
Visual Security Protocol Modeling

d. McDermott
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC 20375, USA

John.McDermott@NRL.Navy.mil

ABSTRACT
This paper argues that the existing model-driven architec-
ture paradigm does not adequately cover the visual model-
ing of security protocols: sequences of interactions between
principals. A security protocol modeling formalism should
be not only well-defined but also support event-based, com-
positional, comprehensive, laconic, lucid, sound, and com-
plete modeling. Candidate visual approaches from both the
OMG's MDA and other more well-defined formalisms fail
to satisfy one or more of these criteria. By means of two
example security protocol models, we present the GSPML
visual formalism as a solution.

Categories and Subject Descriptors
D.2.1 [Requ i r emen t s /Spec i f i ca t ions] : Languages; D.3.3
[Programming Languages]: Concurrent programming struc-
tures; D.4.6 [Securi ty a n d P ro t ec t ion] : Cryptographic
controls, Information flow controls

General Terms
Security, Design, Languages

Keywords
security protocol, security principal, GSPML

1. INTRODUCTION
The model-driven-approach [38] to software construction

promises to improve software quality and reduce costs through
automatic construction of software from (visual) models. Vi-
sual modeling is slowly becoming a common practice for
software developers, so the hope is that practitioners will be
comfortable with using visual models to design their soft-
ware. (In this paper, we use the unqualified term modeling
to mean visual modeling.)

The force of common practice is defining the model-driven-
approach in terms of the Object Management Group's Model

NSPW 2005 Lake Arrowhead CA USA
© 2006 ACM 1-59593-317-4/06/02....$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Driven Architecture or MDA. The core of the MDA is UML
2.0 [32]. Neither UML 2.0 (henceforth UML) or MDA treats
security as much more than a service; there are no models
for security per se.

This raises the question of what security-specific aspects of
software development, if any, need coverage in this paradigm.
This paper argues that there are security-specific issues that
cannot be modeled well with existing features of MDA. These
issues need adequate coverage in model-driven approaches.

One of the most significant security-specific aspects of
software development not covered by the MDA is the secu-
rity protocol. Security protocols are sequences of allowable
interactions between principals. A principal is an entity that
participates in a security system. Security protocols are not
necessarily about cryptography; one of our examples will
model a security protocol that involves no cryptography at
all.

The UML candidates for visual modeling of security pro-
tocols all have shortcomings. Existing alternatives outside of
UML also have similar problems, for various reasons. Some
of these difficulties are visual modeling issues and others are
semantic issues. One of the most critical semantic require-
ments for modeling security protocols is the ability to define
all traces of a protocol with a single model as opposed to
being able to describe any trace with a single model. Ex-
plicit definition of all traces is necessary because each bad
trace has the potential to become a security flaw. A highly
desirable visual modeling feature is event-based modeling,
as opposed to state-based modeling. The distinction is that
state-based modeling is best for designing reactive behavior
while event-based modeling is best for designing interactive
behavior. State-based modeling requires us to work with in-
ternal computational aspects, such as states or triggers, to
construct the traces of a protocol. An event-based modeling
paradigm lets us work directly with the external events and
traces of a protocol.

2. MOTIVATION
The core purpose of visual modeling, as opposed to other

forms of modeling, is presentation and understanding. For-
mal verification, machine-generated implementation, and other
automatic processing are probably done better with text-
based models. In fact, a good well-defined visual language
will always be a form of syntactic sugar [24] for some text-
based languge, since the text-based semantics will be needed
for execution. So our interest is in security protocol mod-
eling that has good visual properties for presentation and
human understanding, without sacrificing soundness that

97

supports translation into text-based models. This leads to
the following criteria for security protocol modeling:

• The visual formalism should have a well-defined syntax
and semantics.

• The visual formalism should be event-based. It should
focus on interaction patterns between principals and
abstract away from details of internal computations.
The importance of this is underscored by the fact that
existing security protocol modeling tools use event°
based visual models, rather than state-based models.

• The visual formalism should support models that are
compositional Compositional models are constructed
from sub-models that identifiably correspond to the
principals of the protocol.

• The visual formalism should suport models that are
comprehensive. It should be capable of defining all
traces of a protocol by means of a single diagram.

• The visual formalism should suport models that are la-
conic [15]. A non-laconic model is one where some ob-
ject or relation in the represented abstraction is mod-
eled more than once. Following Guizzardi [14], a model
.M is laconic w.r.t, an abstraction .A if the interpreta-
tion mapping from .M to .A is injective.

• The visual formalism should suport models that are
lucid [15]. A non-lucid model is one where some ob-
ject or relation in the model represents more than one
object or relation from the modeled abstraction. Fol-
lowing Guizzardi [14], a model .M is laconic w.r.t, an
abstraction .,4 if the representation mapping from .A to
.M is injective.

• The visual formalism should suport models that are
sound [15]. An unsound model is one where some
model object or relation has no corresponding object
or relation in the represented abstraction. Following
Guizzardi [14], a model .M is sound w.r.t, an abstrac°
tion ,,4 if the representation mapping from .,4 to .M is
surjective.

• The visual formalism should suport models that are
complete [15]. An incomplete model is one where some
object or relation in the represented abstraction has
no corresponding model object or relation. Following
Guizzardi [14], a model Jk4 is complete w.r.t, an ab-
straction ,,4 if the interpretation mapping from .M to
.,4 is surjective.

The UML candidates for visual modeling are either not
well-defined or they fail to suport comprehensive or laconic
models. Visual modeling candidates outside UML are well-
defined but are either state-based or fail to suport models
that are laconic or comprehensive. The visual interfaces to
current security protocol modeling tools also do not provide
a formalism that satisifies all of our criteria. These candi-
dates are not necessarily bad but are not suited to visual
security protocol modeling, according to one or more of the
criteria above. We make these statements without explana-
tion here but present a detailed justification in Section 4.

process region

event r e g i o n ~

sequential box concurrent box

Figure 1: Basic Boxes of GSPML

3. GSPML
We present GSPML as a visual security protocol modeling

language that satisfies all of the above criteria. (At the
time this paper was written, GSPML did not stand as an
acronym of any particular name.) The goal of the GSPML
alternative is to provide a visual modeling language suitable
for the security-specific problem of protocol modeling. The
emphasis is on a solid visual model with complete syntax
and semantics, rather than tool application via the specific
semantics. Given a well-defined visual modeling language, a
variety of formal techniques could be used, including many
with semantics tha t differ from the semantics of GSPML
(e.g. NPATRL, CAPSL, strand spaces [12, 39], or a general
LTS).

The GSPML alternative is well-defined, event-based, com-
positional, comprehensive, and laconic. This is demonstrated
by the diagram at the end of this paper (see Figure 11) that
defines a complete model of the Yahahlom cryptographic se-
curity protocol [5]. This diagram fits on a single page but
defines all possible traces of the protocol interacting with a
Dolev-Yao intruder. So a single GSPML diagram can define
not only all the correct behavior of a protocol but also its
behavior under many attacks.

Our presentation here in Section 3 does not define a se-
mantics for the language but provides an introduction and
demonstrates the applicability of GSPML. The meaning of
well-formed GSPML diagrams is compatible with several
forms of process algebra but it is not necessary to under-
stand process algebra in order to understand the GSPML
presented in this paper. It is necessary to understand that
GSPML models are arrangements of nested rectangles or
boxes that define trace generating processes.

In GSPML, every trace-generating process is defined by ei-
ther a process box or a process box name. (For the rest of this
paper we will use the term process and box interchangeably.)
There are two major distinctions between boxes: sequential
boxes and concurrent boxes, as in Figure 1. A sequential box
has rectangular corners and models sequential processes. A
concurrent box has round corners and models concurrent
processes. A process box name (or more simply, box name)
may only appear as a label for a box, or inside a process
region of a box. A process region may have only one box
or box name in it. Sequential boxes also have event regions
that contain the events of a GSPML model. When all of the
events in the event region of a sequential box have occurred
then the sequential box is replaced by or becomes the box
contained or named in the process region below the event
region. So GSPML diagrams are read from top to bottom
and outside to in.

We present the details of GSPML by examples of its use.
We give two examples: first a cryptographic security proto-
col and then a non-cryptographic security protocol.

98

A

~'5 a.b.a.na
. ~-.~ j.a. { b.kab.na.nb } S Key(a) .m

i i [Session(a, b, kab , . a , n b)
: !

- t I B
|

. . . . ~ a.b.a.na

,- ~ ~(? b.j.b.{a.na.nb } s Key(b)

'- ~ a.b. { a.kab } S l~ ey(b) " {nb } kab

L Session(b,a, kab ,ha,rib)

, , J
i i

II [.... +b.j.b.{a.na.nb}S Key(b)
1 ~j .a.{b.kab.na.nb}S Key(a) "{a.kab}S Key(b)

I

I s k i p I

F i g u r e 2: A G S P M L M o d e l o f O n e R u n o f t h e Y a -
h a l o m P r o t o c o l

3.1 The Yahalom Protocol
Our example of a cryptographic security protocol is the

Yahalom protocol. The GSPML model is based on the CSP
process algebra model presented by Ryan, Schneider, et al.
[35]. Readers interested in process algebra modeling of se-
curity protocols, as opposed to exposition of the GSPML
language, should consult their work.

The Yahalom protocol is used to establish a session key
kab between two principals A and B, via a server J. Fig-
ure 2 shows a simple GSPML diagram of a single run of the
protocol, where principal A initiates a session with principal
B. The protocol run is simplified in the sense that the prin-
cipals are assumed to be somehow prepared to synchronize
on each other's nonces and the session key, in advance of
the protocol run. That is, each event contains precisely the
nonces ha,rib and session key kab to make this run work.
None of the three named boxes in Figure 2 is defined as be-
ing prepared to deal with any possible well-formed nonce or
session key.

The goal of Figure 2 is to introduce the protocol, not
model it. That is, the GSPML of Figure 2 is playing the role
of the usual message sequence diagram used to introduce a
cryptographic protocol. So Figure 2 shows that GSPML
can be used for explanation as well as definition of security
protocols.

Figure 2 provides a good non-trivial first example of GSPML.
The two outermost (unnamed, round-cornered) boxes are
concurrent boxes that model the concurrent interaction of
the principals A arid B and the server. Each concurrent box
has two process regions. The outermost concurrent box has
the next inner concurrent box in one of its process regions
and a sequential box named J in its other process region.
The sequential box J contains the events that model the
protocol steps of the server in a single run of the Yahalom

protocol. The second concurrent box contains the sequential
boxes named A and B defining the corresponding protocol
steps for the initiator and responder.

Each event in a sequential box is denoted by a small circle,
called an event symbol, on the left boundary of the box's
event region. The top-to-bottom order of the event symbols
defines the sequential order of the events for that box. So
the events of sequential box A at the top of Figure 2 are

a.b.a.na
j.a.{b.kab.na.nb}S Key(b).m
a.b.m.{nb}kab

Sequential boxes communicate or share their events via in-
terface port symbols on enclosing concurrent boxes. Concur-
rent boxes with interface port symbols are parallel boxes that
define communication between their components. An inter-
face port symbol is a small rectangle placed on the boundary
between the process regions of a parallel box.

Shared events are connect by synchronization lines. The
synchronization lines shown in Figure 2 are an example of
concrete synchronization lines because they connect event
symbols directly. (There are abstract synchronization lines
that do not connect event symbols. They will be presented
shortly.)

Concrete synchronization lines depict sharing of the spe-
cific events they connect. The events connected by the syn-
chronization lines happen at the same time; they appear
as a single event to an outside observer. Synchronization
lines may be drawn anywhere that provides clarity while
connecting the events, but must pass through the interface
port symbol that defines the parallel combination.

In Figure 2 the shared events model the transmission and
receipt of a message in the security protocol.

Events in GSPML may have compound names. The event
itself is atomic but various information about the event can
be represented using a "dot" separator, as in x.y between
the name components x and y.

In Figure 2's model of a run of the Yahalom protocol, the
events have compound names with the first component indi-
cating the sender for that event and the second component
indicating the receiver of the event. For example, the first
event of box A is the compound event a.b.a.na: a trans-
mission from source a to destination b of the message a.na.
The concrete synchronization line from event a.b.a.na in box
A to the same event in box B models the transmission of
message a.na by principal A and receipt by principal B.

Figure 2 also contains concrete synchronization lines con-
necting events with different names at source and destina-
tion. For example the second event of box A is named
j.a{b.kab.na.nb}S Key(a).m while the source event in box
J is named j.a{b.kab.na.nb}S Key(a).{a.kab}$ Key(b) •
This aliasing indicates that the source and destination boxes
have different interpretations of the shared event. In this
case, the initiator (modeled by box A) cannot read the
last component {a.kab}Ser~erKey(b) because it does not have
ServerKey(b) so it interprets that component as simply as
a sequence of bits m.

We can tell which event happens first in the diagram of
Figure 2 by noticing that second event of the B box happens
at the same time as the first event of the J box, so box J ' s
first event cannot start the protocol. As the diagram shows
it, the first event in the protocol must be the shared first
event of boxes A and B: transmission of the message a.na

99

from a to b. (It is not always necessary that a unique event
in a GSPML diagram be the first event; the first event can
be one of several possibilities.)

The Yahalom protocol works as follows: principal A wishes
to establish a session with principal B and initiates a run of
the protocol by sending its identity a and a nonce no to prin-
cipal B. This is shown by the synchronization of the first
event a.b.n,~ communicated from the A box to the B box in
Figure 2. Box B then sends a,n,~ and its own nonce rib, en-
crypted under the key ServerKey(b) to the server. This is
show in Figure 2 by the synchronization of the second event
of the B box with the first event of the J box. The third
step of the protocol has the server (box J) send principal
B's identity b, both nonces na, nb, a session key kab, and a
message {a.kab}S~r~,erKe~(b) to principal A. This is shown in.
Figure 2 by the synchronization of the second event of the J
box with the second event of the A box, where the initiator
sees the message {a.kab}s Keg(b) simply as a bit string
m .

In Figure 2 the end of the protocol run is shown by the
J box becoming the (constant) process box S K I P that de-
notes successful termination, while the A and B boxes be-
come parameterized Session boxes that denote the start of
a session between principals A and B.

3.2 A Complete GSPML Model
Defining a complete model of the Yahalom protocol will

explain more of the GSPML language and demonstrate that
it is event-based, comprehensive, concise, well-defined, and
composable. Our complete model follows the Dolev-Yao
structure where the intruder acts as the network connect-
ing the principals. The complete GSPML model is shown
as Figure 11 at the end of the paper, but we do not use
that figure to explain GSPML. Instead, the model is pre-
sented beginning from a top-level view. Then components
of the complete model are explained, proceeding from sim-
pler constructions to more complex. This will demonstrate
the abstraction capabilities of GSPML. The form of our ex-
planation is to introduce different language elements by ex-
ample. The meaning of each language element is explained
first and then the protocol modeling structure is explained
based on the meaning.

3.3 High-Level Model Structure
Figure 3 shows a top-level view of the model of Figure

11, with principals A and B as abstract concurrent boxes
User(a) and User(b), the server as the abstract concurrent
box Server(j), and the intruder as abstract sequential box
Intruder(X). Abstract boxes have no internal regions for
events or processes. This use of abstract concurrent and
sequential boxes shows the high-level structure of the model
without the internal details.

The basic structure of Figure 3 is a parallel box synchro-
nizing the sequential Intruder(X) box with the nested in-
terleaving boxes that model User(a), User(b) and Server(j).
The boxes modeling Intruder(X), User(a), User(b) and
Server(j) are each enclosed by a box drawn with dashed
lines, just like a synchronization line. These dashed boxes
indicate the use of renaming to map the names of events into
other event names that correspond to the events of another
box. This lets us give events names that are meaningful
to the box that contains them, on either end of a synchro-
nization. A good example of this is shown in Figure 11 at

the end of this paper, which uses renaming to map the send
and receive components of events to their proper roles in the
protocol. That is, a send is first mapped to a take which
connects it through the interface port of Figure 11; then the
take is mapped to a learn by the intruder. Figure 4 shows
that the intruder's events begin with either learn or say and
thus should be renamed to connect them to the send and
receive of the protocol.

The boxes contained in the process regions of the inter-
leaving boxes are interleaved, since there is no interface port
symbol on the boundary between them. The events of the
boxes contained i n the two process regions of an interleav-
ing box are not synchronized. For example, if the boxes
User(b) and User(a) each contained an event named a and
both boxes performed an a event, then the traces of the
interleaving concurrent box containing them would include
two a events, not one. Even though the synchronization
lines connect to the interior of both User(a) and User(b),
we can tell that they do not communicate directly because
the synchronization lines do not go through an interface port
symbol on the region boundary between them.

Figure 3 shows that none of the boxes User(a), User(b),
or Server(j) communicates directly but tha t the three inter-
leaved boxes are connected, via the outer parallel box, with
the intruder box Intruder(X). The synchronization lines con-
necting the boxes are abstract synchronization lines because
they do not connect to specific events but are terminated in-
side the process region of the applicable box, without touch-
ing anything. This termination of an abstract synch line in-
dicates that the shared event is within some greater level of
detail inside the applicable box. These abstract synchroniza-
tion lines are similar to the abstraction technique presented
by Henderson, et al. [18] but with a different semantics. Ab-
stract synchronization lines in a GSPML diagram, used as
shown in Figure 3 have no meaning but provide a reminder
of the communication pattern in the more concrete models.
In a software tool these abstract synchronization lines would
be place holders for the concrete synchronization lines of a
more detailed vie w. In Figure 3 the abstract synchroniza-
tion lines suggest that box Intruder(X) participates in every
communication event, from any of the principals.

3.4 Intruder Structure
Figure 4 shows the complete structure of the intruder box

Intruder(X). Figure 4 is an example of an external choice box
indicated by a square external choice symbol on the left end
of the boundary between its process regions. An external
choice box offers a choice of either of its two boxes to its
environment. The first event of the combination determines
the choice of box.

In Figure 4 the events are named m because the intruder
may or may not be able to interpret the components of an
event name. In Figure 4 this notation shows that the in-
truder box Intruder(X) can copy and store details about
any event communicated between the principals. This is
shown by the parameterized box name Intruder(KnownFactsU
(m}). The set KnownFacts models not only the events
seen by Intruder(X) but also any event components that
Intruder(X) may be able to separate and combine with
components from other events. The set KnownFacts also
includes any event components that Intruder(X) may be
able to encrypt or decrypt, according to keys it already
knows or learns from seeing protocol events.

100

Yahalom

. [.~_~_~_(.-)_..
J ..

f ? : i i i i - : i i i i ! i i i

:.~ l
l=i.l ~ i

~.,.~ ~

i i I

1: ser_v_er.O).
',, i , ;.-:.:=-=--===:~,
i i j - l
, i l % i

: : - ' t . l - - - I :
i I i i % i , , , , l l (1,

-~ , , t Intruder'X) " : ' , , ;" , L
, . , . L , J . : J~.

-:.-,~--~ ";~i-" I, - ,*.,LL-.L,L-.-.-.-.-.-) ,, r -J i

. . . . : , ! I ,

Figure 3: Y a h a l o m : T h e Top-Leve l Structure

Intruder(X)

iii ,earn.m
Intruder(close(X U {m}))

J
. . ~ s a y . m : X n messages]

In t ruder(X)

Figure 4: Yaha lom: T h e Intruder

The use of external choice indicates that the intruder
is prepared to participate in any events that any of the
three other principals offers. It can either "copy" them
into KnownFacts and pass them along, receive transmitted
events but not relay them, or spontaneously generate bogus
events that are based on the elements of KnownFacts.

Because the intruder's events are in distinct sequential
processes, the intruder box does not have to make its traces
of send events correspond to the traces of receive events it
saw. The box following a receive event (incoming arrow)
has the parameter close(KnownFacts U {m}) that models
the intruder accumulating facts in KnownFacts. The close
function models the parsing, decrypting, encrypting and re-
composing of events seen by the intruder. Definition of the
close function is outside the scope of the GSPML language,
but is represented by the parameterized box name. Use of
the parameter means that there is a distinct intruder box
for each possible value of the parameter.

The other part of the intruder box uses KnownFacts N
Messages to model faithful transmission as well as malicious
replay and the substitution of well-formed but spurious mes-
sages by the intruder.

The meaning of the intruder 's GSPML structure is that
box Intruder(X) must receive any event "sent" by any prin-
cipal but it is not required to relay that event and may per-
form arbitrarily many send events before receiving an event

Server(j)
kab E KeysServer

. • a, b ~ Users; ha,rib ~ Nonce

"'["X~send.j.a.{b.k~b.na.nb}S Ke~(.)'{a.kab}S K.u(b~

[I Ser r(,) J

Figure 5: Yaha lom: T h e Server Process Server(j)

from a principal.
The sequential intruder box Intruder(X) of Figure 4 is

able to handle many events from many protocol runs be-
cause it is recursive. The box participates in one event of
one protocol run, by its choice mechanism. After the single
protocol event, it uses recursion to become another box that
is prepared to make all of the same choices again. Recur-
sion is defined by box names, rather than graphical notation.
That is, the intruder box is recursive because its box name
Intruder(X) appears within the process regions of a box
named Intruder(X). (In our prototyping to date, we have
found that purely visual modeling of general recursion is
problematic.) A convention for GSPML uses a bold font for
box names as a reminder that those boxes are intended to be
recursive. In Figure 4 the bold font box name Intruder(X)
indicates the intended recursion, but GSPML attaches no
meaning to the font used for the box names.

3.5 Server Structure
The next figure, Figure 5, shows the full definition of the

server box Server(j). This box demonstrates several features
of GSPML that we have not seen yet, including two general-
ized or indexed boxes. The outer concurrent box is a indexed
interleaving box. It is a concurrent interleaving box because
it has no interface port on the boundary between its process
regions. The double line separating the two process regions
tells us that it is an indexed interleaving box. The upper
process region of an indexed interleaving box has a specifica-
tion for the index set and the lower process region contains
a parameterized box describing the processes that are in-
terleaved. The meaning of the box Server(j) is that for
each possible key kab E KeysServer, there is an unnamed
interleaved box. The index parameter kGb distinguishes the
structural difference between each interleaved box.

In Figure 5, the each interleaved box is itself an indexed
box, an indexed external choice box. An indexed exter-
nal choice box allows its environment to choose from an
indexed set of boxes. An indexed external choice box is
depicted by the double square external choice symbol in
its upper left corner. The index set is the double index
a, b E Users; nG, nb E Nonce. This double index shows that
this indexed external choice box offers a choice of boxes over
all possible pairs of users and pairs of possible nonces. The
first event of each box chooses one sequential box that then
performs the appropriate protocol run. This innermost se-
quential box of Figure 5 is essentially the same as the server
box shown in Figure 2. It gives the order of the protocol
steps followed by the server in a single run, with all values
fixed. The box containing this single server run uses exter-

101

Figure 6:
Users

!!iiii!f i usor,o, Initiator(a)

Responder(a)

User(b)

.

iiiiiii _
Yaha lom: H i g h - L e v e l S t r u c t u r e of B o t h

nal choice, indexed over all possible pairs of agents and all
possible pairs of nonces, to define a collection of server boxes
that can conduct a single run for a fixed key kab, with any
pair of users applying any pair of nonces. This construction
models the server being prepared to engage in any run it is
requested to participate in. The outer indexed interleaving
box models the condition that the server Server(j) may be
engaged simultaneously in many protocol runs, each with a
different session key, including some bogus runs initiated by
the intruder Intruder(X).

3.6 User Structure
The model is ~ompleted by boxes for each of the users.

In order to model a protocol of this kind, each user should
be able to play either role, init iator or responder. Figure
6 shows the high-level structure of a user, either Alice or
Bob. Each user is composed of two boxes, one for the user's
role as a protocol run initiator and one for its role as a
responder. The role modeling boxes are composed into a
single user, via an interleaving box, to model the possibility
of that user being engaged simultaneously in several protocol
runs in either role.

Within the high-level structure of a user, the model de-
fines the initiator and responder runs over all possible com-
binations of principal names, session keys, and nonces. We
examine the structure of the responder role first, because it
is simpler. The lower part of Figure 7 shows the box for the
responder role, for user Alice. The lower part of Figure 7
does not introduce any new GSPML notation. The struc-
ture of the Responder(a) box is similar to the structure of
the server box Server(j) shown in Figure 5: an outer inter-
leaving box that allows a responder to be engaged simulta-
neously in several runs of the protocol, each distinguished
by the responder's choice of nonce na in the second step of
the protocol. One implication of this construction is that
a Responder may be engaged in several protocol runs, each
run having identical values of a, b, rib, and kab. While a

U,er(a)

I n l t l a t o r (~)

n E N o n c e l a

(1) env?b : U s e r s

. ~ send .a .b .a .na

• kab E Key; n b E N o n c e ; m E M e s s a g e s

. ! ~ r e c e i v e . f f . a . { b . k a b . n a . n b } S e r v e r K e y (a) .m

T
send.a.b.m..{nb}knh

S e s s i t m (a, b, kba , na , rib)

R e s p o n d e r (a)

n E N o n c e R a

kba E Key ; b E Users; n b E N o n c e

t"
rece i~e .b .a .b .n b

s e n d . a . j . { b.nb .na }Ser tuerKels (a)

r eceive .b .a { b.kab . l s e r~er K ev(a) . { na } kba

S e s s i o n (b , a, kba , n b, ha)

Figure 7: Y a h a l o m : T h e Single User Alice

properly implemented protocol will not do this for a legiti-
mate run, an intruder might try it. A good protocol model
will be able to reflect this and support the investigation of
its consequences. The indexed external choice box that de-
fines Responder(a, na) within the interleaving box gives us a
choice of every possible responder process, over session keys
kab, initiator n o n c e s •b 1 , and initiator names b. There is no
recursion here; once the names, nonces, and session keys are
fixed, the responder runs until a session is established, as
shown by the process name Session(b, a, kba, ha, rib) in the
process region of the innermost box.

The most complex component of our complete model is
the initiator role. It introduces one new GSPML construct,
the menu choice box. Menu choice boxes offer a choice of
first events, from a single box, rather than a choice of boxes.
The menu choice box of Figure 7 is contained inside indexed
interleaving box Initiator(a). Menu choice is denoted by the
double diamond event choice symbol. Above the event choice
symbol there is a single event name env?b : Users that
denotes a choice of event b of type Users, received from the
environment env of the box . Other than this one new box,
the rest of Figure 7 uses notation already explained. Notice
this initial event is not connected via a synchronization line.

The added complexity in the initiator arises because of
the need to model an initiator 's ability to start legitimate
protocol runs entirely as a consequence of its own decision.

T h a t is, the intruder Intruder(X) should not be able to force
any user to start a legitimate protocol run. Otherwise, the
intruder either has mind control powers over the human user

XWhen Alice is responder, the subscripts axe reversed.

102

or has obtained control of the user's host. An intruder in
either of these situations has no reason to try to break this
session key establishment protocol. So the initiator has to
use menu choice to allow its environment (i.e. the human
user) to chose the responder.

The outer structure of the Initiator box in Figure 7 is
similar to the responder's structure. An interleaving box
models concurrent runs of the protocol using different ini-
tiator nonces n~. Within the interleaving of runs defined by
possible nonces the menu choice box models the initiator's
choice of responder.

Within the process region of this menu choice box that
selects a user b we find a simple sequential box for each pos-
sible choice of user received from channel env. This simple
sequential box transmits the applicable nonce to the chosen
user's responder. The process region of this simple sequen-
tial box uses an external choice box to select the box that
finishes the initiator's part of a single run, given the nonce nb
chosen and returned by the responder b. Once the respon-
der has chosen a nonce nb the rest of the initiator becomes
a single run via a sequential box, just like the server and
responder boxes seen earlier.

3.7 Modeling a Non-Cryptographic Protocol
We can demonstrate the versatility of GSPML by model-

ing a non-cryptographic security protocol, and use this sec-
ond example as an opportunity to introduce further GSPML
notation. In contrast to the preceding example of the Ya-
halom protocol, information flow security protocols do not
involve cryptography. Intuitively, an information flow secu-
rity protocol involves a resource that is shared between two
environments High and Low. The resource is supposed to
provide shared service to both High and Low but prevent
information from flowing from High to Low.

The problem is not as easy as it looks and is still a research
topic. One of the most difficult parts of the problem is defin-
ing absence of information flow. There axe simple definitions
of an information-flow-secure resource shared between High
and Low that are clearly effective but inhibit or preclude
functionality. For example, if the allowable security proto-
col provides no services to the High environment, then the
shared resource in question will be information flow secure.
The difficulty is getting a less restrictive definition of an al-
lowable protocol that still has acceptable information flow
properties. GSPML can both define allowable information
flow and model the protocols.

We now define information flow security, for a simple ser-
vice protocol. The definition of information flow security is
taken from Ryan and Schneider [34]. The definition is not
the best proposed by Ryan and Schneider [34] but is chosen
because it can show GSPML notation we have not seen yet.
Readers interested in information flow security can refer to
McLeaxi [26].

The most significant difference in this example is that we
are now modeling a relation between two GSPML models.
In our case, the relation is equivalence 2 between the un-
named box of Figure 8(a) and the unnamed box on of Figure
8(b).

The new feature of GSPML used in this example is that
both parts of Figure 8 use a hiding box. A hiding box makes

2For definitions of information flow security, the specific
kind of equivalence is significant, but a discussion of that
would detract from our main point.

P i . 6 ~ 6 ~ l "

(~)

>:. Protocol

i iU

(b)

F i g u r e 8: M o d e l i n g an I n f o r m a t i o n - F l o w - S e c u r i t y
P r o t o c o l

events inside it invisible to the environment of the hiding
box; inside the hiding box the hidden events axe still visible.
A hiding box is distinguished by its strikethrough symbols;
the strikethrough symbols indicate the events that axe to
be hidden in the enclosed box. Outside the hiding boxes of
Figure 8 events alo~ and blo~, axe visible but events ahigh
and bhlgh axe invisible. Inside the hiding box, all four events
axe visible when they take place.

The box construction on the right side of Figure 8 is using
synchronization with the constant box STOPH to block H
(i.e. High) events in the box Protocol. The constant box
S T O P is a process box that never performs events. It may
be considered to have an interface with visible events, but
it never performs them. Thus S T O P generates only one
trace: (/. S T O P does not represent normal termination but
deadlock or a blocked process. When boxes are synchronized
via a parallel box but the combination reaches a point in its
execution where one of them is not prepared to synchronize
then the combination blocks. In this case, since box S T O P n
has precisely all the H events of box Protocol, only L events
happen in the combination.

Figure 8 uses the process box Protocol to define the ser-
vice itself and the two models containing copies of Protocol
to define information flow security for the service. Essen-
tially, the GSPML of Figure 8 defines information flow se-
curity for Protocol as the condition that any behavior of
Protocol with the H events hidden (i.e., Figure 8(a)) is the
same as any behavior of Protocol, with its H events blocked
and then hidden (i.e., Figure 8(b)). The implications of this
definition may be understood by considering that an axbi-
traxy intruder box may be inserted as synchronized with the
Protocol box inside each model of Figure 8; thus there is po-
tential for different behavior to be visible between the two
parts of Figure 8. For example, axi adversary added to Fig-
ure 8(a) can use the external choice semantics of Protocol to
selectively choose the second inner box of Protocol (the one
that does bhigh) but then only request event ahlah, resulting
in a failure (i.e. a covert channel). A similar adversary could

103

be added to Figure 8(b) but would not be able to block the
(already blocked) high events.

Adding specific details to the protocol (i.e. the Protocol
box) is a key step in modeling information flow security. The
example uses two simple events a and b while a more realistic
example might use events like create-channel, start-channel,
stop-channel, clear-channel and delete-channel for a mul-
tilevel boundary controller. Some specifications of Protocol
will define sets of traces (and failures) that result in equality
and others, sometimes surprisingly, will not. The process of
designing a suitable information flow security protocol in-
volves trade offs between the specification of Protocol, the
protocol itself, and the pair of enclosing security definition
boxes.

Figure 8 also demonstrates the compositional nature of
GSPML models. If the service defined by the box named
Protocol is to have another security property besides infor-
mation flow security, then the box named Protocol can be
removed unchanged from the hiding and blocking equiva-
lence and placed in a model for tha t property.

4. RELATED WORK
After looking at two examples, it may be helpful to con-

sider related work and analyze it according to our criteria.
With our criteria: event-based, composable, comprehensive,
concise, well-defined, we can assess the suitability of the
various MDA/UML models for security protocol design and
analysis. We can also investigate the usefulness of other
modeling approaches that are not part of the MDA suite.

4.1 UML Candidates
To model security protocols in UML, we must use one or

more of the available modeling mechanisms: actions, activ-
ities, interactions, state machines, or use cases. Use case
models are high-level requirements tools and use the other
visual modeling techniques to describe behavior, so they are
not candidates for modeling any but the most rudimentary
concepts of security protocols. UML Actions include con-
structs such as BroadcastSignal, ReadVariable, and WriteLink;
they correspond to individual events, methods, messages, or
calls. Thus, they are also not suited to modeling complete
security protocols.

UML Activities organize UML Actions into structures that
resemble Petri nets. UML Activities employ control- and
data-flow relationships in their Petri-net-like structures, which
is less desirable when the issue is protocols and we wish to
avoid details about internal computations.

UML Interactions are similar to ITU Standard Z.120 Mes-
sage Sequence Charts, or the older UML 1.x Sequence Di-
agrams: a collection of vertical life-lines with message flow
between the lifelines shown horizontally. Both UML Inter-
actions and ITU Message Sequence Charts have semantic
problems. Datum and Harel have provided a well-defined
semantics for these kinds of diagrams, in a visual model-
ing technique called Live Sequence Charts [10]. All of these
"sequence-diagram" modeling paradigms have the critical
strength of being event-based: they model sequences with-
out internal computational detail. Tha t is, they model be-
havior directly in terms of protocol traces. Unfortunately,
they all have limited usefulness in modeling security pro-
tocols because each diagram defines only a subset of the
traces of a protocol. The nature of these diagrams is that
they visually enumerate traces and lack the power of set

theory or process algebra to explicitly define all possible
traces of a combination of principals. For example, suppose
we use the BPA (Basic Process Algebra) process algebra of
Bergstra and Klop [1] to define P = a. P, the process P that
does event a and then acts like process P. If the expression
traces(P) means the set of all traces of process P and the
symbol ~ denotes concatenation of traces then we can use
set theory to explicitly define all of the traces of P = a • P
a s

{0} U { (a)~tr [tr E traces(P)}

while the corresponding "sequence-diagram" enumeration
approach is equivalent to the symbolic listing of each possi-
ble trace

0, (a), (a, a),...
As soon as there is a modest variation in the pat tern of the
traces, this enumeration approach begins to break down. In
contrast, process algebra or set theory provides us a com-
plete definition in a single model but still allows us to unwind
the model to see or check any trace. The visual modeling
equivalent of set theory or process algebra is needed to solve
this problem.

UML State Machines would appear to offer some promise.
They are based upon (but are not the same as) the object-
oriented version [17] of Harel's elegant statechart [16] vi-
sual formalism. Since statecharts are a well-defined visual
model, UML State Machines should be able to define com-
pletely any security protocol, with a single model. Unfor-
tunately, UML State Machines have some problems: 1) re-
ceived events are modeled by a different mechanism that
sent events, 2) the semantics are run-to-completion which
poses problems for modeling some forms of recursion (Ten-
zer and Stevens [40] provide good examples of this), and 3)
some of the events are not atomic [28]. Some of these prob-
lems are avoided by the concept of UML Protocol State Ma-
chines. UML Protocol State Machines are like UML State
Machines without UML Activities. That is, a UML Protocol
State Machine only has triggers associated with its transi-
tions while the more general UML State Machine also has
UML Activities associated with its transitions. The effect
of this is that a UML Protocol State Machine can describe
one side of an interaction between two security principals:
either the sequence of requests a principal can make or the
sequence of responses that that a principal can provide. This
is sufficient for constraining interfaces but not for modeling
a complete security protocol.

From these circumstances we can conclude that UML is
not well-suited to modeling security protocols. This leads
us to examine other visual modeling techniques outside of

• UML, to see if they are better tools for modeling security
protocols.

4.2 Existing Visual Models Outside of UML
We have already mentioned Live Sequence Charts as a

well-defined event-based modeling technique. The problem
of needing more than one diagram to define all of a proto-
col remains. Another possibility is a visual representation
of labeled transition systems. A labeled transition system
or LTS is a triple (F, A,--~) where F is a set of configu-
rations, A is a set of events, and --~ is a ternary relation:
--~ C F x A x F. Intuitively, the relation --~ represents the
transitions from one configuration to another; ('7, a, '7') E
is usually writ ten as '7 -~ '7 I. Labeled transition systems

104

are ideal for machine representation and processing of event
systems. The problem with labeled transition systems as a
visual modeling paradigm is the same problem that lead to
the development of statecharts: "the unmanageable, expo-
nentially growing multitude of states, all of which have to be
arranged in a 'flat' unstratified fashion" [16]. Labeled transi-
tion systems are not concise. Current LTS work is turning to
algebraic treatments to overcome this difficulty. Petri nets
were developed by Carl Petri [33] for formal modeling of con-
currency, nondeterminism, and communication. Petri nets
are well-defined and have a large body of literature. They
are useful for a wide range of problems including workflow
and performance modeling. The difficulty with using them
to model security protocols is the presence of computation
details: initial markings, places, transitions, and data flow.
They are not event-based. Another difficulty is that Petri-
net-based models are not naturally composable in terms of
security principals.

Port state machines, a formalism developed by Mencl [28],
have removed the semantic difficulties associated with UML
State Machines, while retaining the semantic clarity of state-
charts. Furthermore, port state machines also address mod-
eling details needed for object-oriented programming, which
the original statecharts lack. However, because of this and
their state-based nature, port state machines have too much
computational detail for modeling security protocols. They
are not event-based.

Harel's original statecharts are a good candidate for mod-
eling security protocols, because they lack the extra details
needed to model object-oriented programming issues. They
are semantically sound and can define an entire protocol
with a single diagram. Statecharts also have excellent visual
modeling characteristics. They are not event-based and re-
quire consideration of states and transitions as well as the
events they model. We would prefer a more directly event-
based modeling paradigm.

Waiters has designed RDT [42] as a formal visual language
based on activity diagrams. RDT is designed foremost for
visual clarity, just what is needed for visual modeling of
security protocols. It would be a good candidate but it uses
an LTS form of depicting behavior, so it is not event-based.

Another alternative we have not considered up to now is
a graphical form of process algebra. Process algebras are
event-based but avoid the explosive complexity of labeled
transition systems by means of algebraic operators. Process
algebras view processes as abstract trace generators and pro-
vide means for composing processes to define more complex
trace generators.

Cleaveland, Du, and Smolka developed Graphical Calcu-
lus of Communicating Systems (GCCS) [8] as part of the
Concurrency Factory tool [9]. The GCCS visual notation is
based on Milner's CCS [31] process algebra but the diagrams
are visual depictions of labeled transition systems. GCCS
diagrams have the same visual limitations as basic labeled
transition systems: they are not concise.

Cerone developed Visual Process Algebra or VPA [6], a
modeling technique based on combinations of the CCS, CSP
[21], and Circal [30] process algebras. The VPA approach
models processes as boxes with ports to indicate communi-
cation and thus has the potential to be event-based. Un-
fortunately, VPA uses an LTS or state-machine approach
within each box to model the behavior of the correspond-
ing process. For security protocol modeling we would really

P ; Q I I R

(a)
P ; (O II R)

(P ; Q) II R

(~)-L-o(~) II Q

P ;(OlIR)

(P;O)IIR

(b) (c)

F i g u r e 9: R e s o l v i n g C o m p o s i t i o n a l A m b i g u i t y in
g C S P

prefer an approach that avoids labeled transition systems
altogether.

Gilmore and Gribaudo [13] extended the DrawNET tool
to model the PEPA [20] stochastic process algebra. The
DrawNET tool is oriented towards performance modeling;
the graphical representation of process algebra retains the
Petri nets of the underlying tool, so the DrawNET repre-
sentation is not really well-suited to modeling security pro-
tocols.

The gCSP (for graphical CSP) tool, developed by Hilderink,
3ovanovic, et al. [19, 22] is the most ambitious graphical
form of process algebra to date. Processes are denoted as
circles in gCSP. Lines connecting the processes denote com-
position via the various operators of CSP. A surprising omis-
sion is the graphical modeling of events and their ordering
within a sequential process. That is, even though gCSP can
cleanly show sequential processes P and Q in parallel P l] Q,
it cannot show the events that make up sequential process P
(or Q). This is not a difficulty for control applications that
gCSP has been applied to, but it is critical for modeling
security protocols.

From a security protocol modeling perspective, the gCSP
notation is interesting because it presents a contrast to the
graphical modeling paradigm proposed in this paper. Pro-
cess algebras are strongly compositional. It is difficult to
present complex process algebra relationships graphically.
Figures 9 and 10 illustrate this difficulty in the gCSP nota-
tion. Figure 9 shows the process algebra fragment P; QIIR
which is an ambiguous term specifying the sequential (via
the ; operator) and parallel (via the I] operator) composition
of processes P, Q and R. Figure 9 (a) shows how this am-
biguity can be drawn in gCSP. Figure 9 (b) shows how this
ambiguity can be resolved by drawing cycles to add arts for
all relationships. This is problematic in complex composi-
tions since the diagram tends to become a fully connected
graph. The gCSP notation has a clever solution to this,
shown in Figure 9 (c), where a smaller circle is used on
one side to denote the precedence. The notation is well-
defined and capable of automatic simplification. However,
in complex situations, the notation becomes difficult to read,
as shown by Figure 10. However, it is the lack of explicit
events that renders gCSP unsuitable for security protocol
modeling.

4.3 Security Protocol Modeling Tools
Another possibility is the (visual) modeling provided by

security-protocol-specific tools. Most of the these tools have

105

l ; T"/
Figure 10: Complex Composition in gCSP

4.4 UML-Based Security Modeling
Some work has been done on security modeling with UML.

Epstein and Sandhu [11] show how UML can be used to
model RBAC policies. Jiirjens [23] has proposed UMLsec
as a means of annotating UML with sterotypes and tagged
values, to specify security requirements. Basin, Doser, and
Lodderstedt [2] have extended UML, via sterotypes, to Se-
cureUML. The SecureUML language can be used to specify
access control requirements on UML Class Diagrams and
UML Statemachines. None of this work covers security pro-
tocol modeling. Nevertheless, it supports our observation
that bare UML does not treat security issues adequately.

visual modeling components and it is possible that we may
find a satisfactory (from the visual modeling perspective)
language or technique there. Considering these tools will
also clarify our emphasis on presentation and understand-
ing as opposed other purposes such as verification or anal-
ysis. Clearly the existing tools are effective for those other
purposes.

The Security Protocol Engineering and Analysis Resource
(SPEAR) tool [36] provides multidimensional protocol anal-
ysis. Multidimensional protocol analysis combines several
non-visual modeling approaches in order to get a more com-
plete picture of the security of a cryptographic security pro-
tocol. The SPEAR tool incorporates multidimensional pro-
tocol analysis under a graphical user interface. Unfortu-
nately, SPEAR uses message sequence chaxts to visually
model security protocols. Its graphical language is not com-
prehensive.

The Common Authentication Protocol Specification Lan-
guage (CAPSL) and MuCAPSL, its group multicast pro-
tocol version, is a formal language for specifying crypto-
graphic security protocols [29]. CAPSL is well-defined, con-
cise, comprehensive, and compositional. CAPSL models can
be translated into many forms and several cryptographic
protocol analysis tools have CAPSL support. Unfortunately,
there is no visual form of CAPSL per se.
The Convince tool is a pioneer effort in visual modeling of
cryptographic security protocols [25]. Convince uses a text-
based formal language based on BGNY [4] logic. Unfortu-
nately, the characteristics of BGNY do not carry over into
the visual modeling language, which is essentially a version
of UML. In particular, protocol steps are modeled visually
using message sequence charts.

One security protocol analysis tool tha t does use a dis-
tinct security-specific visual language is the NRL Protocol
Analyzer (NPA) [27]. NPA has its own text-based language
NPATRL (pronounced "N Patrol") tha t models a wide range
of security protocol requirements. NPATRL is an event-
based language for expressing trace properties. It uses fa-
miliar logic operators and one temporal operator to define
logical properties of events or traces. The NPA tool has
a corresponding tree-structured language for visual mod-
eling of NPATRL specifications [7]. The visual language
is event-based, concise, and well-defined. Our motive for
looking further is that the visual NPATRL language is a
trace-property-language while we are looking for a protocol-
definition language. That is, the visual NPATRL language
does not define the traces of a particular protocol, but the
properties (i.e. requirements) of a good protocol. We are
looking for a language that can define protocols as they op-
erate, good or bad.

5. CONCLUSIONS
Our first conclusion is tha t visual modeling does not mag-

ically make complex security issues simple. The two exam-
ples were chosen because they are as complex and realistic
as can be presented in a brief paper. The GSPML depiction
cannot remove inherent complexity from a security proto-
col, but it can present security protocols in a laconic form.
The fact that GSPML generates correspondingly complex
models is a good thing: since simplicity and minimality are
explicit design goals of security, a tool that makes adding
unneeded complexity an unpleasant experience is a design
aid.

Some complex concepts can be understood more quickly
by visual means. Visual descriptions are sometimes prefer-
able to text-based notation. GSPML provides those benefits
for security protocols.

Our second conclusion is tha t GSPML is a modeling lan-
guage that meets the security protocol modeling criteria:
event-based, compositional, comprehensive, laconic, lucid,
sound, complete, and well-defined. There is no other vi-
sual modeling technique that satisfies all of these criteria.
The current Model Driven Architecture does not provide
security-specific modeling facilities and its general modeling
facilities fail to satisfy one or more of the security protocol
modeling criteria. There are well-defined visual formalisms
outside of the UML that could be used to model security
protocols: labeled transition systems, Harel's original stat-
echarts, and Petri nets. However, each of these three is also
lacking according to at least one criterion.

A comment on our second conclusion is that all of the
modeling approaches considered in Sections 4.1 and 4.2 are
useful and in some cases superior to GSPML, for applica-
tions other than security protocol modeling. For instance, a
lack of states and other internal computational details makes
GSPML less suitable for modeling object-oriented imple-
mentations. GSPML is for modeling and defining proto-
cols visually. Other than through some visual form of the
rank function approach [37], GSPML is probably not suited
to verification or analysis of protocols but should be used
as a front-end for a protocol analysis tool as considered in
Section 4.3

Our third conclusion is that, from a visual modeling point
of view, the idea of a security protocol should be generalized
to any form of interaction between security principals. The
proposed notation should be security or protocol specific,
rather than specialized to only cryptographic protocols.

Our final conclusion regards the application of GSPML.
Security protocol design and modeling is usually consid-
ered a specialist responsibility, even by security specialists.

106

Thus security protocols are outside the expertise of a gen-
eral software developer. Why then would we need a mod-
eling language just for security protocols? There are three
reasons: 1) security specialists benefit from visual modeling,
as demonstrated by the visual components of the tools de-
scribed in Section 4.3 above, 2) a visual presentation may
be more useful to software developers who have to imple-
ment the security protocol and thus serve as a bridge from
security specialist to other developers, 3) many security pro-
tocols fail because they are used in new or different environ-
ments; GSPML models may reveal the impact of the new
environment more clearly than a text-based model. This
result is supported by the fact that (non-security-protocol)
security specialists at the New Security Paradigms Work-
shop were able to identify protocol flaws in a few minutes,
using GSPML after less than a 30 minute initial exposure
to the language.

Given that fact that good well-defined visual languages
are syntactic sugar for some text-based langauge we chose
to use an existing semantics rather than define a new one.
The essential GSPML diagramming approach is compatible
with several forms of process algebra. That is, the differ-
ences in the various process algebras are not great enough to
require substantially different diagrams. In our experience,
we have used GSPML to visually depict security protocol
models of both classical CSP and PEPA stochastic process
algebra semantics. It should be possible to use GSPML-like
diagrams for CCS [31] or ACP [3, 1] semantics.

Our future work on GSPML will include further prototyp-
ing and application, to validate the syntax, semantics, and
pragmatics (e.g. laconicity). We will also strive to improve
the balance [41] between security protocol complexity and
the complexity of visual models drawn in GSPML.

Acknowledgements
Will Snook made substantial contributions to this work through
his observations on early forms of GSPML. The comments of
the anonymous NSPW referees improved the quality of this
paper as did the workshop discussion. Several key ideas in
this paper were brought out during discussion at the work-
shop and merit special acknowledgements for: Bob Blakely,
Brian Snow, Simon Foley, and Steve Greenwald.

6. REFERENCES
[1] J. Baeten and W. Weijland. Process Algebra.

Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1990.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security for process-oriented systems. In Proc. Eighth
A CM Symposium on Access Control Models and
Technologies, Como, Italy, June 2003.

[3] J. Bergstra and J. Klop. Fixed point semantics in
process algebra. Technical report, Mathematical
Centre, Amsterdam, 1982.

[4] S. Brackin. A HOL extension of GNY for
automatically analyzing cryptographic protocols. In
Proc. 9th IEEE Computer Security Foundations
Workshop, Kenmare, County Kerry, Ireland, 1996.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. Proceedings of the Royal Society of
London, (426):233-271, 1989.

[6] A. Cerone. From process algebra to visual language.
Technical Report 01-36, Software Verification
Research Centre, The University of Queensland,
Queensland 4072, Australia, October 2001.

[7] I. Cervesato and C. Meadows. A fault-tree
representation of NPATRL security requirements. In
Workshop on Issues in Theory of Security 2003, 2003.

[8] R. Cleaveland, X. Du, and S. Smolka. GCCS: A
graphical coordination language for system
specification. In 4th International Conference on
Coordination Models and Languages, pages 284-298,
Limassol, Cyprus, 2000.

[9] R. Cleaveland, J. Gada, P. Lewis, S. Smolka,
O. Sokolsky, and S. Zhang. The Concurrency Factory:
practical tools for specification, simulation,
verification and implementation of concurrent
systems. In G. Belloch, K. Chandy, and
S. Jagannathan, editors, Proc. DIMACS Workshop on
Specification of Parallel Algorithms. AMS, May 1994.

[10] W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. Formal Methods in System
Design, 19, 2001.

[11] P. Epstein and R. Sandhu. Towards a UML based
approach to role engineering. In Proc. Fourth ACM
Workshop on Role-Based Access Control, Fairfax,
Virginia, USA, October 1999.

[12] F. Fabrega, J. Herzog, and J. Guttman. Strand
spaces: Proving security protocols correct. Journal of
Computer Security, 7:191-230, 1999.

[13] S. Gilmore and M. Gribaudo. Graphical modelling of
process algebras with DrawNET. In Proc. Workshop
on Petri Nets and Performance Models (PNPM '03),
Urbanna, Illinois, USA, September 2-5 2003.

[14] G. Guizzardi, L.Pires, and M. yon Sinderen. An
ontology-based approach for evaluating domain
appropriateness and comprehensibility
appropriateness of modeling languages. In 8th
ACM/IEEE Int. Conf. on Model-Driven Engineering
Languages and Systems, Montego Bay, Jamaica, 2005.

[15] C. Gurr. Effective diagrammatic communication:
Syntactic, semantic, and pragmatic issues. Journal of
Visual Languages and Computing, 10, 1999.

[16] D. Harel. Statecharts: a visual formalism for complex
systems. Science of Computer Programming,
8:231-274, 1987.

[17] D. Harel and E. Gery. Executable object modeling
with statecharts. IEEE Computer, 30(7), July 1997.

[18] P. Henderson, R. Waiters, and S. Crouch.
Implementing hierarchical features in a graphically
based formal modelling language. In Proc. 28th Int.
Computer Software and Applications Conf.
COMPSAC '04, pages 92-98, Hong Kong, September
2004.

[19] G. Hilderink. A graphical modeling language for
specifying concurrency based on CSP. In Proc.
Communicating Process Architectures 2002, Reading,
England, September 2002.

[20] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[21] C. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

107

[22] D. Jovanovic, B. Orlic, G. Liet, and J. Broenink.
gCSP: a graphical tool for designing CSP systems. In
Proc. Communicating Process Architectures 2004,
Headington, England, September 2004.

[23] J. Jiirjens. UMLsec: extending uml for secure systems
development. In Proc. UML 2002, Dresden, Germany,
September 2002.

[24] P. Landin. The next 700 programming languages.
CACM, 9(3), 1966.

[25] R. Lichota, G. Hammonds, and S. Brackin. Verifying
the correctness of cryptographic protocols using
Convince. In Proc. 12th Annual Computer Security
Applications Conference, San Diego, California, USA,
December 1996.

[26] J. McLean. A general theory of composition for trace
sets closed under selective interleaving functions. In
Proc. IEEE Symposium on Research in Security and
Privacy, Oakland, California, USA, May 1994.

[27] C. Meadows. The NRL protocol analyzer: an
overview. The Journal of Logic Programming,
26(2):113-131, 1996.

[28] V. Mencl. Enhancing component behavior
specifications with port state machines. Electronic
Notes in Theoretical Computer Science, 101C:129--153,
2004. Special issue: Proceedings of the Workshop on
the Compositional Verifications of UML Models,
CVUML, Ed. F. de Boer and M. Bonsangue.

[29] J. Millen and G. Denker. CAPSL and MuCAPSL.
Journal of Telecommunications and Information
Technology, pages 16-27, March 2002.

[30] G. Milne. Formal Specification and Verification of
Digital Systems. McGraw-Hill, 1994.

[31] R. Milner. Communication and Concurrency.
International Series in Computer Science.
Prentice-Hall, 1989.

[32] Object Management Group. Unified Modeling
Language: Superstructure, Version 2.0, final adopted
specification ptc/03-08-02 edition, August 2003.

[33] C. Petri. Kommunikation mit Automaten. PhD thesis,
Bonn: Institut fiir Mathematik, 1962. Available as
Technical Report RADCC-TR-65-377, vol. 1, 1966,
pages:supl. 1, English Translation.

[34] P. Ryan and S. Schneider. Process algebra and
non-interference. In Proe. 1Pth 1EEE Computer
Security Foundations Workshop, Mordano, Italy, June
1999.

[35] P. Ryan and S. Schneider. Modelling and Analysis of
Security Protocols. Addison-Wesley, 2001.

[36] E. Saul and A. Hutchison. Enhanced security protocol
engineering through a unified multidimensional
framework. IEEE Journal on Selected Areas in
Communications, 21(1), January 2003.

[37] S. Schneider. Verifying the correctness of
authentication protocols in CSP. IEEE Transactions
on Software Engineering, 24(9):741-758, September
1998.

[38] B. Selic. The pragmatics of model-driven
development. IEEE Software, pages 19-25,
September/October 2003.

[39] D. Song, S. Berezin, and A. Perrig. Athena: a novel
approach to efficient automatic security protocol
analysis. Journal of Computer Security, 9:47-74, 2001.

[40] J. Tenzer and P. Stevens. Modelling recursive calls
with UML state diagrams. In Fundamental
Approaches to Software Engineering 2003, LNCS
26PI, pages 135-149, Warsaw, Poland, April 2003.
Springer-Verlag.

[41] E. Tufte. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, Connecticut,
2001.

[42] R. Walters. Automating checking of models built
using a graphically based formal modelling language.
Journal off Systems and Software, 71(1):55-64, 2005.

108

Yahalom

D~;~ ...
In i t ia tor (a)

n ~ N o n c e l n i t A

)>env?b : Users

~.[se.n.d.)..=.l.a.ke , [; -(send.a.b

k = b E K e r r ; n b ~ Nonce; m ~ M e s s a g e s

L f r~ s.~/. ~. y.! .~ .~.~_~. ~ - ' [. . . ¢ i , ,e.j .a.{b.~,,, b } s ~ , , , < =) . ~
L(:.t-..d)..~..= ,i,~ ~ "2[.. t _ . . ~ s e n d . a . b . m . { n b } ~ , b

I , Sess lon(a , b, kab , n o , rib)

Reaponder(a)
n E N o n c e R e s p A

•[ba ~ Key; b ~ Users; n b E Nonce

/_ .(Y_tc] ~ Y] .)..ft..f.?] ". t...--.~'eeei~ e. b. a . ? . n 7 - -
i . : .~ , .~: .~ . .= . : . ~ : '}i 1 , v o n d . a . ~ . ~ . n ~ . n , ~ , - - " , (o >
i i .L~-r~s.~.~.~)--v.A~-~ ;[. [...?recei~e.b.a{b.k.b.} S Ke'U(.) '{na}/¢bo

, , , , "r ::::

::::!ii! i I S e " ~ i ° n (b ' a ' ~ ° ' n ~ ' n ")
::=:

iiii ...

i ! i i U*er(b)

!iii / . f (,send) = t a k e [l n i t l a to r (b)

: i i T i . [Z (; ~ ~ a ~ aT - - T a ~ . ~ ; ' 1 - - t ~ : ~ - - 1
[i i~Silllllli:illllllllllllli~.. Z~.~.~.~ii~. i~.i~:,~illllllllllllllli:i:illi:::illlllllli:illllllli:ili:ii~:(li.[:. I

i ii / , (. . . . ,oe, =,a e
: : ! ! [. 1 7 r ~ - ~ - - ~ a ~ v .. ' - 2 ~ ' f = : - - - - I
: : : : : ! r C r e c e i ~) ' - U ' ? ' h ~ . ; " T " l I
! i ~ i l] ";' T J . 2 Z . _ _ . _ . _ L . _ . ,
: : : : : - , .

!iiii " ~ ; ; ; ; ; i ~ .

i i ! ! ! z (. . . . i ~ e) = S a ~ ,

{~a~e, .fa~e} I

k = b E K e g s S e r u e r

~ a ,b E Uaers ;na ,nb 6 Nonce

..+..¢ i~e.b.j .b.{ rib} s Key(b) [I

..#..Qsendd.a.{b.kob.n=.nb}s K,~(,)-{a-~=~}s ~(~) I I
i i server(i) J

i i i ill [i ~ ; ~ a ; ; ~ T . ,
i i ! i i ! ~(,.~ , ,>=, -,~/ ¢ , i i !
.~'i.T::~$$11~i~ i.'.'.';.'21~ii~i~Z~i~iii:i.'.':;:.'=.'i~:i:.'.'iiiii::ii~i~i;.'.'i:.'Zl) : h |]ntruder(close(X u {m})) I :

i i i t . C,,~ ~ ¢5 "=~, " : x n M,°

......... ; o ~ ; : ; : ; ~ u - ; ; ; ... ! | | ,,,,.,,d..<.> !

F i g u r e 11: Y a h a l o m : T h e C o m p l e t e P r o t o c o l M o d e l

1 0 9

