attack where the system 
technically behaves exactly as its designers intended.  Because of 
this, despite the fact that in this case what we have observed is 
“highly suspicious”, there is no clear cut rule about under what 
circumstances loading a library via a relative path is strictly 
illegal; some Windows applications even rely on this behavior in 
order to function properly.  So while this behavior is highly 
suspect, confirming evidence would be helpful before declaring it 
malicious.  This allows the system to handle situations that are 
inherently ambiguous, and only become meaningful in context. 

The remaining two rules merely encode suspicions about remote 
executables; even if we did not understand this particular attack 
vector, we still would be suspicious of the file in question.  
Though our current rule set does not do so, the rules could be 
extended to understand the implications of loading suspicious 
dynamic libraries into a process. 

In response to the second event, the following rule fires: 

(2a) Creating a network share is suspicious. 

 trojan_ns_2B: 
 ?e <- event create_network_share NetworkShare 
 => suspicious event ?e suspicious 
 

Here, we notice the creation of a new network share, which we 
also find suspicious.  As this is the parent directory for the files in 
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several following events, it would be possible to notice a link 
between these events.  However, the current set of rules does not, 
since the system model does not yet understand parent-child 
relationships between files and directories.  

In response to the third event, the following rules fire: 

(3a) Any foreign file that is copied or moved is still foreign. 
 trojan_fs_1: 
 event copy_file Source_File Destination_File 
 event foreign_file Source_File 
 => event foreign_file Destination_File 
(3b) Foreign executables are suspicious. 
 ext_suspicious_2: 
 event foreign_file File 
 executable(extension(File), 4) 
 => suspicious file File suspicious 
(3c) Writing an executable to a network share is suspicious.  The 
file being written is also suspicious. 
 trojan_ns_4: 
 ?e <- event copy_file Source_File Destination_File 
 get_drive_type(Destination_File, network_share), 
 executable(Source_File) 
 => suspicious event ?e suspicious 
 => suspicious file Source_File 
(3d) Any suspicious file that is copied or moved is suspicious to 
the same degree. 
 forward_propagate_suspicious_file _1: 
 ?e <- event copy_file Source_File, Destination_File 
 ?s <- suspicious Source_File Suspicious 
 => suspicious file Destination_File  Suspicious 
 

Two of these rules (3a and 3d) are simply housekeeping rules that 
propagate certain attributes of files as they are moved around the 
filesystem.  In the case of suspicion, this also creates a link 
between them as their suspiciousness is causally related.  The only 
other rule we haven’t seen before notes that an executable is being 
written to a network share, which identifies the event as 
suspicious in and of itself. 

In response to the fourth event, the following rules fire: 

(4a) Any file_hide event is suspicious 
 file_hide_1: 
 ?e <- event file_hide File 
 => suspicious event ?e suspicious 
 

This is yet another action that in many contexts is perfectly 
legitimate, but can also indicate that something is going on, 
especially in the absence of any legitimate reason to expect it.  
Here, the rule conclusion gives us yet another independent 
confirmation of our suspicions about the string of events related to 
this particular file. 

In response to the fifth event, no rules fire since the action appears 
simply to be a connection to a web server of some sort; with the 
number of applications that make use of this sort of functionality 
these days, it would be impractical to warn about such behavior 
except in very sensitive environments.  We include it here because 
after seeing so many suspicious actions, one might be watching 

outgoing connections more carefully than would normally be the 
case, and react to such an event where it would have otherwise 
gone unnoticed.  At the very least, our suspicions about the 
process could be presented for evaluation before the process was 
allowed to contact an external machine. 

Figure 2: Suspicion Graph 

A partial view of the final suspicion graph is shown in Figure 2.  
F1 is the file \\Server\Share\InnocentLooking.dll, while F2 is the 
file C:\Share\InnocentLooking.dll.  The remaining four nodes are 
events 1 through 4.  The dotted line indicates a link that could be 
made, but is not made by the current implementation.  The file F1 
is considered very suspicious; the rest of the nodes are merely 
suspicious.  The graph clearly shows the context of what has 
occurred, and the relationships between the various resources and 
events.  Furthermore, the explicit relationships and the reasons for 
their existence can be clearly explained (see below).  Even if the 
explicit attack had not been detected, the rest of the activity would 
still have been linked together; only the library_load node would 
be missing. 

7. CONCLUSION 
Based on this example, we believe an explicit concept of 
suspicion shows promise in assisting a model-based intrusion 
detection system.  In addition, deductive links between our 
suspicions both help us confirm that our suspicions are correct, 
and also clarify the relationships between events so that they can 
be clearly explained to a human analyst, or any other consumer of 
our conclusions.  The separation of the deductive graph and the 
suspicion graph allows us to use certainties associated only with 
normal behavior in the deductive graph, and focus exclusively on 
relationships between potential indications of malicious behavior 
in the suspicion graph, only updating our view of the world once 
our suspicions have been confirmed. 
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