
Empirical Privileg e Profiling

ABSTRACT
T h e well-known Principle of Least Privilege states that a
program should run with the minimal authority that it requires to
get the job done, and no more. However, application of the
principle has been left to software developers, developers of
installation procedures, and system administrators with few tools
to assist them. How much privilege does a given program need?
How do you know if you write a program that uses too much
privilege or install a program with too little? Empirical privilege
profiling provides a partial answer to this question by tracking a
program's actual use of resources, which can be used as a guide
during program development and installation, as well as for
detecting intrusions and providing assurance for mobile code. In
this paper, we introduce the concept of dealing with privilege as
a measurable quantity, rather than in terms of a "rule of thumb."

1 INTRODUCTION
The Principle of Least Privilege [1] states that a program should
run with the minimal authority that it requires to get the job
done, and no more. Programs, sites, and organizations that
observe this principle help to minimize the amount of damage
that can be caused by errors in a program or attacks that subvert
it. For thirty years, this principle has served as a guide to
program and system developers. However, it is difficult to
translate this principle into practice. In general, a program will
always have more privilege than it needs: if it has less, it will
fail, people will be ale~ed, and the program privilege will be
increased (perhaps more than necessary). By contrast, it
typically goes unnoticed when a program has too much
privilege. Worse, developers often take shortcuts in order to
ease implementation, debugging, and testing, sometimes
resulting in poor default installation parameters and hidden
backdoors in programs. These can be exploited by either insider
or extemal attackers.

NSPW 2005 Lake Arrowhead CA USA
© 2006 ACM 1-59593-317-4/06/02....$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Carla Marceau and Rob Joyce
ATC-NY

33 Thomwood Dr. Suite 500
Ithaca, NY 14850
+1 607.257.1975

carla@atc-nycorp.com
Many years ago, one of the authors worked on the Multics
project at MIT. As code was developed, team members
specified access requirements for modules of the operating
system, reasoning carefully about what access was needed by
whom. When the system was finally tested, it failed repeatedly,
because few modules had sufficient privilege to do their work.
In order to get the system running, the programmers changed all
access control lists to give sweeping access rights to f i les--
including even "execute" permission on data files! Although
this occurred before the formulation of the principle of least
privilege--and may have contributed to i t -- i t illustrates the
difficulty of setting privilege appropriately without tools.

We have begun an effort to create a system that can empirically
approximate the least privilege required by a program. We
assume that the program is a black box in the sense that we
cannot examine and instrument the source code. (Some recent
papers [2, 3] distinguish between white-box, gray-box, and
black-box based on whether the analysis delves into program
source or binary, examines artifacts such as the program stack,
or can look only at kernel calls. By "black-box," we simply
mean that source code is not available and that analysis focuses
on execution, not on program artifacts.) The general approach is
to run many instances of the program, typically with multiple
Users, multiple hosts, and multiple sites, and to record the
privileges actually exercised by all these instances of the
program. This information is then collected to create an abstract
composite privilege profile for the program. Any single
program instance may well use less privilege than the composite
profile; however, the composite profile specifies a reasonable
minimum, and quite possibly less privilege than that granted to
the program by the default installation.

Empirical privilege profiling is potentially of use in several
areas. First, groups of users can profile the privileges that a
given application actually exercises when they use it; the profile
for a group that uses the application for a limited purpose or in a
restricted way could be quite different from the profile of a
group of, say, undergraduate students. System administrators
could use that information to set up the program's access to
resources. Second, program developers could profile the
program's use of resources and look for anomalies that indicate
poor or excessive use of resources. We have noticed such
anomalies in programs that we analyzed. Tracking resources
used by a program could provide a rich new data stream for
intrusion detection.

A na'fve approach to profiling program privilege would be to list
the raw privileges exercised by the program, such as "read file
c : \ f o o \ b a r \ b a z " . However, raw privileges used in specific
instances of a program are a poor indicator of future use. It is
necessary to generalize over a wide range of individual
computers, file systems, and sites; raw file names (and other

111

site-specific privilege information) are not acceptable. To
collect abstract program privileges it is necessary to correlate
privileges exercised by the same program on different computers
at different sites and create an abstraction of each privilege.

Further, a naYve approach to profiling program privilege would
collect a set of privileges exercised by the program. However, a
simple set does not provide enough information for correlating
privileges across distinct program instances. A program may
write to file A and file B, for example, where file A is a file
specified by a user, while file B is a file private to the program,
whose integrity is crucial to correct operation. Or file A might
be a file that is only read by the program, while file B is one that
it writes. In correlating privilege exercised by two programs, it
is important to correlate the "same" privileges: A~ with A2
(instances of A written by programs Pi and P2, respectively) and
Bi with B2 (similar instances of B).

Our approach to privilege correlation is to associate each
exercise of privilege with a point in the program. A point in the
program that reads a preferences file, for example, will read a
preferences file in every instantiation of the program at every
site. Therefore, we construct a model of the program's
behavior; we then associate each exercise of privilege with a
program point in the model. The intuition is that the set of
program points that access a given resource captures the
semantics of the resource/?ore the point o f view of the program.

To investigate the feasibility of program privilege profiling, we
have instrumented Windows programs to collect data about their
use of resources, implemented our approach in a simple test bed,
and conducted an experiment to create an abstract profile based
on several instances of Microsoft Notepad. In this paper, we
report on the results of this 'preliminary investigation of
empirical privilege profiling.

In the next section of this paper, we present a model of program
privilege, with particular application to Microsoft Windows.
Section 3 describes an experiment we performed to validate our
concept of privilege abstraction. In Section 4, we describe how
the privacy of collaborators can be protected and how the system
can protect itself from malicious inputs. We close with a
discussion of the results obtained to date.

2 A MODEL OF PROGRAM
P R I V I L E G E

A privilege profile for a program consists of a set of privileges
that the program must have in order to function properly.
Intuitively, a privilege is a resource together with a set of access
rights on that resource.

An individual exercise of privilege is a pair <resource, {access
right}>. For example, the right to read file Foo in Windows XP
may be represented as <Foo, {FILE_READ_ACCESS}>. The
bean of the privilege profile is a set of privileges.

2.1 Abstract privileges
We distinguish between abstract and concrete privileges; more
precisely, the distinction is between abstract and concrete
resources. A concrete resource is a file, registry key, or other
resource that the program accesses by a specific name such as a
pathname. An abstract privilege is the use of an abstract

resource--that is, an abstraction of concrete resources.
Intuitively, an example of an abstract resource might be "the log
file for the application" or "a new document that the application
creates at the request of the user."

In order to create abstractions for concrete privileges used in
many instances of an application, we must correlate instances of
the "same" concrete privileges. The central hypothesis of this
effort is that such correlation is possible using the program
points--that is, places in the c o d e l a t which privilege is
exercised. Specifically, we reason as follows:

A concrete resource that is an instance of a given abstract
resource will be accessed at the same program points as
other instances of that abstract resource

Therefore, by comparing the program points at which concrete
resources are used, we can abstract from those instances to
an abstract resource

Figure 1 shows an abstract resource, identified by the program
points that access it.

O-,

Prc~ram O--

&

Figure 1. An abstract resource, identified only by the way it
is used in the program

Because program points are central to this line of reasoning, a
privilege profile also includes the program points at which each
(abstract) privilege is exercised.

In the following sections, we further explore the concepts of
program points, resources, and the privilege profile. A precise
definition of privilege depends on the operating system, which
defines the resources of a computing system as well as the
applicable set of access rights. In Section 2.5, we describe how
these concepts ~e implemented in Windows.

2.2 Program points
It remains to make precise our intuitive notion of "program
point," which should be tied both to the application program to
be profiled and to observations of program behavior at run-time
(enabling us to peek inside the "black box"). We capture these
by defining a program point to be a pair <pc, op> consisting of
the application program counter (adjusted for the program's
location in memory) and the kernel operation that requires
privilege. Intuitively, the application program counter captures
what the program thinks it is doing with the resource. The
kernel operation captures its use of the resource and the
privileges required for that use. By monitoring a process's
kernel calls and associating them with the program counter, we
can capture program points.

Note that because modem programs in general make extensive
use of dynamically loaded libraries (DLLs, also called shared
objects in UNIXrM), a single application program counter
typically causes many kernel operations to be invoked. We have
observed dozens of different kernel operations associated with a

112

single application program counter. Thus, the program counter
alone does not adequately characterize a program poinL

2.3 Constant and variable resources
Programs access some resources for their own use and others on
the user's behalf. A constant or program-specified resource is
one that the program "knows" about, such as a configuration
file, a home directory, or a DLL that the program needs to
execute. The exact pathname of a configuration file may vary
between sites, for example based on the value of an environment
variable. Nevertheless, the program typically expects and
knows how to find this resource. At one or more points in the
program, for example, the program will read, execute, or write a
"constant" file resource; when the program accesses the file, it is
always from these points. A (resource type-specific) invariant
property is associated with a constant resource; for example,
every instance of a constant file resource will have the same
filename (last component of the pathname). By using additional
information, such as environment variables or strings embedded
in the executable, we can specify invariant properties more
accurately and completely.

I am the configuration file, a J
oonstant. "l'he program always
checks me first. My name is I

[co~ifig.inl. _ • J

Iama parameter to
the program. It edits

I me on the user's
J behalf.

Figure 2. Constant and variable file resources, accessed at
various points in the program

By contrast, a variable or parametric resource is one that the
program has no a priori notion of. For example, the user may
ask the program to append its output to a given file. In this case,
the pathname and content of the file have no meaning to the

• program; any file supplied by the user will do. We call this a
variable resource because it typically takes on different values
for different executions of the program. It can even take on
multiple values within a single execution. This situation is
shown in Figure 2, which depicts the program's use of a
configuration file at two program points and of two variable
resources, both used in the same way. Other variable resources
may be determined by environment variables or the system
configuration. For example, a file dialog box may always access
the user's home directory.

Distinguishing between constant and variable resources is
important in order to accurately portray the program's use of
resources. Variable resources are like parameters to a function:
a variable can take on many distinct values (concrete resources),
even within the same instantiation of the program. IfNotepad is
used to edit three files, each file corresponds to the same abstract
variable resource. Advice to a system administrator about the
access required for these resources must be couched in general
terms: "Any file edited in Notepad requires " By contrast,
each constant resource can be named more or less accurately:

"The initialization file, which is in the application's home
directory and is named ' f o o . i n i ' requires "

The distinction between constant and variable resources can also
be exploited for correlating privileges between different
executions of a program. A program's initialization file, for
example, always has the same filename (local name in the
directory) and is always in the "same" place in the file system
(where "same" is typically relative to a home directory or other
parameter); correlation can exploit these invariant properties,
which can typically be found in standard formats in the program
executable. By contrast, variable data files have no a priori
similarity, other than the way in which the program accesses
them.

2.4 The privilege profile
An individual exercise of privilege is a pair <resource, {access
right}>. For example, the right to read file Foo is represented as
<FOO, {FILE_READ_ACCESS}>. The heart of the privilege
profile is a set of privileges.

In order to facilitate correlation of concrete resources, a
privilege profile records privileges together with the program
points at which they are exercised. For each resource, the
profile lists the program points that access the resource; there
may be one or more of these. For each program point, the
profile documents the access fights required for the access.

More precisely, let us denote a map (partial function) from range
R to domain D by {R => D}. Then the heart of the program
privilege profile is a map:

I Resource => {ProgramPoint =>
AceessRight } } }

In particular, note the difference between this and two maps

{Resource => ProgramPoint}
{ProgramPoint => {AccessRight } }.

A single map distinguishes, between access rights required on
two different resources, even wher~ they are accessed at the same
program point. Using two maps does not.

We can construct a profile by first running the program several
times on test data to obtain a preliminary profile. The
preliminary profile will contain some constants, some variables,
and some concrete resources that have not occurred often
enough to be categorized. As more data is collected, the EPP
profiler incrementally learns more about these resources--and
new ones that occur during the collection--and will be able to
abstract them as either constant or variable abstract resources.
We believe that we can in fact do better than that by using
environment variables and strings embedded in the binary
executable to differentiate between constant and variable
resources.

2.5 Privilege in Windows
Although the general concept of privilege profile is applicable to
any platform, the specifics depend on the operating system,
which defines the resources for which privilege is required and
the access rights that apply to them. In this research, we have
been concerned with the Windows XP operating system. In this
section, we briefly describe the Windows security model, which
we used in this effort. We believe that a model that is adequate

113

to capture privilege in Windows will suffice for more
perspicuous systems, such as Linux.

The Windows security model is more complicated than that of
UNIX. Windows distinguishes between access rights, which
apply to securable objects and are documented in access control
lists, and "privileges," such as SeDebugPrivilege (the
ability to modify the memory of another process) or
S e B a c k u p P r i v i l e g e (the ability to copy files for backup),
which control access to system resources and system-related
tasks and are therefore needed to perform privileged operations.
System privileges are assigned by administrators to user and
group accounts. In our work, we create a uniform model of
privilege by treating such Windows privileges as access rights
on a generic SYSTEM resource. In this paper, we will not be
further concerned with such special privileges, but in general
they must be considered when creating privilege profiles for
programs.

Windows defines access rights for many kinds of resources.
Persistent resources include files, directories, registry keys, and
system services (such as a service that provides access to the
Internet). Ephemeral resources include pipes, threads, inter-
process synchronization objects, access tokens (which capture
salient information about the process's owner), and many others.
We are concerned only with privileges on persistent objects.

Each type of resource is associated with a set of type-specific
access rights; for example, FILER.EAD_ACCESS is an access right
on files and directories. Type-specific rights are meaningful to
objects of a specific class; for example, KEYQUERY_VALUE
applies 'to registry keys and FEE APeEND_DATA to files and
directories. Windows also defines generic access rights
(GENERICP, EAD, GENERIC_WRITE, and GENERICEXECUTE),
which apply to all classes of objects and are mapped by the
kernel into type-specific access rights for each class of securable
object. Users can also define new resource types and new types
of access rights on them. The work described in this paper
focuses on file and directory resources. However, it applies
equally to registry keys and we believe can be extended to all
persistent resources.

Each kernel operation requires a certain set of rights to succeed.
We instrument calls to the kernel at the interface to
n t d l l . d l l [sic], which is the relatively stable and
documented interface to the Windows kernel. In some cases, the
required set of rights depends on arguments to the operation.
For example, the operation to open a file specifies requested
rights on the file; if the owner of the process does not enjoy
those rights, the operation fails)

In Windows, we define a privilege as a set o f access rights
associated with a securable object. For example, the right to
read file Foo can be represented as
<FoO,{FILE__READ ACCESS}>. 2 Access rights for a given

Many n t d l l . d l l calls to open an object also accept
MAXIMUlv~ALLOWED as a desired access; in such cases, the
rights actually required depend on the operations (e.g.,
NtWriteFile) performed on that object 's handle.

2 In general, the second element of the pair is a set of access
rights. Reading a file in Windows typically exercises five
distinct access rights.

securable object are defined by the object 's owner in a
Discretionary Access Control List (DACL) associated with the
object.

3 AN EXPERIMENT IN PRIVILEGE
ABSTRACTION

We performed an experiment to test our ideas of privilege
abstraction. Three different users each exercised Microsoft
Notepad, performing various functions for a short time, for a
total of eight "runs."

Some parameters of the experiment are shown in Table 1.
Notepad's use of resources was captured and a log of exercises
of privilege was prepared for each run. The logs were fed into a
correlation engine that attempted to correlate the runs' use of
resources by comparing program points. We required three
different concrete instances of an abstract resource to categorize
the resource as a variable or constant. In addition to program
points we used limited additional information for correlation;
specifically, we identified DLL files to the correlation procedure
as constant resources. In a practical system, invariant properties
of all constant resources could be extracted from the binary code
of the program, the DLLs it invokes, and possibly from other
sources, such as environment variables of the platform. The
invariant properties would be used to ensure that (a) no variable
resource was incorrectly categorized as a constant, and (b) no
constant (from that run) was interpreted as a variable.

Table 1. Use of file resources in eight invocations of Notepad

User

Rob
i

~gob

Test

Test

Test

Carla

Test

Log size # uses of # res.
(KB) 3 privilege used

Actions

Create new file on
3588 951 281 desktop

4042 1049 64 Create 2 files on desktop

Open (for reading) one
1966 518 56 file from command line

and one from GUI

Open file for reading,
1523 406 51 save as new file (create

file)
2148 578 54 Open 2 files for reading

and create 2 new files

Create new file and print
2476 715 65 it

Create and write file
51 20 5 from command line

Carla 3539 963 57 Read, edit, and save file

3 Log sizes are large because logs are written in XML and
expand the often-complex data structures used as arguments to
kemel calls.

114

In total, 633 concrete resources were accessed at thirteen
program counter values of Notepad. 4 Correlation identified 53
constant abstract resources (most of them DLLs) and 6 variable
abstract resources. After all eight instantiations had been
analyzed, 44 concrete resources remained unassigned.

The constant resources used by Notepad in our experiment
include DLLs and system services. (Some files, directories, and
non-DLL executables were identified as constants by our early
software, which does not make use of environment variables or
the program binary to help identify program constants. Our
preliminary analysis identified three constant executables
accessed--for reading--by one user's execution of Notepad:
explorer, tweakui, and xemacs. The last two are certainly not
Notepad program constants.)

System services, such as access to files stored on a server, are
handled by special services in Windows; services are treated as
resources, access to which is mediated by the kernel. Notepad
uses three system services: "day rpc service," wkssvc, and
srvsvc. To access the services, the process exercises
FILE:APPEND_DATA, FILE_READ_ACCESS, and

FILE_WRITE_ACCESS privileges on named pipes in order to
communicate with each system service.

The DLLs used by Notepad are shown in Table 2. DLLs were
called from many different points in the program. A single
program point can also trigger loading of a large number of
DLLs; one program point started 20 DLLs.

Table 2. DLLs called by Notepad in eight invocations

xpsp2res.dll mydocs.dll

ole32.dll rpcrt4.dll

uxtheme.dll audiodev.dll

wintrust.dli drprov.dll

setupapi.dll ntlanman.dll

riched20.dll oleaut32.dll

shel132.dli browseui.dll

comct132.dll mslbui.dll

ntshrui.dll davclnt.dll

mpr.dll shdocvw.dll

msctf.dll apphelp.dll

netapi32 advapi32.dll

wininet.dll kerne132.dli

userenv.dll clbcatq.dll

cscui.dli nview.dll

The variable resources--all files and directories--used by
Notepad are summarized in Table 3. Six abstract resources are
identified by the values in the first two columns of Table 3.

The "PC values" in Table 3 are the last four digits of the hex
representation of the program counter at the point of return from
the call. The table records the number of concrete files that
contribute to the abstract resource. For example, four directories
from four different invocations of Notepad contributed to the
fourth resource of Table 3:

C: \documents and settings\rob\desktop
C:\documents and settings\rob\desktop
C:\some_dir\new files here
C: \documents and settings\carla\My documents

In Table 3, we estimated how Notepad used each resource,
based on what users were doing in the experiment.

Table 3. Variable resource use by Notepad

PC # How resource is
values Access rights files ~ used by Notepad

DELETE
FILEAPPEN[~DATA

2CC6 FILE READ ATTR

4A61 FILE_WRITEACCESS 8 Files created using
4EDE FILE ..WRITE_ATTR Notepad
4C30 FILE WPJTE EA

READ CONTROL
SYNCHRONIZE

FILE_READACCESS

2683 FILE_REAI~ATTR Files opened and
2659 FILE READ EA 5 read using Notepad
2DB0 READ_CONTROL (but not saved)

SYNCHRONIZE

FILEREAI~ACCESS Files in same
2CC6 SYNCHRONIZE 4 directory as file
2D89 traversed by

Notepad
FILEREADACCESS

2CC6 FILE READ ATTR
- - Directory in which 2AC3 FILE READ EA
- - Notepad opened and

2D89 FILE WRITE ACCESS
- - saved files 4EDE READ CONTROL

SYNCHRONIZE

FILE_REAI~ACCESS

FILE READ ATTR Directory in which 2CC6 - -
2D89 FILE READ_EA 8 Notepad opened file

READCONTROL (but did not save)
SYNCHRONIZE

_ _ Directory traversed 2D89 FILE READ ACCESS 3
SYNCHRONIZE in file chooser (?)

4 This underestimates the number of resources actually accessed.
The Notepad execution included one or more additional threads
whose execution began in a DLL. At least one thread managed
the GUI; it required many more DLLs and other privileged
operations. In the interest of focusing on the most important
aspects of our problem, we omitted those threads from our
analysis.

Correct assignments. Of the 53 constants identified by
correlation, 49 were correctly identified. All six variable
resources were correctly identified, representing from three to
eight distinct files or directories each.

Variables identified as constants. Four resources that clearly
are instances of variables were identified as constants by our
algorithm. Two or three others (.exe files) are probably
variables, yet they happened to occur in many of our runs, due to

115

the small number of test sites. Mis-assignments occurred, for
example, when common directories (e.g., " e : \ D o c u m e n t s
a n d S e t t i n g s \ A l l U s e r s ") occurred in almost every
run. 5 These mis-assignments could be avoided by identifying
the invariant properties of constants in advance; static analysis
of the program together with environment variables should be
sufficient to identify almost all constants and effectively
eliminate this type of mis-assignment.

Constants identified as variables. None.

Resources that the algorithm was unable to classify. The
algorithm was unable to identify 44 concrete resources of the
633 that it encountered, due to insufficient evidence. For
example, only one run used the printing function, which invokes
DLLs not otherwise used; the algorithm therefore lacked enough
evidence to classify them. In practice, we would expect that at
the beginning of privilege profiling, there would be many
unclassified resources, but that after a while very few would
remain.

4 PROTECTING COLLABORATOR
PRIVACY AND DETECTING
INCORRECT INPUTS

We now consider how to protect the privacy of collaborators
that provide input to the profile and to protect the profile from
malicious inputs.

4.1 Protecting collaborator privacy
The privilege profile contains a list of resources, with the
privileges that are required for each resource. The potential
threat to privacy is that the names of resources could reveal
information about the collaborator's site that is not intended to
be public. For example, the path name of a file exposes
information about the structure of the local file system. To a
lesser extent, the full path name of a registry key can provide the
same information. We would argue that other resources are
much tess likely to betray sensitive information. Of the various
Windows resource classes, only file names and registry key
names contain potentially sensitive information.

We argue that first, little or no information need be collected for
constant resources, since the resource can be located using
invariant properties that can already be present in the profile.
Second, little information is needed for variable resources, since
particulars about a resource (such as pathname) are not relevant
to the program and can be ignored. Third, it will often be
possible to express invariant properties in terms of environment
variables or the values of registry keys.

However, in some cases it may be desirable to collect
information about some resources, for example to establish a
relation between resources (such as several files located in the
"home" directory of an application). We argue that this can be
done without jeopardizing collaborator privacy, since our only

5 It can be argued that c : \ D o c u m e n t s a n d
S e t t i n g s \ A l l U s e r s should be considered a constant
resource, as it is the value of the environment variable
%ALLUSERSPROFILE%.

concern during correlation is to check for the appearance of the
same strings in path names. The key idea is to hash each
element in a path name. The hashes can easily be compared for
equality, while the original path names cannot be re-computed
from the hashes.

Consider the following approach.

In the profile, each constant element is represented by a hash
value. The profile might contain partial path names for constant
file and registry key resources, as described above (see Section
2.3). This information is distributed to each collaborator site.
The partial path names identify the constant elements of the
pathnames and elide the variable elements. At collaborator
sites, local file path names are hashed element-wise and
compared with the (hashed) names in the profile. If a match is
found, the file corresponds to a constant resource in the profile;
there is no need to send any path name to the EPP central site.

Information about variable resources is also sent to collaborator
sites. This information does not include path names, since such
names are not meaningful. Instead it includes, for each variable
resource, the set of program points (which implies a set of
access rights) at which the variable is accessed. If a program
resource is accessed at the same set of program points, it is
considered an instance of the variable resource. Again, there is
no need to send information about the resource to the EPP
central site.

If the file access pattern does not match any constant or variable
resource in the profile, the path name can be sent to the EPP
central site, hashed element-wise, together with information
about the program points at which the file was accessed. The
element-wise hashing protects the path name from possible
attempts to extract information about the local system.

4.2 Malicious and incorrect inputs
There is a danger that malicious collaborators will provide
incorrect information, either to vandalize the system or to trick it
into attributing excessive privilege to a target program.

Any defense against malicious collaborators must rely on the
assumption that there are very few of them compared with the
total number of collaborators. By requiring corroboration for
new privilege requirements from alternative sites and users, we
can avoid premature acceptance of spurious inputs.

What kind of incorrect inputs can occur'? The malicious user
can attempt to introduce new program points and new constant
resources. He can also introduce new access rights on constant
or variable resources. We treat each of these threats in turn.

First, the user can attempt to introduce a new program point that
is not in the program. Introduction of new program counter
values can be checked against the program binary. Introduction
of new ntdll operations for a given program counter value is
discussed below.

Second, the malicious user can introduce a new constant
resource (for example, access to a protected system file or a
confidential personnel file belonging to a user). If we exploit
the fact that constants must appear in the program binary, then
this threat is extremely limited.

116

Third, the user can attempt to introduce new access rights on a
constant or variable resource. Because we identify resources by
the set of program points that access them and required access
rights are determined by the ntdll operation (part of the program
point), this requires introduction of a new program point for the
resource. To defend against this threat, we can require that each
program point in the profile be corroborated by N collaborators,
where N can be a small absolute number or a percentage of the
number of collaborators. The former is probably preferable,
since unusual exceptions may result in rare program points
being reached.

In the limit, it may prove difficult to distinguish in the privilege
profile between extremely rare---but correct and benign--uses
of privilege and the effect of concerted attacks on the profile. It
remains to be seen what type of challenges arise in practice.

5 RELATED WORK
Program behavior profiles have been an important topic in
anomaly-based intrusion detection, since they can be used to
detect buffer overflows and other exploits that cause a program
to behave in novel and usually undesirable ways. An accurate
and parsimonious representation of program behavior is based
on traces of its calls to the operating system kernel [4-6]. Our
program profiles are coarser, in the sense that we are concerned
only with their use of resources; many changes to the program
code, including changing the order of calls, will be reflected in
kernel call traces but be invisible to our method. Our profiles
also require instrumentation of the program itself (to obtain
program points), not just the interface to the kernel. On the
other hand, profiles that focus on resource usage have the
potential to be exceptionally parsimonious while still capturing
the essence of the program's security implications.

Koved et al. [7] have collected information about a Java
program's exercise of privilege. [7] is based on static analysis,
but they are also working on empirical analysis, which is
applicable to a wider range of languages. Inoue ([8], Ch. 4) uses
an empirical approach in support of dynamic sandboxing for
Java programs. Both [7] and [8] express privileges in terms of
Java's convenient Permission class; our concept of privilege is
useful when dealing with privileges defined by other platforms.

Anita Jones's thesis [9] provides a model for the distinction
between constant and variable resources (or "program" vs.
"user resources); Jones identified program-related resources in
calls to the operating system. More recently, Ford [10] has used
resource "ownership" as a criterion in intrusion detection.

6 DISCUSSION
We have shown that it is possible to collect information about a
program's exercise of privilege from a variety of users and to
produce an abstract profile of the program's use of resources.
Such a profile could be used for program testing (avoiding
unintended use of resources), program installation (establishing
correct privileges for privileged programs), and intrusion
detection (detecting anomalous use of resources).

Using empirical privilege profiling for intrusion detection is
subject to the usual caveats that apply to any anomaly detection
technique: detecting anomalies requires training, training takes

time, and during training the system is unguarded. By using a
large number of sites for training--which abstract resources
supportmthis time can be minimized. Further, administrators
can observe that the program exercises excessive privilege and
investigate further. Another frequent objection to empirical
approaches is that empirical profiles are typically incomplete,
since rare but harmless behaviors are excluded even after
extensive training. On the other hand, such profiles also exclude
rare but possibly harmful behavior, such as the exercise of back
doors. We believe that rare false positives against a mature
profile do not pose a serious problem.

Distinguishing between constant and variable resources makes it
possible to monitor the resources that the program accesses on
the user's behalf and detect insider attacks. If the set of those
resources can be characterized for any one user, it might be
possible to detect the anomalous--and possibly unauthorized--
use of privilege. In this context, one might wish to use
optimistic access control [11], in which questionable attempts to
access resources (in this case, novel accesses) are permitted but
logged for later analysis.

Y'et another possibility is for a software provider to provide
clients with a privilege profile for the software, with the
guarantee that it includes all privileges required by the program.
At run-time, the client can perform privilege enforcement in a
manner analogous to model carrying code [12, 13], that is,
prohibit any access to the resources that exceeds the profile.

In performing this work, we encountered instances of surprising
exercise of privilege by Windows programs. For example, the
commonplace Microsoft Calculator writes to the protected file
C:\WINDOWS\win.ini (to record use of Scientific mode)
only/f the user is an Administrator (the write silently fails for
users not in the Administrator group). The standard Windows
file chooser, used by Notepad as well as many other
applications, opens files with wild abandon for reasons of user
convenience--for example, to obtain a custom icon to display
next to the file name. While such practices thwart traditional
attempts at reducing program privileges, the use of tools such as
we are working on would enable system designers and
programmers to find ways to avoid them.

The basic premise of this work is that by observing a program's
actual use of resources, we can find the least privilege that it
needs. The profligate use of resources that the program does not
in some sense really need threatens that premise. We hope to be
able in the future to learn ways to distinguish vital from trivial
use of resources--for example, by observing program behavior
in restricted environments. At the very least, we can identify
and expose the problems and contribute to their solution.

7 ACKNOWLEDGEMENTS
We owe the idea of creating an empirical privilege profile to Lee
Badger, who suggested tracking a program's exercise of
privilege at a large number of user sites, possibly in the manner
of SETl@home [14]. We also wish to thank the reviewer who
suggested that empirical privilege profiling might be used for
privilege enforcement in a manner analogous to model-carrying
code. The work described in this paper was supported under
DARPA contract W3194Q-04-C-R260.

117

8 REFERENCES
Information about privileges and ntdll operations is available
from the Microsoft on-line library [15]. Microsoft does not
publish detailed information about ntdll operations. We relied
on a book that we and others have found to be reliable [16]. We
also used [17], which is not as detailed as [16], but sometimes
has additional information. We are also aware of other hacker
resources [18, 19].

References cited in this report:

[1] Saltzer, J.H. and M.D. Schroeder, "The protection of
information in computer systems," Proceedings of the IEEE,
1975.9(63): p. 1278-1308.

[2] Gao, D., M.K. Reiter, and D. Song. "On Gray-Box Program
Tracking for Anomaly Detection," in Proceedings of the
USENIXSecurity Symposium. 2004, pp. 103-118.

[3] Gao, D., M.K. Reiter, and D.X. Song. "Gray-box extraction
of execution graphs for anomaly detection," in Proceedings
of the ACM ConJbrence on Computer and Communications
Security. 2004, pp. 318-329.

[4] Forrest, S., S.A. Hofmeyr, and A. Somajayi. "A Sense of
Self for UNIX Processes," in Proceedings of the IEEE
Symposium on Computer Security and Privacy. 1996: IEEE
Press, pp.

[5] Hofmeyr, S.A., S. Forrest, and A. Somayaji, "Intrusion
detection using sequences of system calls," Journal of
Computer Security, 1998. 6(3): p. 151-180.

[6] Marceau, C. "Characterizing the Behavior of a Program
Using Multiple-Length N-grams," in Proceedings of the
New Security Paradigms Workshop. 2000. Ballycotton,
Ireland, pp.

[7] Koved, L., M. Pistoia, and A. Kershenbaum. "Access rights
analysis for Java," in Proceedings of the 17th Annual ACM
ConJ~rence on Object-Oriented Programming, Systems,
Languages, and Applications. 2002. Seattle WA, pp.

[8] Inoue, H., Anomaly Intrusion Detection in Dynamic
Execution Environments, in Computer Science. 2005,
University of New Mexico: Albuquerque NM.

[9] Jones, A.K., Protection in Programmed Systems. 1973,
Carnegie-Mellon University.

[10] Ford, R., M. Wagner, and J. Michalske. "Gatekeeper II:
new approaches to generic virus prevention," in Proceedings
of the Virus Bulletin 2004. 2004. Chicago IL, pp.

[11] Povey, D. "Optimistic Security: A new access control
paradigm," in Proceedings of the New Security Paradigms
Workshop. 1999, pp.

[12] Sekar, R., ct al. "Model-Carrying Code (MCC): a new
paradigm for mobile-code security," in Proceedings of the
New Security Paradigms Workshop. 2001. Cloudcroft, New
Mexico, pp.

[13] Sekar, R., et ai. "Model-Carrying Code: A Practical
Approach for Safe Execution of Untrusted Applications," in
Proceedings of the A CM Symposium on Operating Systems
Principles (SOSP'03). 2003. Bolton Landing, New York, pp.

[14] SETI@home, hltp://setiathome.ssl.berkelev.edu/.

[15] Microsoft Corporation, The MSDN Library,
http://msdn.microsoft.com/librarv/default.asp?url=/library/e
n-us/secauthz/securitv/privileges.asp.

[16] Nebbett, G., Windows NT/2000 Native API Reference.
2000, Thousand Oaks, CA: New Riders Publishing.

[17] NTinternals.net, Undocumented Functions for Microsoft
Windows NT/2000, http://undocumented.ntinten~als.net/.

[18] Holy Father, Hooking Windows API - Technics [sic] of
hooking API functions on Windows, www.assembly-
jourual.com/include/
getdoc.php?id=244&article = 157&mode=pdf.

[19] Ivanov, I., API hooking revealed,
http://www.codeprojecl.com/system/hooksvs.asp.

118

