
Speculative Virtual Verification: 
Policy-Constrained Speculative Execution, 

Michael E. Locasto 
Network Security Lab 

Department of Computer 
Science 

Columbia University 
Iocasto@cs.colurnbia.edu 

Stelios Sidiroglou 
Network Security Lab 

Department of Computer 
Science 

Columbia University 
ss1759@cs.columbia.edu 

Angelos D. Keromytis 
Network Security Lab 

Department of Computer 
Science 

Columbia University 
angelos@cs.cotumbia.edu 

ABSTRACT 
A key problem facing current computing systems is the in- 
ability to autonomously manage security vulnerabilities as 
well as more mundane errors. Since the design of computer 
architectures is usually performance-driven, hardware often 
lacks primitives for tasks in which raw speed is not the pri- 
mary goal. There is little architectural support  for monitor- 
ing execution at  the instruction level, and no mechanisms 
for assisting an automated response. 

This paper advocates modifying general-purpose proces- 
sors to provide both program supervision and automatic  re- 
sponse via a policy-driven monitoring mechanism and in- 
struction stream rewriting, respectively. These capabilities 
form the basis of speculative virtual verification (SVV). 

SVV is a model for the speculative execution of code 
based on high-level security and safety constraints. We in- 
troduce architectural enhancements to support  this frame- 
work, including the ability to supply an automated response 
by rewriting the instruction stream. Finally, given the  nov- 
elty of the SVV approach to executing software, we briefly 
consider some important  challenges for SVV-based systems. 

Categories and Subject Descriptors 
B.8 [Hardware] :  Performance and Reliability 
; C.1.3 [Processor Architectures]: Other Architecture 
Styles 

General Terms 
Security, Design, Reliability 

Keywords 
SVV, Speculative Execution, Micro-speculation, hardware 
security 

NSPW 2005 Lake Arrowhead CA USA 
© 2006 ACM 1-59593-317-4/06/02....$5.00 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 

1. INTRODUCTION 
Software faults and vulnerabilit ies continue to present sig- 

nificant obstacles to achieving reliable and secure software. 
The lack of comprehensive and low-cost protection mecha- 
nisms presents a critical problem for computing systems. 

Static analysis techniques or improved programming prac- 
tices are unlikely to provide a complete solution to the types 
of errors tha t  threaten system stabili ty or create exploitable 
vulnerabilities. Even systems tha t  dynamically monitor pro- 
cess execution often impose a noticeable performance cost. 
Furthermore, these systems may reinvent the same primi- 
tives because the hardware does not supply them. However, 
even if such capabilities existed, system security is often a 
mat ter  of policy; these utilities would need some level of 
flexibility to be applicable and remain useful in a wide vari- 
ety of diverse and evolving environments. Finally, systems 
currently lack the capabil i ty to respond intelligently to both 
at tacks and non-malicious faults. 

The  ability for computing systems to detect and correct 
faults and vulnerabilities would greatly improve their stabil- 
i ty and security. The main contribution of this paper is the 
proposal of a set of architectural  components that  provide a 
basis for such systems by speculatively executing the entire 
instruction stream. In much the same way that  a superscalar 
processor speculatively executes past  a branch instruction 
and discards the mis-predicted code path,  we propose tha t  
processors operate on the instruction stream in two phases. 
The  first phase executes instructions, optimistically "spec- 
ulating" tha t  the results of these computations are benign. 
The  second phase makes the  effects of the speculated in- 
struction stream visible to the  OS and application software 
layers and potentially rewrites the instruction stream if it  
has been deemed harmful. 

1.1 Speculative Execution 
Speculative execution is a technique used in microproces- 

sors to execute the instructions in a code branch before the 
evaluation of the branch conditional is finished. The need to 
perform speculative execution arises in pipelined processors 
because the conditional instruction that  the branch depends 
on has proceeded deeply into the pipeline but  has not been 
evaluated by the t ime the processor is ready to fetch addi- 
t ional instructions. An example of this situation is shown in 
Figure 1. 

Whi le  a complete discussion of the  strategies for dealing 
with branch predication is beyond the scope of this paper, 

119 



0 . . .  

1 f d i v l  7.R1, ZR2, ~.IL3 
2 fadd 7.1L5, Y.R6, ZR7 
3 :fcmp ZRI, ZR2 
4 j e IABEL1 
5 imp LABEL2 
6 LABEL1 : 
7 movl $0, ZR1 
8 movl $0, ZR2 
9 movl ZR1, -8 (Y, R30) 
I0 movl Y, R2, -4 (Y, R2,0) 
11 jmp LABEL3 

12 LABEL2: 

13 ... 

F i g u r e  1: Speculative Ezecut ion of  a Branch. In  t h i s  
m a d e - u p  a s s e m b l y  l a n g u a g e ,  r a t h e r  t h a n  s ta l l  t h e  
p i p e l i n e  because  o f  t h e  u n r e s o l v e d  resu l t  o f  t h e  f loat-  
ing  po in t  d i v i d e  o p e r a t i o n ,  t h e  proces sor  c a n  c h o o s e  
t o  i s sue  the  f l oa t ing  p o i n t  a d d  o p e r a t i o n  o n  l ine  2 
(out  o f  order e x e c u t i o n ) .  I f  t h e  d e p e n d e n c y  o n  R1 
an d  R2 b e t w e e n  t h e  d i v i d e  a n d  t h e  c o m p a r e  oper-  
a t i o n s  is sat is f ied,  t h e n  t h e  c o m p a r e  c a n  e x e c u t e .  
B e c a u s e  the  re su l t  o f  t h e  c o m p a r e  on l ine  3 m a y  
n o t  be  avai lable  for t h e  b r a n c h  i n s t r u c t i o n  in l ine  4, 
t h e  processor  m a y  s p e c u l a t i v e l y  e x e c u t e  (based  on  
b r a n c h  pred ic t ion)  t h e  code  at  LABEL1 or fal l  t h r o u g h  
t o  t h e  direct  j u m p  on  l ine  5. I f  t h e  b r a n c h  p r e d i c t i o n  
is incorrect ,  t h e  s p e c u l a t e d  i n s t r u c t i o n s  are  f lu sh ed  
a n d  e x e c u t i o n  c o n t i n u e s  f rom t h e  correct  t a r g e t .  

a basic overview of the subject and pointers to other mate-  
rial are available in [11, 7]. Our proposal differs from these 
techniques by introducing an addit ional  layer of speculative 
execution in which the acceptance of a part icular  execution 
pa th  is not based on the evaluation of a branch conditional, 
but  rather a higher-order constraint on a set of instructions. 

1.2 Motivation and Feasibility 
We are motivated by work on constructing an emulator 

[29] to supervise program execution in response to exploits 
and errors. Unfortunately, the use of an emulator imposes 
a considerable performance overhead since the emulator  ex- 
ecutes every program instruction in software. The  first way 
to ease this burden, which was adopted in [29], is to limit the  
scope of emulation to portions of the  program demonstra ted 
to  be vulnerable, thereby reducing the t ime tha t  is spent in 
the  emulator. The second approach is to eliminate the em- 
ulation penalty altogether by executing the process directly 
on the CPU. Unfortunately, adopt ing this approach cur- 
rently means relinquishing the monitoring capabilit ies t ha t  
the  emulator provides. Therefore, we advocate adding mon- 
itoring mechanisms to processors so tha t  a certain level of 
safety is relatively inexpensive. In order to address more 
complex attacks, we also propose tha t  execution can be del- 
egated to the software emulator as needed. 

Our goal is to  push common-mode security monitoring 
functionality further down the system stack. Arguing for 
the  widespread adoption of fundamental  changes to hard- 
ware is a controversial proposition. We believe the  hardware 
necessary to support  our system is easily implementable. In- 
deed, large parts of the  system are a l ready present in modern 

processors to  support  thread level speculation (TLS). The  
design parameters  of general-purpose microprocessors have 
tradi t ional ly been driven by raw performance. We advocate 
design parameters  aimed at  more high-level feature support.  

2. SYSTEM DESIGN 
As il lustrated in Figure 2 the  core features of SVV form 

a two level monitoring environment. The first level includes 
hardware mechanisms for monitoring instruction execution 
(bounds checking, taint- tracking [32], SRAS [16], transfer 
control validation [14], etc.). The second level of monitor- 
ing is provided by the Policy Constraint  Unit  (PCU) and 
the Virtual  Emulator  Registrat ion Unit  (VERU). Instruc- 
tions are filtered by the PCU according to some policy con- 
structed by the programmer,  compiler, or runtime profiling. 
The policy could range from filtering on a part icular  class of 
instructions (integer vs. load/store)  to more complex con- 
straints tha t  require keeping state.  The  design of a con- 
straint  language to express these policies is future work, but  
we envision the PCU to be a FSM much like the instruc- 
tion decoding unit  tha t  is able to  filter instructions based 
on properties like target  and source registers and memory 
locations, instruction type,  and processor s tatus flags, other 
processor s ta te  (as supplied by other components such as a 
SRAS or an array length tracker),  and d a t a  dependencies. 

The VERU stores an address for code tha t  should be ex- 
ecuted if the PCU identifies a sequence of instructions tha t  
require more resources than the hardware can easily pro- 
vide. Finally, the  Verification Buffer (VB) and the Instruc- 
tion Rewrite Unit  (IRWU) provide some basic support  for 
an automatic  response capability. 

2.1 SVV Execution Model 
The execution model for SVV (see Figure 2) is similar 

to current superscalar execution models. Instructions are 
fetched, decoded, issued to functional units (possibly out of 
order), executed, and gathered in a re-order buffer (ROB) to 
be committed in program order. However, at  each stage, in- 
structions are filtered by the PCU and monitored by hardware- 
level security mechanisms. Additionally, the VB accumu- 
lates completed instructions as they leave the  ROB and com- 
mits them only if they pass the monitoring tests. 

Instruction flow for SVV can be categorized by the follow- 
ing three scenarios. Firs t ,  the instruction may be harmless. 
In this case, it  proceeds normally to the  ROB, graduates 
when appropriate,  moves to the VB, and is committed. Sec- 
ond, an instruction may be harmful as determined by the 
monitoring mechanisms (e.g., it  is actual ly tainted input  
data,  or will write input  da t a  to the Code area of the pro- 
cess address space) or the PCU. In this case, the IRWU 
flushes the scope of the  harmful instruction and constructs 
a 'safe' version of the flushed code. The processor then ex- 
ecutes this al ternate instruction stream, including a return 
to the normal pa th  of execution. The third scenario en- 
ables an emulator to be loaded on the CPU and supervise 
code execution. If the PCU decides tha t  a part icular  se- 
quence of instructions requires more complex supervision, it  
can invoke execution of this emulator. Note tha t  there is no 
requirement for the software invoked by the  VERU to be an 
emulator. The  VERU simply holds an address and trans- 
fers control to the code at  this address. Such an approach 
enables a more general response mechanism than software 
emulation. For example, the VERU may transfer control to 

120 



If e tch/decode 

I 

! 

I \ ,  
i 

I P C U  & 
moni tof ingi (e .g . ,  taint- tracking~ 

I 

READ EXECUTE 

R O R  
f 

WRITE 

iRWU 

I l l  

COMMIT 

reg file 

F 
VERIFY 

Figu re  2: Pipeline organization for SVV.  Here ,  a s impl i f ied  p i p e l i n e  for a s u p e r s e a l a r  processor  is modi f i ed  t o  
add  an  e x t r a  v e r i f i c a t i o n  s tage  as wel l  as p o l i c y - d r i v e n  h a r d w a r e - b a s e d  m o n i t o r i n g  m e c h a n i s m s .  T h e  I R W U  
c a n  op t iona l ly  r e w r i t e  t h e  i n s t r u c t i o n  s t r e a m  a n d  c a u s e  t h e  n e w  ve r s ion  ( s to red  in  t h e  VB)  to  b e  execu t ed .  
T rad i t i ona l  h a r d w a r e  c o m p o n e n t s  a r e  show n  as full r ec tang les ,  n e w  c o m p o n e n t s  a re  r o u n d e d .  N o t  s h o w n  is 
t h e  V E R U ,  w h i c h  h o l d s  t h e  a d d r e s s  for  a n  e m u l a t o r  c a p a b l e  of h ighe r - l eve l  s u p e r v i s i o n .  

an OS routine that kills the process, or suspends the process 
and transfers it to an isolated host for analysis, auditing, in- 
trusion detection, or debugging. 

Another way to envision the SVV execution model is as an 
operating system that schedules a process for execution on 
two cooperating microprocessors, as shown in Figure 3. Such 
an implementation would needlessly complicate the OS, and 
we argue that individual processors can contain the compo- 
nents necessary to transparently implement SVV. 

! 

i 
CPU 2: 

i 
i Commi t  
I 

i CPU 1: 
Execute 

i 
i 

i 
I ], i 

! 

CPU3 i 

committed 

. . °  

commi t t ed  

speculated 

. . °  

speculated 

to fetch 

F i g u r e  3: High-level execution model for SVV.  T h e  
i n s t r u c t i o n  s t r e a m  for a p rocess  is s c h e d u l e d  for ex- 
e cu t i on  o n  t w o  p r o c e s s o r s .  C P U 1  s u p e r v i s e s  in-  
s t r u c t i o n  e x e c u t i o n  whi le  C P U 2  c o m m i t s  i n s t r u c -  
t i o n s  t h a t  are  b e n i g n .  C P U 2  c a n  o p t i o n a l l y  r e - w r i t e  
t h e  i n s t r u c t i o n  s t r e a m  as a bas ic  f o r m  of  ac t ive  re- 
sponse .  T h e  c o n c e p t u a l  p r o c e s s o r s  C P U 1  a n d  C P U 2  
are  ac tua l l y  one phys ica l  u n i t ,  C P U 3 .  

2.2 Scope of SVV 
The largest obstacle to overcome for SVV is a three part 

problem that involves determining the scope of supervision. 
First, even though SV-V is meant to run continuously, some 
applications (especially those working in a power-constrained 
environment) may wish to avoid the overhead associated 

with constant monitoring. Second, hardware is fundamen- 
tally limited in the number of virtual execution contexts it 
can support concurrently. Finally, it is likely that the ba- 
sic monitoring mechanisms, while capable of stopping laxge 
classes of attacks, may be unable to cope with more so- 
phisticated attacks (some forms of DoS, multi-step attacks, 
information leaks, improperly set permissions, phishing at- 
tacks, etc.) or analysis tasks that  require copious amount of 
state (anomaly or intrusion detection via data mining). 

To address the latter two problems, we use the VERU 
to register a software emulator that  can perform high-level 
monitoring of an instruction stream. An emulator has the 
flexibility to be more intrusive and is easily customizable. 
This hybrid approach to monitoring is more promising than 
an approach based solely on haxdware or software. To ad- 
dress the first problem, SVV can be selectively invoked. 
Control over this invocation can be handled by the OS (a 
new system call to invoke or halt the SVV hardware) or the 
compiler (new assembly instructions can delimit an SVV 
monitored code region). 

2.3 Micro-patching: Automated Response 
Automating a response strategy is difficult, as it is of- 

ten unclear what a program should do in response to an 
error or attack. A response system is forced to anticipate 
the intent of the programmer, even if that intent was not 
well expressed or even well-formed. Ideal computing sys- 
tems would recover from attacks and errors without human 
intervention. However, the state of the art is far from ma- 
ture, and most existing response mechanisms are external 
to the system they protect. Some simply crash the process 
that  was attacked (and do nothing to fix the fault, thereby 
ensuring that  the system is still vulnerable when it is re- 
booted). Other systems may restrict network connectivity 
or resource consumption. S W  includes the ability to rewrite 
a vulnerable sequence of instructions without recompilation. 
In effect, S W  supports the ability to generate and insert 
a micro-patch into the protected application's instruction 
stream. 

This mechanism is general enough that a wide variety 
of response techniques can be implemented, such as: data 

121 



structure repair [6], failure oblivious computing [26], and e r -  

r o r  virtualization [29]. Compilers can be augmented to pro- 
vide "alternative execution paths" to some code sections. 
These alternatives can be driven by explicit  program code, 
programmer annotation, purely compiler-generated, taken 
from profiling information for the  application, or gathered 
by the processor itself from previous runs of the  same code 
block as a form of machine learning. 

The rewritten instruction stream can be propagated to the 
code section of the process address space to protect  future 
execution. The new instruction sequence could be applied 
(with OS support) to the  on-disk b inary  as a rudimentary 
patch. The question of whether or not to propagate the 
micro-patch out to the process memory space or even to disk 
is a high-level policy question. One difficulty with automati-  
cally propagating the patch (beyond the current invocation) 
is tha t  attacks and faults are relatively rare, and executing 
the micro-patch for all subsequent normal requests would 
needlessly change the normal operat ion of the software. One 
solution is to have a prologue to all micro-patches such that  
they are conditionally executed based on site policy (as set 
by an administrator who knows the  needs of the environ- 
ment). Another solution is to have the micro-patch condi- 
tionally executed based on markers seen in the environment. 
For example, at the moment of patching, a software-level 
monitor can take a snapshot of impor tan t  s ta te  (network 
packets seen, important  da t a  structures) ,  and if those con- 
ditions are recreated, the monitor  can set a flag so tha t  the 
micro-patch does execute. 

Micro-patching via instruction s t ream rewriting can be 
seen as a type of automatic  diversity mechanism. While  au- 
tomated diversity is a good protection mechanism, we argue 
that  micro-patches should be recorded somewhere (even if 
they are not automatically propagated to the process image 
or binary); failing to do so can make it difficult to debug an 
application, as there would be no exact  record of what  code 
the processor generated and executed. 

There are many pitfalls to automat ing a response. One in- 
teresting possibility is for an at tacker to implement a covert 
channel by continuously causing SVV to flush the  current set 
of instructions and replace it with a micro-patch. Such an 
at tack would seem to be difficult, as the  current execution 
context (and thus, presumably the  a t tacker ' s  code) would be 
replaced with completely different instructions,  but  it  not at  
all outside the realm of possibility. The  micro-patch itself 
would have to cause an externally measurable phenomena 
for the consumer of the covert channel. 

3. RELATED WORK 
SVV draws on ideas from computer  architecture, fault- 

tolerant computing, and computer  security. We examined 
some hardware support  [30] for an x86 emulator (STEM) 
that  supervises the  execution of vulnerable code slices [29]. 
The approach of SVV is akin to systems [28, 25, 23] tha t  uti- 
lize a secondary host machine as a sandbox or instrumented 
honeypot: work is offioaded to this host, thus minimizing ex- 
posure to the primary host. The  work most closely related 
to ours is Oplinger and Lam's  proposal [22] for using TLS to 
improve software reliability. Their  key idea is to execute an 
application's monitoring code in parallel  with the primary 
computation and roll back the computat ion "transaction" 
depending on the results of the  monitoring code. 

Evers et al. [7] investigate the  predictabi l i ty  of branches 

and provide an overview of various branch prediction schemes 
that  have been proposed to ameliorate the cost of incor- 
rect predictions. Wang et a/. [33] explore an interesting re- 
sult: about  50% of mispredicted branches do not affect cor- 
rect program behavior. This result is encouraging because 
it offers evidence tha t  our previously proposed macro-level 
remediation technique of error  v i r tua l i za t ion  (dynamically 
returning early from the  current function context with an 
extrapolated error code) holds at  the  micro-level also. 

3.1 Secure Hardware 
Incorporating security mechanisms in hardware has t radi-  

tionally been limited to providing implementations of cryp- 
tographic algorithms. McGregor and Lee [20] also inves- 
t igate protecting cryptographic secrets. Of a more focused 
scope is Lee et al. 's proposal [16] of a hardware-based return 
stack (SRAS) to  frustrate buffer overflow attacks. Suh et al. 
[32] propose hardware extensions to  thwart  control-transfer 
attacks by tracking "tainted" input  da t a  (as identified by 
the OS). If the  processor detects the  use of this tainted da ta  
as a jump address or an executed instruction, it  raises an ex- 
ception. Kuperman et al. [15] has a good overview of buffer- 
overflow related at tacks and discusses some hardware-based 
approaches to protection, including SRAS (and related vari- 
ants) and their  own SmashGuard proposal. 

Even contemporary approaches to this topic, such as the 
T C P A / T C G ,  only provide tamper-resis tant  hardware mod- 
ules to store secrets. Recent efforts such as Cerium [4] 
and XOM [18, 17, 19] focused on providing a trusted com- 
puting base (TCB) and tamper-res is tant  architecture tha t  
can at test  to the  validity of a part icular  computation [10]. 
In the case of execute-only memory (XOM), the hardware 
performs encrypted program execution and makes several 
strong security claims. 

While TCG does offer some measurement functionality 
[27], the s ta te  of the art  in this  field tries to leverage these 
stored secrets for at testat ion,  and at testat ion is typically 
used for the purposes of DRM. Such uses provide a mecha- 
nism for a remote enti ty to control local execution. There 
are no mechanisms for the  local enti ty to systematically pre- 
vent and control a remote ent i ty from executing local code. 
Our work on SVV is an a t t empt  to provide a unified model 
for the supervision and online patching of machine instruc- 
tions. 

The Copilot system [24] by Petroni  et al. is one expression 
of hardware security aimed at  integrity protection. Much 
like the Tripwire 1 software, the  goal of Copilot is to make 
sure tha t  impor tant  da t a  has not been corrupted. However, 
Copilot performs rootkit  intrusion detection by monitoring 
changes to a host 's  kernel tex t  segment and related da ta  
structures. The current implementat ion is based on a PCI 
card that  monitors the host 's  main memory via DMA (with- 
out the host kernel 's knowledge) and has a secure commu- 
nications link to  an adminis trat ive reporting station. 

3.2 Execution Supervision Environments 
Virtual machine emulation of operat ing systems or proces- 

sor architectures to provide a sandboxed environment is an 
active area of research. Vir tual  machine monitors (VMMs) 
are employed in a number of securi ty-related contexts, from 
autonomic patching of vulnerabili t ies [28] to intrusion de- 
tection [9]. MISFIT [31] is a tool tha t  constructs a sand- 

lhttp ://tripwire. org/ 

122 



box by instrumenting applications at  the  assembly language 
level. Program shepherding [14] works on uninstrumented 
IA-32 binaries and validates branch instructions to prevent 
transfer of control to injected code. Intel 's  Vanderpool and 
AMD's Pacifica designs are forward-looking architectures 
that  provide support for hypervisors and VMMs. These de- 
signs provide the mechanisms we wish to use for the support  
and invocation of the Virtual  Emulator  for more high-level 
monitoring. 

Other protection mechanisms include compiler techniques 
like Stackguard [5] and safer libraries, such as libsafe and lib- 
verify [1]. Tools exist to verify and supervise code during 
development or debugging; of these tools, Purify 2 and Val- 
grind [21] axe popular choices. Valgrind has been used by 
Barrantes et aL [2] to implement instruction set randomiza- 
tion (ISR) to protect against code insertion attacks. Other 
work on ISR includes [13], which employs the x86 emulator 
Bochs 3. The implementation of ISR techniques in hardware 
would eliminate most of their performance impact.  

In work inspired by the ideas fundamental to artificial sys- 
tem diversity [8], Holland, Lira, and Seltzer [12] introduce 
the idea of automatically generating randomized architec- 
tures to support system security. Since synthesizing the 
hardware for such every such generated architecture is an 
untenable approach, they recommend using VMMs to pro- 
vide the necessary execution environments. 

3.3 Recovery and Repair 
A key feature of SVV is the use of instruction stream re- 

writing as a basic building block for an adaptive response 
mechanism. Other recent work that  examines repair mech- 
anisms includes failure-oblivious computing [26] and da ta  
structure repair [6]. Candea and Fox propose a different 
approach: design software systems such tha t  they employ 
crashing as the normal halting mode and use recursive mi- 
croreboots to safely restart  [3]. We propose adding the ca- 
pability to rewrite local code slices in the  processor itself as 
a general tool for reactive capabilities. 

4. CONCLUSIONS 
We have described the architectural components needed 

to  support a new execution model for secure and reliable 
computing: speculative virtual verification (SVV). This model 
complements previous work on trustworthy and t a m p e r -  
resistant computing architectures but  is not meant as a re- 
placement for the capabilities such systems provide. There 
is a multitude of challenging problems to be addressed in 
the  construction, testing, and deployment of SVV. We in- 
tend to s tudy these issues and implement SVV in a variety of 
execution environments, including x86 emulators, the Java 
Virtual Machine, and simulators for the MIPS and ARM 
architectures. 

There is no silver bullet for system security, and SVV is 
not meant to  address all possible attacks. However, we be- 
lieve that  given the current s tate of the arms race between 
attackers and system designers a paradigm shift is neces- 
sary. We advocate modifying general-purpose processors to 
(a) provide implicit supervision functionality, (b) export  a 
policy-driven monitoring mechanism, and (c) provide the 

2http ://www. rational, tom~products~purify_unix/ 
index, j tmpl 
3http://bochs. sourceforge, net/ 

foundation for an automat ic  response capabil i ty via instruc- 
t ion stream rewriting. 

Acknowledgments 
Few papers can claim to be the product  of one mind. In 
this case, the authors would like to thank the anonymous 
reviewers for providing an example of how high-quaiity the 
peer-review process could be. We would also like to thank 
the attendees of NSPW 2005 for providing thoughtful com- 
ments on the interesting aspects of S W ,  praise for the novel 
parts, and gentle criticism for the incomplete parts. Finally, 
Carrie Gates and Bob Blakley deserve special recognition 
for serving as scribes for not just  this paper,  but  the whole 
workshop. 

5. REFERENCES 
[1] A. Baratloo, N. Singh, and T. Tsal. Transparent Run-Time 

Defense Against Stack Smashing Attacks. In Proceedings of 
the USENIX Annual Technical Conference, June 2000. 

[2] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, 
D. Stefanovie, and D. D. Zovi. Randomized Instruction Set 
Emulation to Distrupt Binary Code Injection Attacks. In 
lOth ACM Conference on Computer and Communications 
Security (CCS), October 2003. 

[3] G. Candea and A. Fox. Crash-Only Software. In 
Proceedings of the 9 th Workshop on Hot Topics in 
Operating Systems (HOTOS-IX), May 2003. 

[4] B. Chen and It. Morris. Certifying Program Execution with 
Secure Processors. In Proceedings of the 9 th Workshop on 
Hot Topics in Operating Systems, pages 133-138, May 
2003. 

[5] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, 
P. Bakke, S. Beattie, A. Crier, P. Wagle, and Q. Zhang. 
Stackguard: Automatic Adaptive Detection and Prevention 
of Buffer*Overflow Attacks. 1998. 

[6] B. D'emsky and M. C. Rinard. Automatic Data Structure 
Repair for Self-Healing Systems. In Proceedings of the 1 *t 
Workshop on Algorithms and Architectures for 
Self-Managing Systems, June 2003. 

[7] M. Evers, S. J. Patel, and Y. N. Part. An Analysis of 
Correlation and Predictability: What Makes Two-Level 
Branch Predictors Work. In Proceedings of the 25 th 
International Symposium on Computer Architecture, June 
1998. 

[8] S. Forrest, A. Somayaji, and D. Ackley. Building Diverse 
Computer Systems. In Proceedings of the 6 th Workshop on 
Hot Topics in Operating Systems, pages 67-72, 1997. 

[9] T. Garfinkel and M. Rosenblum. A Virtual Machine 
Introspection Based Architecture for Intrusion Detection. 
In 10 th ISOC Symposium on Network and Distributed 
Systems Security (SNDSS), February 2003. 

[10] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS 
Support and Applications for Trusted Computing. In 
Proceedings of the 9 th Workshop on Hot Topics in 
Operating Systems, pages 145-150, May 2003. 

[11] J. L. Hennessy and D. A. Patterson. Computer 
Architecture: A Quantitative Approach. Morgan Kaufmann 
Publishers, 3 rd edition, 2003. 

[12] D. A. Holland, A. T. Lira, and M. I. Seltzer. An 
Architecture a Day Keeps The Hacker Away. In 
Proceedings of the Workshop on Architectural Support for 
Security and Anti-Virus (WASSA), October 2004. 

[13] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering 
Code-Injection Attacks With Instruction-Set 
Randomization. In l Oth A CM Conference on Computer 
and Communications Security (CCS), October 2003. 

[14] V. Kiriansky, D. Bruening, and S. Amaxasinghe. Secure 
Execution Via Program Shepherding. In Proceedings of the 
11 th USENIX Security Symposium, August 2002. 

123 



[15] B. A. Kuperman, C. E. Brodley, H. Ozdoganoglu, T. N. 
Vijaykumar, and A. Jalote. Detection and Prevention of 
Stack Buffer Overflow Attacks. Communications of the 
ACM, 48(11):51-56, November 2005. 

[16] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi. 
Enlisting Hardware Architecture to Thwart Malicious Code 
Injection. In Proceedings of the International Conference 
on Security in Pervasive Computing (SPC-~O03), Lecture 
Notes in Computer Science, Springer Verlag, March 2003. 

[17] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz. 
Specifying and Verifying Hardware for Tamper-Resistant 
Software. In Proceedings of the IEEE Symposium on 
Security and Privacy, 2003. 

[18] D. Lie, C. Thekkath, and M. Horowitz. Implementing an 
Untrusted Operating System on Trusted Hardware. In 
Proceedings of the 19 th ACM Symposium on Operating 
Systems Principles (SOSP), October 2003. 

[19] D. Lie, C. Thekkath, M. Mitchell, and P. Lincoln. 
Architectural Support for Copy and Tamper Resistant 
Software. In Proceedings of the 9 th International 
Conference on Architectural Support .for Programming 
Languages and Operating Systems (ASPLOS IX), 2000. 

[20] J. P. McGregor and R. B. Lee. Protecting Cryptographic 
Keys and Computations via Virtual Secure Coprocessing. 
In Proceedings of the Workshop on Architectural Support 
for Security and Anti-Virus (WASSA), October 2004. 

[21] N. Nethercote and J. Seward. Valgrind: A Program 
Supervision Framework. In Electronic Notes in Theoretical 
Computer Science, volume 89, 2003. 

[22] J. Oplinger and M. S. Lain. Enhancing Software Reliability 
with Speculative Threads. In Proceedings oJ the 10 th 
International Conference on Architectural Support for 
Programming Languages and Operating Systems(ASPLOS 
X), October 2002. 

[23] H. Patil and C. N. Fischer. Efficient Turn-time Monitoring 
Using Shadow Processing. In Proceedings of the 2 nd 
International Workshop on Automated and Algorithmic 
Debug9ing, 1995. 

[24] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. 
Copilot - a Coprocessor-based Kernel Runtime Integrity 
Monitor. In 13 th USENIX Security Symposium, pages 
179-194. 

[25] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. 
On-Line Intrusion Detection and Attack Prevention Using 
Diversity, Geurate-and-Test, and Generalization. In 
Proceedings of the 36 th Hawaii International Conference 
on System Sciences (HICSS), 2003. 

[26] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and 
J. W Beebee. Enhancing server availability and security 
through failure-oblivious computing. In Proceedings of the 
6 th Symposium on Operating Systems Design and 
Implementation (OSDI), December 2004. 

[27] It. Sailer, X. Zhang, T.  Jaeger, and L. van Doorn. Design 
and Implementation of a TCG-based Integrity 
Measurement Architecture. In 13 th USENIX SecuriVy 
Symposium, pages 223-238. 

[28] S. Sidiroglou and A. D. Keromytis. A Network Worm 
Vaccine Architecture. In Proceedings of the IEEE 
International Workshops on Enabling Technologies: 
InIrastrueture for Collaborative Enterprises (WETICE), 
Workshop on Enterprise Security, pages 220--225, June 
2003. 

[29] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. 
Keromytis. Building a Reactive Immune System for 
Software Services. In Proceedings of the USENIX Annual 
Technical Conference, pages 149---161, April 2005. 

[30] S. Sidiroglou, M. E. Locasto, and A. D. Keromytis. 
Hardware Support For Self-Healing Software Services. In 
Proceedings of the Workshop on Architectural Support for 
Security and Anti-Virus (WASSA), pages 37-43, October 
2004. 

[31] C. Small and M. Seltzer. MISFIT: A Tool for Constructing 

Safe Extensible C + +  Systems. IEEE Coneurreney, 
6(3):33-41, 1998. 

[32] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure 
Program Execution via Dynamic Information Flow 
Tracking. In Proceedings of the 11 th International 
Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS-XI), October 
2004. 

[33] N. Wang, M. Fertig, and S. J. Patel. Y-Branches: When 
You Come to a Fork in the Road, Take It. In Proceedings of 
the 12 th International Conference on Parallel Architectures 
and Compilation Techniques, September 2003. 

124 




