
The Role of Suspicion in Model-based Intrusion Detection

Timothy Hollebeek and Rand Waltzman
Teknowledge Corporation

4640 Admiralty Way, Suite 1010
Marina del Rey, CA 90292, USA

tholleb@teknowledge.com, rwaltzma@teknowledge.com

ABSTRACT
We argue in favor of the explicit inclusion of suspicion as a
concrete concept to be used in the analysis of audit data in order
to guide the search for evidence of misuse. Our approach is
similar to that of a human forensic analyst, who first notices
details that seem slightly odd, and then investigates further and
cross checks information in an attempt to build a coherent
explanation for the observed details. We use deductive reasoning
combined with expert knowledge about system behavior, potential
attacks and evidence, and patterns of suspicion to link individual
clues together in an automated way.

A prototype implementation that was designed based on these
considerations is presented, including details of how suspicions
and deductions are represented, and how these structures are
updated as new evidence is discovered. Finally, we describe how
this algorithm performs in practice on a realistic example where
five discrete pieces of evidence are brought together automatically
to create a unified and coherent description of what is believed to
have occurred.

1. INTRODUCTION
Detecting intrusions into computer systems is one of the oldest
research areas in computer security, and despite decades of
research and increasingly sophisticated commercial systems, it
remains a difficult problem. In the past decade, the amount of
sensor and audit data available from systems has increased
dramatically, but attacks are intrinsically difficult to recognize
from raw sensor data, unless the sensor was explicitly designed
with that class of attack in mind. Nevertheless, it has been widely
recognized that intrusions do generally leave a variety of clues
behind in the audit stream, and figuring out how to recognize
those clues in a way that leads to a reasonably low false positive
rate has been a popular research topic.

In contrast to much of security research, which has often
emphasized ironclad proofs and complete specifications in order
to attempt to provide very high security assurance (and more often
than not, has failed to do so), we are investigating the idea that it
may be possible to systematically “smell a rat” even when there is
no “smoking gun”.

We bring two new ideas to the table that we believe show promise
in improving the state of the art: first, a deductive point of view,
where clues are identified, their consequences investigated, and
supporting evidence may or may not be found, and second, the
inclusion of suspicion as an explicit concept that guides our
search. We have developed these ideas into a working prototype
system that we are in the process of evaluating. After describing
our methodology, we present the results of our first test of this
system with a realistic example.

Section two describes our philosophy of forensics and evidence,
as well as the state of existing practice and research. In section
three, we discuss deduction and modeling, including how
uncertainty and suspicion figure into our approach. Section four
discusses some concrete details of our algorithm. Section five
describes the details of our implementation, while in section six
we show our algorithm at work with a brief example.

2. FORENSIC ANALYSIS
The philosophy and point of view we wish to adopt is that of a
forensic analyst: we are interested in the collection of evidence of
possible misuse, and putting those clues together into a coherent
picture that describes what has occurred on the system in
question. We assume that evidence is being collected and
preserved in a secure way, so that the timeliness of the analysis
and the level of scrutiny it receives can be varied as needed.
However, since we would like our forensic investigations to be
able to occur with as little human intervention as possible, we will
assume sensors with useful audit capabilities are deployed on the
system, and that evidence may be being analyzed in real-time as it
comes in. In this case, the role of our investigations is not to
assist a human forensic analyst, but to supply information and
context to a separate component that may generate autonomic
responses. We assume that questions of security policy, posture
and response are the responsibility of that component and
independent of the situational awareness supplied by our analysis
engine.

2.1 Analysis of Evidence
We assume that the evidence we are analyzing is most likely
fragmentary and incomplete. In the trivial case that a sensor
explicitly detects an attack with high confidence (for example, an
attachment is determined to be a known virus or a network packet
contains an exploit for a known buffer overflow vulnerability),
these events will be noted and added to the situational awareness,
but analysis of such scenarios is fairly straightforward, and all the
information needed to provide a concise and descriptive analysis
of exactly what has occurred is already provided by the sensor
itself. Instead, as in traditional forensics, we are interested in
clues that may well seem fairly innocent when viewed
individually, but suggest a coherent story of misuse or abuse when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSPW’04, September 20–23, 2004, Halifax, Nova Scotia, Canada.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

NSPW 2004 Nova Scotia Canada
© 2005 ACM 1-59593-076-0/05/05…$5.00
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cit ation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

87

viewed in context. It is important to note that this is more than
just correlating alert information or collecting degrees of
anomalous behavior in a “leaky bucket” until a threshold is
reached; we are biased towards clusters of evidence that are
consistent with a coherent “story” that explains evidence in the
context of a larger pattern of behavior. This has two advantages:
first, it avoids the statistical difficulties associated with the base
rate fallacy that often plague intrusion detection schemes
[Axelsson 99], and second, since our analysis explicitly relies
upon analysis of evidence in context and with regard to the
inferred pattern of activity, a concise and coherent description of
what we believe is happening can be generated when the analysis
succeeds. Furthermore, the entire deduction chain can be
explained at each level, down to the individual bits of concrete
evidence that led to a particular deduction, and the role each piece
of evidence played in leading the analysis engine to the
conclusion it reached.

2.2 Existing Forensic Analysis Tools and
Previous Work
It is interesting to note that there has been a divergence between
intrusion detection tools and the tools used by those doing
forensic analysis of systems, despite the fact that both are
examining evidence to find indications of whether and how a
system has been compromised. This is particularly noteworthy
considering that early intrusion detection research was inspired by
attempts to automate tasks traditionally performed by system
administrators, like monitoring the system log (see [Lunt 88] for a
summary).

Forensic analysts generally use a wide variety tools, most of
which can be described as evidence collection tools, and often
were not explicitly designed for use as security tools. These tools
bypass friendly interfaces in order to provide explicit information
about the low level structure of various resources of interest.
While tools packages specifically designed for forensic analysts
do exist, these concentrate mainly on issues of evidence
preservation, and provide minimal assistance in actually analyzing
the evidence itself. In addition to those tools, a variety of
configuration scanning (for example, COPS [Farmer 90]) and
hardening tools have been developed, which analyze the security
configuration of the machine. These are sometimes useful from a
forensics point of view as they provide information about the
security configuration of the machine. But there are surprisingly
few tools that help a forensic analyst actually analyze the vast
amount of evidence that can be obtained using these tools.
Recently, some special case tools (like chkrootkit [Nelson04])
have started to appear, but these are highly specialized and tuned
to detecting common clues and inconsistencies that indicate a
system has been compromised.

Previous host-based intrusion detection work has focused mainly
on analyzing system level events (see, for example [Hofmeyr98])
in order to detect unauthorized access or modification of the
system. This is partly because for an external attack, the system
itself is what comes under attack, but it is also partly because that
is the only level where sensor data has been widely available.
Intrusion detection can be partitioned into two main categories:
anomaly detection and misuse detection. A great deal of research
has been focused on anomaly detection as an intrusion detection

technique, based on the assumption that even previously
unanticipated attacks will cause the system to behave in a way that
can be distinguished from normal behavior. A series of
increasingly complex schemes have been investigated, ranging
from simple n-gram based techniques [Forrest96] to Bayesian
statistics [Anderson95, Porras97], data mining [Lee98,
Barbara01], and neural nets [Ryan98]. While this research shows
great promise in detecting anomalous application behavior and
automatically learning how to do so from training data, all it can
do is detect anomalous behavior. That anomalous behavior may
be either benign and or it may be malicious. Unfortunately,
benign anomalous behavior is several orders of magnitude more
common than malicious behavior, leading to high false positive
rates for anomaly detection schemes. This is a fundamental
limitation of the anomaly detection approach [Axelsson99].
Furthermore, there is no guarantee that all malicious behavior is
anomalous; even at the system level certain attacks like race
conditions are expected to be missed by anomaly detection
[Forest96]. In fact, a clever attacker can craft his attack in such a
way that a known anomaly detection system will not consider it
anomalous [Wagner02, Tan02a, Tan02b].

Misuse detection attempts to detect the attacks themselves
[Garvey91]. A wide variety of methods have been investigated,
ranging from pattern matching [Kumar94] to rules based on state
transitions [Ilgun95, Eckmann00]. These approaches need sensor
data from the level where the attack is actually occurring in order
to reliably distinguish between attacks and normal behavior.

We believe that looking for clues that suggest an intrusion has
taken place could potentially be easier than recognizing explicit
attacks. The most troublesome characteristic of attacks is that
they are more likely to take advantage of behaviors of the system
that are complex, poorly specified, or even forgotten; indeed many
attacks take advantage of the interaction of several complex
features of the system. Understanding normal system behavior is
difficult enough with current technology; understanding an attack,
especially an unknown attack, well enough to recognize and
detect it under these circumstances is extremely difficult.

On the other hand, in both the real and virtual world, it is very
difficult to do anything without leaving some evidence behind. In
addition, attempts to conceal or remove evidence generally create
new evidence, and if detected, this evidence gives strong evidence
about the perpetrator’s intent. Even in the virtual world, where
creating exact replicas and performing irreversible deletions are
theoretically much easier, secure deletion tools are often detected
due to the patterns they leave over what was erased or the traces
left behind on the system even after the tool is uninstalled.
Security is often difficult because the defenses must be perfect,
while the attacker needs to find only one flaw. An emphasis on
forensics as a second line of defense reverses the burden, by
requiring the attacker and his tools to be perfect, while the
defender needs only a few clues to recognize an intrusion is
underway.

2.3 Motivation and Goals
These observations have lead us to build a system that identifies
individual clues based on a concrete model of suspicion and then
connects them deductively based on its understanding of the
system and potential patterns of intrusive behavior. At first, such

88

a system would act mainly as an aid to forensic analysts looking
through audit logs, as well as assisting security professionals in
detecting and understanding intrusions.

A secondary motivation is based on our belief that the biggest
barrier to useful autonomic responses is a lack of information
about context and intent with respect to detected intrusive events.
Without such information, responses are blind and may well do as
much damage as they prevent. It is important to respond to
situations, not single events, and we hope that such an evidence
analysis system will be able to create the necessary situational
awareness to allow effective responses to be planned and
executed.

To test these ideas, we have begun building a system capable of
reasoning about evidence of intrusions based on our notions of
suspicion, and have started performing experiments to see how
feasible this approach is.

3. DEDUCTION AND MODELING
While it may seem appealing to build a system that requires no
knowledge or understanding of the system it is protecting and can
detect attacks independent of any understanding of potential
security threats, a system which does take this information into
account almost certainly will be more effective. Surely, a human
analyst who is asked to detect intrusions without any information
about potential threats and the system itself would object to this
restriction and recognize that it would hinder his ability to
concentrate on relevant information and make reasonable
deductions. While a generic system that does not rely upon such
information may be able to more easily detect certain classes of
unknown attacks, it is necessarily blind to other classes,
depending on what characteristics of the attacks allow them to be
seen by the generic system (for example, the generation of
sufficiently anomalous events that are seen by deployed sensors). .
This trade-off is explicitly stated in early anomaly detection
papers (e.g. [Forrest 96]), but is curiously absent from many more
recent ones. By adopting a deductive approach to evidence, we
restrict ourselves to scenarios involving evidence we can see and
actions we understand. It seems unlikely one can do better at
detecting new attacks than that, except under special
circumstances.

It has long been understood that deductive reasoning is the
foundation for forensics (interestingly, Sir Arthur Conan Doyle’s
Sherlock Holmes was inspired by medical diagnosis, another field
where deductive reasoning plays a crucial role). It may be
particularly effective on computers, due to their deterministic
nature, though with increasing system complexity this difference
may be slowly fading. In fact, deductive reasoning has already
been applied to the problem of evidence evaluation, though in a
different context [Keppins03]. The success of such methods in
analyzing hypotheses about real world crime scenarios suggests to
us that similar methods are likely to prove fruitful when applied to
analysis of intrusions.

With respect to the models we base our deductions on, we view
them as necessarily incomplete. A model that faithfully represents
every aspect of a system is no longer a model, but a simulation.
Therefore we must expect that deductions based on the models

may prove false in certain cases. We rely on the models only for
information about the relationship between deductions, the likely
intent of inferred actions, and suggestions about what evidence
may mean. We are interested in context and explanations, not
ironclad proofs.

3.1 Uncertainty
As mentioned earlier, we view incompleteness as a necessary
characteristic of our models, and so we need to be able to deal
with uncertainty in our deductions. This particular problem is not
unique to us, however, and is well known among those who work
in model-based reasoning. We can easily attach uncertainties to
our inferences and manage them in a self-consistent way.
However if we rely on this as our only measure of uncertainty, we
will have the same problems encountered by many statistical
intrusion detection schemes [Axelsson 99]. In our approach,
suspicion is distinct from uncertainty in that suspicion evaluates
the likelihood that a given event or pattern of events is evidence
of malicious behavior, while uncertainty expresses the likelihood
that deductions are correct and the likelihood the observed
behavior is normal under the assumption that no malicious
behavior is present. This avoids problems associated with the fact
that the probability of an event being malicious is normally very
low, but rises dramatically when an attack is underway.

The more subtle problem is that much of the uncertainty involved
in forensic evaluations is not just quantitative in nature, but
qualitative. Many of the concepts that are useful in expressing
security knowledge and policies are by nature somewhat fuzzy
and context-dependent. Much of this, we believe, is because
security is a field that exists only because of a lack of complete
information, and hence an ability to deal flexibly with uncertainty
is often deeply embedded in the concepts used to describe security
concerns. For example, security experts talk about
trustworthiness instead of correctness. We have found that many
of the concepts we have introduced in our models are best
described as shades of gray instead of black and white concepts.
For example, the concept of a “foreign executable” or an
“untrusted executable” is important in many of our rules, since
both the concepts of origin and executability are useful
generalizations that cover a wide variety of scenarios. Each of the
attributes can be evaluated and inferred from available evidence,
but the degree to which a resource is untrusted, and even the
degree to which a resource is executable can vary (is it directly
executable? or does it merely contain potentially executable
content? is it raw machine instructions, or some higher level
language?). And these differences in degree can affect the degree
to which an object is suspicious. Introducing such subjective
evaluations will certainly require some tuning in order for them to
be effective, but we feel that such a faithful representation of our
evaluation of the evidence is crucial to building a system that can
make sensible judgments about the relative importance of various
bits of evidence.

3.2 Suspicion
There are a variety of nuances to the notion of suspicion, most of
which we will not concern ourselves with here. The reason is
because we are content to leave a suspicion as something where
“we know it when we see it”. This is not particularly
inappropriate, as we are proposing to let experts define exactly
what sorts of things raise their suspicions. And, after all,

89

suspicions are necessarily imprecise, since many of them turn out
to be wrong. However, consider the filename:

“C:\Prográm Files\Winzip\logfile.txt<binary 0><80 spaces>.exe”

One could take the position that this is a perfectly valid Windows
filename, and without more information about the state of the file
system or the context in which it occurs, nothing more than that
can be said. It is likely, however, that most security experts would
immediately point out that it is a very suspicious filename, and
that several aspects of its construction suggest it is intended to
seem like it is inside C:\Program Files, which it isn’t, and that it is
a text file, when it is in fact an executable. In addition to alerting
us to the fact that something may be going on here, and we should
probably investigate further, the filename also suggests some
plausible scenarios that should be investigated. Certainly, if we
were to later see the same file name truncated at the binary zero,
we might reasonably conclude that a string-handling bug probably
had been exploited. It is this sort of knowledge about what types
of evidence cause one to become concerned, and what types of
checks and further investigations one might do that we think has
the potential to significantly improve the performance of intrusion
detection systems.

Once we have described our expert knowledge of the system and
relevant security concepts, we use suspicion to link together
events into patterns of behavior. Events with certain
characteristics are suspicious. Furthermore, certain patterns of
inferences also cause us to become suspicious about what might
be occurring. Also, suspicions may be linked through deduced
relations between events or inferred actions, or through concrete
objects: files, processes, and so on. Our overall suspicion is then
a function of the degree to which each resource, event, or
inference is suspicious and the number of independent reasons we
have for being suspicious of it. The inference rules specify how
objects and events become suspicious. For example, if a file is
added as a startup file, we become suspicious of the process that
added it, as well as the file that was added. In addition, we
consider the possible alternatives that either the file the process
was started from or the process itself was somehow compromised.
As we become suspicious of new objects, this guides our search
for more evidence, since the rules concerning evidence pay
special attention to suspicious objects and events in a prescribed
deductive manner. For example, if we become suspicious of a
file, we become suspicious of other events involving it as well as
processes started from it. In this way, clues direct our search for
more clues, as the clues we find become more significant in the
context in which they appear. Once our search is complete, these
clues and their relationships can be presented in an easily
understood form for further evaluation.

It should also be noted that suspicion, in humans, suffers from
various flaws. For example, once they become suspicious,
humans often become too sensitized to new suspicions, and
humans are prone to fixating on a single explanation, instead of
investigating all possibilities dispassionately. Interestingly,
computers excel at dispassionately investigating alternatives in
parallel, and will not become more suspicious with time unless
taught to do so. So it is possible that computers may be more
resistant to pathological suspicions. In fact, computers may be
capable of assisting human investigators in determining which of

their suspicions are reasonable, and which contradict available
evidence or are merely paranoia.

3.2.1 Characterization of Suspicious Events
We rely on human experts to design and implement the rules that
the system uses in order to determine which events are suspicious
and which are not. Of course, this brings up the question of how
the human experts should decide what sorts of events are
suspicious. As a preliminary categorization, we suggest the
following list of aspects of events that might cause one to be
suspicious:

(1) Security Relevance: There has to at least be the remote
possibility of the event contributing to violation of one or more
security requirements. So, for example, any sort of fiddling with
critical resources is immediately suspicious, while innocuous
changes to files which are not relied upon by anything critical,
probably is not.

(2) Contextual Mismatch: Events that seem out of place, or do
not fit naturally into what appears to be happening (i.e. cannot
easily be explained away based on context) are suspicious.

(3) Potential Malicious Explanation: The event has
characteristics that can plausibly be explained by malicious intent,
regardless of whether we understand why the characteristics are
actually there. For example, a long series of NOPs in a network
packet is suspicious, since it could be a NOP slide for a buffer
overflow.

(4) Possible Stealth or Bypass: Events that suggest an attempt to
bypass or evade access control or monitoring are suspicious. But
there are legitimate uses for these capabilities. For example, use
of encryption often is an indicator of a covert, malicious
communication channel, but it may also be used for security or
privacy reasons.

(5) Implausible Non-independence (“Once is Happenstance.
Twice is Coincidence. The third time is Enemy action.” [Fleming
59]) Events in processes that are expected to be independent
show logical or temporal coincidences that suggest they are acting
in concert.

(6) Guilt by Association: Otherwise less suspicious events draw
more scrutiny when they are related to more suspicious events.

(7) Guilt by Causation: Being the root cause for a suspicious
event makes you suspicious.

(8) Minimal Compromise Hypothesis: Similar to the well-
known minimal fault hypothesis from fault diagnosis. Events that
could plausibly explain the origin of two or more suspicious
clusters are more suspicious.

(9) Boundary Integrity: Events involving multiple security
principals, especially if they have different privilege levels, are
suspicious.

(10) Novelty: Anomalous events are suspicious, not malicious.

90

This list is by no means exhaustive, and each of these categories
have distinctive characteristics, so we will be investigating this
characterization more fully in the future.

4. KNOWLEDGE REPRESENTATION
4.1 Static Knowledge Models
The deduction rules are organized into a variety of different
models, each concerned with analyzing a different aspect of the
system, our understanding of intrusions, or suspicion itself. All
the models operate based on a common set of concepts, and can
reason based on each other’s deductions as well as their own. In
particular, the suspicion module, which contains a variety of
generic rules about how suspicion should be propagated, often
interacts with other models, which contain rules about which
particular events or inferred actions they find suspicious.
Currently most rules are either part of the suspicion module, the
system model, which is responsible for understanding and making
inferences about what certain low level events imply (for example,
that an attempt to connect to port 25 is likely an attempt to contact
a mail server), or the trojan model, which encapsulates knowledge
about actions which are commonly seen in worms and trojans.

4.2 Dynamic Knowledge Models
As rules fire in response to observed events, there are two main
data structures that are updated and maintained, the deductive
graph and the suspicion graph.

4.2.1 Deductive Graph
The deductive graph is a directed acyclic graph that includes as
nodes all the observed events, as well as the actions that have
been inferred from those events, and any other deductions that
have been made. The directed edges indicate which nodes were
deduced from which other nodes, so that the certainties can be
updated as conclusions are confirmed or invalidated. Currently,
we are using a very simple scheme for propagating and updating
certainties (similar to what was used in EMYCIN [van Melle 84]),
since our results so far do not depend crucially on what sort of
updating scheme is used. We plan to substitute a more
sophisticated scheme in the future if one proves to be necessary.

4.2.2 Suspicion Graph
The suspicion graph, on the other hand, keeps track of the objects
we are suspicious of and their interrelationships. We may be
suspicious of individual events, inferred actions, or resources like
files, processes and so on. Edges between individual nodes exist
when two objects have been deductively linked together. In the
case where we have found no linkages, just a scattering of
suspicious events, the graph will be completely disconnected. In
most cases, it will have a variety of connected components of
varying size. Each node also has a suspicion value which
indicates exactly how intrinsically suspicious the object is (that is,
the suspiciousness absent independent confirmation). Currently,
we are using a very simple model where objects are either
suspicious (value = 1) or very suspicious (value = 5). We tend to
pay less attention to small, connected components with low
overall values, and pay more attention to larger components. We
are in the process of evaluating a variety of metrics for measuring
the overall “suspiciousness” of the complexes as a whole. One
option is that the suspiciousness is related to the number of

directly observable suspicious events the node is linked to. We’ve
also considered using the sum of the suspiciousness of the entire
complex.

4.2.3 Interrelationship
Since the suspicions in the suspicion graph are produced by
deductions in the deductive graph, the two structures are
interrelated and updates to one can cause updates to the other as
well. Newly deduced suspicions are added to the suspicion graph
as they are made, but the suspicion graph also influences the
deductive graph in the following way: as the suspicion of a node
increases due to being linked with other events in a suspicion
complex, we proportionally increase the certainty of the
conclusion that the object was suspicious, and these changes
propagate upward through the deductive graph and change the
certainties of other inferences. In this way, confirmed suspicions
modify our view of what is happening, while unconfirmed
suspicions retain their original (usually low) certainties.

5. CURRENT IMPLEMENTATION
The current implementation uses the SafeFamily wrapper [Balzer
00] as a sensor in order to watch processes as they execute. As
interesting events are observed, they are forwarded to the
Cybersafe analyzer, which is loaded inside of the central control
process that interacts with all the wrapped processes on the
machine.

5.1 SafeFamily Wrapper
The SafeFamily wrapper is an existing access control mechanism
that enforces application specific rules during execution of
arbitrary Windows COTS applications and the wrappers already
support the ability to simply gather information about resource
accesses without enforcing any rules. The resources that can be
monitored in this way include all files, registry keys, COM
servers, spawning of new processes, and network
communications. In addition, the wrappers have been augmented
with some Cybersafe specific sensors to detect certain other
events of interest.

The SafeFamily wrapper operates entirely in user mode, within
the monitored application itself, allowing highly efficient
monitoring of all the application’s resource requests. In addition,
the monitoring mechanism has been hardened and is able to resist
attempts to disable or modify the monitoring mechanism even if
the application itself has been compromised. All resources are
identified by the name given to them by the windows kernel itself,
allowing reliable identification of resources even in the presence
of alternate or short (DOS) path components or hard links.
Sensor information produced by the wrapper is then forwarded to
a central process that observes all relevant application behavior on
the machine.

5.2 JESS-based analysis engine
The models and maintenance of the graphs are implemented using
the Java Expert System Shell (JESS) [Friedman-Hill 03]. Events
are translated into a form appropriate for the JESS implementation
by the Cybersafe analyzer, which also includes a small component
that allows the engine to make native system calls to query certain
aspects of the underlying filesystem and operating system.

91

6. EXAMPLE
In order to test our prototype implementation, we built a small
example that performs a number of activities of interest, to see
how well the analysis engine can deduce their relationships and
provide a coherent explanation of what has occurred.

6.1 Description
In our scenario, an enticing looking document exists on a file
server somewhere on a corporate intranet. We will refer to this
file as Document.qqq, where “qqq” is an arbitrary file extension
that is mapped to an application we have created. This
application (CybersafeVictim.exe) will play the role of a COTS or
custom application that is used widely within the organization.
Unfortunately for any innocent user who chooses to investigate
the file, sitting in the same directory is InnocentLooking.dll,
which happens to have the same name as a dynamic library
CybersafeVictim.exe depends upon. Since CybersafeVictim.exe
attempts to load this particular library using a relative path (a flaw
that has been found in a wide variety of applications including
Microsoft Word), and the current directory is part of the default
library search path on Windows, the malicious version from the
file server will be loaded instead of the intended library. Note that
under the default settings of Windows, InnocentLooking.dll
happens to be invisible to the user by virtue of its extension, and
we assume it is marked as a hidden file in order to further reduce
the chances of it being noticed. Once InnocentLooking.dll is
loaded into CybersafeVictim.exe on the victim’s machine, we
assume it performs the following actions:

(1) creates a new network share on the victim’s machine.
(2) copies InnocentLooking.dll and Document.qqq to the new

directory.
(3) marks InnocentLooking.dll as hidden.
(4) contacts a remote host in order to inform it that the

propagation has succeeded.

This sort of behavior is not atypical for a network trojan that is
simply interested in propagating to as many hosts as possible.

6.2 Analysis
During the scenario above, the SafeFamily wrapper observes the
events as they happen, and generates the following events that it
forwards to the Cybersafe analyzer:

(1) file_library_load_relative
 InnocentLooking.dll \\Server\Share\InnocentLooking.dll
(2) create_network_share
 VictimMachine
 Share
 C:\Share
(3) file_copy
 \\Server\Share\InnocentLooking.dll
 C:\Share\InnocentLooking.dll
(4) file_hide
 C:\ Share\InnocentLooking.dll
(5) communications_access
 12.34.56.78 port 80

The Cybersafe analyzer processes these events as they occur. In
order to keep the example simple, we will only describe the
deductions that occur, and will not discuss the certainties attached
to them.

In response to the first event, the following rules fire:

(1a) A file_library_load_relative event that tries to load a library
that satisfies certain conditions is marked very suspicious. The
file is also very suspicious.
 trojan_dll_1:
 ?e <- event file_library_load_relative
 Abstract_File_Name File
 trojan_dll_check(Abstract_File_Name, File, _)
 => suspicious event ?e very_suspicious
 => suspicious file File very_suspicious
(1b) Files on network shares are foreign.
 file_foreign:
 get_drive_type(File, network_share)
 => event foreign_file File
 (1c) Foreign executables are suspicious.
 ext_suspicious_2:
 ?e <- event foreign_file File
 executable(extension(File), 4)
 => suspicious file File suspicious

In this particular case, we have chosen an attack that our sensors
can see and that our rules (in particular, the rule that fired in 1a)
can understand. However, when we evaluate what we have
learned at the end, we will also compare our results with what our
analysis would have shown if we had been unaware of this
particular method of attack.

We also intentionally chose an attack where the system
technically behaves exactly as its designers intended. Because of
this, despite the fact that in this case what we have observed is
“highly suspicious”, there is no clear cut rule about under what
circumstances loading a library via a relative path is strictly
illegal; some Windows applications even rely on this behavior in
order to function properly. So while this behavior is highly
suspect, confirming evidence would be helpful before declaring it
malicious. This allows the system to handle situations that are
inherently ambiguous, and only become meaningful in context.

The remaining two rules merely encode suspicions about remote
executables; even if we did not understand this particular attack
vector, we still would be suspicious of the file in question.
Though our current rule set does not do so, the rules could be
extended to understand the implications of loading suspicious
dynamic libraries into a process.

In response to the second event, the following rule fires:

(2a) Creating a network share is suspicious.

 trojan_ns_2B:
 ?e <- event create_network_share NetworkShare
 => suspicious event ?e suspicious

Here, we notice the creation of a new network share, which we
also find suspicious. As this is the parent directory for the files in

92

several following events, it would be possible to notice a link
between these events. However, the current set of rules does not,
since the system model does not yet understand parent-child
relationships between files and directories.

In response to the third event, the following rules fire:

(3a) Any foreign file that is copied or moved is still foreign.
 trojan_fs_1:
 event copy_file Source_File Destination_File
 event foreign_file Source_File
 => event foreign_file Destination_File
(3b) Foreign executables are suspicious.
 ext_suspicious_2:
 event foreign_file File
 executable(extension(File), 4)
 => suspicious file File suspicious
(3c) Writing an executable to a network share is suspicious. The
file being written is also suspicious.
 trojan_ns_4:
 ?e <- event copy_file Source_File Destination_File
 get_drive_type(Destination_File, network_share),
 executable(Source_File)
 => suspicious event ?e suspicious
 => suspicious file Source_File
(3d) Any suspicious file that is copied or moved is suspicious to
the same degree.
 forward_propagate_suspicious_file _1:
 ?e <- event copy_file Source_File, Destination_File
 ?s <- suspicious Source_File Suspicious
 => suspicious file Destination_File Suspicious

Two of these rules (3a and 3d) are simply housekeeping rules that
propagate certain attributes of files as they are moved around the
filesystem. In the case of suspicion, this also creates a link
between them as their suspiciousness is causally related. The only
other rule we haven’t seen before notes that an executable is being
written to a network share, which identifies the event as
suspicious in and of itself.

In response to the fourth event, the following rules fire:

(4a) Any file_hide event is suspicious
 file_hide_1:
 ?e <- event file_hide File
 => suspicious event ?e suspicious

This is yet another action that in many contexts is perfectly
legitimate, but can also indicate that something is going on,
especially in the absence of any legitimate reason to expect it.
Here, the rule conclusion gives us yet another independent
confirmation of our suspicions about the string of events related to
this particular file.

In response to the fifth event, no rules fire since the action appears
simply to be a connection to a web server of some sort; with the
number of applications that make use of this sort of functionality
these days, it would be impractical to warn about such behavior
except in very sensitive environments. We include it here because
after seeing so many suspicious actions, one might be watching

outgoing connections more carefully than would normally be the
case, and react to such an event where it would have otherwise
gone unnoticed. At the very least, our suspicions about the
process could be presented for evaluation before the process was
allowed to contact an external machine.

Figure 2: Suspicion Graph

A partial view of the final suspicion graph is shown in Figure 2.
F1 is the file \\Server\Share\InnocentLooking.dll, while F2 is the
file C:\Share\InnocentLooking.dll. The remaining four nodes are
events 1 through 4. The dotted line indicates a link that could be
made, but is not made by the current implementation. The file F1
is considered very suspicious; the rest of the nodes are merely
suspicious. The graph clearly shows the context of what has
occurred, and the relationships between the various resources and
events. Furthermore, the explicit relationships and the reasons for
their existence can be clearly explained (see below). Even if the
explicit attack had not been detected, the rest of the activity would
still have been linked together; only the library_load node would
be missing.

7. CONCLUSION
Based on this example, we believe an explicit concept of
suspicion shows promise in assisting a model-based intrusion
detection system. In addition, deductive links between our
suspicions both help us confirm that our suspicions are correct,
and also clarify the relationships between events so that they can
be clearly explained to a human analyst, or any other consumer of
our conclusions. The separation of the deductive graph and the
suspicion graph allows us to use certainties associated only with
normal behavior in the deductive graph, and focus exclusively on
relationships between potential indications of malicious behavior
in the suspicion graph, only updating our view of the world once
our suspicions have been confirmed.

8. ACKNOWLEDGEMENTS
The United States Defense Advanced Research Projects Agency
(DARPA) supported this work under contract DAAH01-02-C-
R178. Thanks to Bob Balzer and the New Security Paradigms
Workshop attendees for useful comments and suggestions.

9. REFERENCES
 [Axelsson 99] Stefan Axelsson. The base-rate fallacy and its
implications for the difficulty of intrusion detection. In 6th ACM
Conference on computer and communications security, pages 1--
7, Kent Ridge Digital Labs, Singapore, 1--4 November 1999.

[Anderson 95] Anderson, Debra, Teresa F. Lunt, Harold Javitz,
Ann Tamaru, Alfonso Valdes, "Detecting unusual program
behavior using the statistical component of the Nextgeneration

library_load

F1 F2

create_share

copy

file_hidelibrary_load

F1 F2

create_share

copy

file_hide

93

Intrusion Detection Expert System (NIDES)", Computer Science
Laboratory SRI-CSL 95-06 May 1995.

[Balzer 00] Robert Balzer and Neil Goldman: Mediating
Connectors: A Non-ByPassable Process Wrapping Technology,
DARPA DISCEX Conference 2000, Hilton Head SC, Jan 25-27,
Vol II, pp 361-368.

[Barbara 01] D. Barbara, et al., ADAM: A Testbed for Exploring
the Use of Data Mining in Intrusion Detection. SIGMOD Record
2001.

[Eckmann 00] Steve T. Eckmann, Giovanni Vigna, and Richard
A. Kemmerer, 2000. "STATL: An Attack Language for State-
based Intrusion Detection". Dept. of Computer Science,
University of California, Santa Barbara.

[Farmer 90] Daniel Farmer and Eugene H. Spafford. The COPS
security checker system. In Proceedings of the Summer
Conference, pages 165--190, Berkeley, CA, 1990. Usenix
Association.

[Fleming 59] I. Fleming, “Goldfinger,” Jonathan Cape Publishing,
1959.

[Forest 96] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for unix processes. In Proceedings of
the 1996 IEEE Symposium on Security and Privacy, pages 120-
128, Los Alamitos, CA, 1996.

[Friedman-Hill 03] E. Friedman-Hill, “Jess in Action”, Manning
Publications Co, Greenwich, CT, July 2003.

[Garvey 91] T.D. Garvey and T.F. Lunt. Model-based intrusion
detection. In Proceedings of the l4th National Computer Security
Conference, October 1991.

[Hofmeyr 98] S. A. Hofmeyr, S. Forrest, and A. Somayaji.
Intrusion detection using sequences of system calls. Journal of
Computer Security, 6:151-180, 1998.

[Ilgun 95] K. Ilgun, R. Kemmerer, and P. Porras. State Transition
Analysis: A RuleBased Intrusion Detection System. IEEE
Transactions on Software Engineering, 21(3), Mar. 1995.

[Keppins 03] J. Keppins and J. Zeleznikow, “A Model-Based
Reasoning Approach for Generating Plausible Crime Scenarios
from Evidence”, Proceedings of the Ninth International
Conference on Artificial Intelligence and the Law, June 2003, 51-
59.

[Kumar 94] Kumar, S. and Spafford, E., "A Pattern Matching
Model for Misuse Intrusion Detection," Proceedings of the
Seventeenth National Computer Security Conference, pp. 11--21
(Oct. 1994).

[Lee 98] W. Lee and S. J. Stolfo. Data mining approaches for
intrusion detection. In Proceedings of the 7th USENIX Security
Symposium, 1998.

[Lunt 88] T. F. Lunt. Automated audit trail analysis and intrusion
detection: A survey. In Proceedings of the 11th National
Computer Security Conference, October 1988.

[Nelson 04] N. Murilo and K. Steding-Jessen, chkrootkit.
http://www.chkrootkit.org/.

[Porras 97] P.A. Porras and P.G. Neumann. EMERALD: Event
Monitoring Enabling Responses to Anomalous Live Disturbances.
In Proceedings of the Nineteenth National Computer Security
Conference, pages 353--365, Baltimore, Maryland, 22-25 October
1997. NIST/NCSC.

[Ryan 98] Ryan, J. , Lin,M., and Miikkulainen, R. (1998).
"Intrusion Detection with Neural Networks" . In Advances in
Neural Information Processing Systems, vol. 10, MIT Press.
1998.

[Tan 02a] Tan, K.M., Killourhy, K.S., Maxion, R.A.:
Undermining an anomaly-based intrusion detection system using
common exploits. In Wespi, A., Vigna, G., Deri, L., eds: 5th
International Symposium, RAID 2002. Number 2516 in LNCS,
Zurich, Switzerland, Springer (2002) 54-73.

[Tan 02b] Tan, K.M., McHugh, J., and Killourhy, K.S.: Hiding
Intrusions: From the abnormal to the normal and beyond. In
Proceedings of the 2002 Information Hiding Workshop, number
2578 in LNCS, Zurich, Switzerland, Springer (2002), pages 1-17.

[van Melle 84] W. van Melle, E. H. Shortliffe and B. G.
Buchanan, "EMYCIN: A Knowledge engineer's Tool for
Constructing Rule-Based Expert Systems," in Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project," B.G. Buchanan and E.H. Shortliffe (eds),
1984: Addison-Wesley.

 [Wagner 02] D. Wagner and P. Soto. Mimicry attacks on host
based intrusion detection systems. In Proc. Ninth ACM
Conference on Computer and Communications Security, 2002.

94

