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ABSTRACT 
This paper argues that  the existing model-driven architec- 
ture paradigm does not adequately cover the visual model- 
ing of security protocols: sequences of interactions between 
principals. A security protocol modeling formalism should 
be not only well-defined but  also support event-based, com- 
positional, comprehensive, laconic, lucid, sound, and com- 
plete modeling. Candidate visual approaches from both the 
OMG's MDA and other more well-defined formalisms fail 
to satisfy one or more of these criteria. By means of two 
example security protocol models, we present the GSPML 
visual formalism as a solution. 

Categories and Subject Descriptors 
D.2.1 [Requ i r emen t s /Spec i f i ca t ions ] :  Languages; D.3.3 
[Programming Languages]: Concurrent programming struc- 
tures; D.4.6 [Securi ty  a n d  P ro t ec t ion ] :  Cryptographic 
controls, Information flow controls 

General Terms 
Security, Design, Languages 

Keywords 
security protocol, security principal, GSPML 

1. INTRODUCTION 
The model-driven-approach [38] to software construction 

promises to improve software quality and reduce costs through 
automatic construction of software from (visual) models. Vi- 
sual modeling is slowly becoming a common practice for 
software developers, so the hope is that  practitioners will be 
comfortable with using visual models to design their soft- 
ware. (In this paper, we use the unqualified term modeling 
to mean visual modeling.) 

The force of common practice is defining the model-driven- 
approach in terms of the Object Management Group's Model 
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Driven Architecture or MDA. The core of the MDA is UML 
2.0 [32]. Neither UML 2.0 (henceforth UML) or MDA treats 
security as much more than a service; there are no models 
for security per se. 

This raises the question of what security-specific aspects of 
software development, if any, need coverage in this paradigm. 
This paper argues that  there are security-specific issues that  
cannot be modeled well with existing features of MDA. These 
issues need adequate coverage in model-driven approaches. 

One of the most significant security-specific aspects of 
software development not covered by the MDA is the secu- 
rity protocol. Security protocols are sequences of allowable 
interactions between principals. A principal is an entity that  
participates in a security system. Security protocols are not 
necessarily about cryptography; one of our examples will 
model a security protocol that  involves no cryptography at 
all. 

The UML candidates for visual modeling of security pro- 
tocols all have shortcomings. Existing alternatives outside of 
UML also have similar problems, for various reasons. Some 
of these difficulties are visual modeling issues and others are 
semantic issues. One of the most critical semantic require- 
ments for modeling security protocols is the ability to define 
all traces of a protocol with a single model as opposed to 
being able to describe any trace with a single model. Ex- 
plicit definition of all traces is necessary because each bad 
trace has the potential to become a security flaw. A highly 
desirable visual modeling feature is event-based modeling, 
as opposed to state-based modeling. The distinction is that  
state-based modeling is best for designing reactive behavior 
while event-based modeling is best for designing interactive 
behavior. State-based modeling requires us to work with in- 
ternal computational aspects, such as states or triggers, to 
construct the traces of a protocol. An event-based modeling 
paradigm lets us work directly with the external events and 
traces of a protocol. 

2. MOTIVATION 
The core purpose of visual modeling, as opposed to other 

forms of modeling, is presentation and understanding. For- 
mal verification, machine-generated implementation, and other 
automatic processing are probably done better with text- 
based models. In fact, a good well-defined visual language 
will always be a form of syntactic sugar [24] for some text- 
based languge, since the text-based semantics will be needed 
for execution. So our interest is in security protocol mod- 
eling that  has good visual properties for presentation and 
human understanding, without sacrificing soundness that  
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supports translation into text-based models. This leads to 
the following criteria for security protocol modeling: 

• The visual formalism should have a well-defined syntax 
and semantics. 

• The visual formalism should be event-based. It should 
focus on interaction patterns between principals and 
abstract away from details of internal computations. 
The importance of this is underscored by the fact that  
existing security protocol modeling tools use event° 
based visual models, rather than  state-based models. 

• The visual formalism should support models that  are 
compositional Compositional models are constructed 
from sub-models that  identifiably correspond to the 
principals of the protocol. 

• The visual formalism should suport models that  are 
comprehensive. It should be capable of defining all 
traces of a protocol by means of a single diagram. 

• The visual formalism should suport models that  are la- 
conic [15]. A non-laconic model is one where some ob- 
ject or relation in the represented abstraction is mod- 
eled more than once. Following Guizzardi [14], a model 
.M is laconic w.r.t, an abstraction .A if the interpreta- 
tion mapping from .M to .A is injective. 

• The visual formalism should suport models that  are 
lucid [15]. A non-lucid model is one where some ob- 
ject or relation in the model represents more than one 
object or relation from the modeled abstraction. Fol- 
lowing Guizzardi [14], a model .M is laconic w.r.t, an 
abstraction .,4 if the representation mapping from .A to 
.M is injective. 

• The visual formalism should suport models that  are 
sound [15]. An unsound model is one where some 
model object or relation has no corresponding object 
or relation in the represented abstraction. Following 
Guizzardi [14], a model .M is sound w.r.t, an abstrac° 
tion ,,4 if the representation mapping from .,4 to .M is 
surjective. 

• The visual formalism should suport models that  are 
complete [15]. An incomplete model is one where some 
object or relation in the represented abstraction has 
no corresponding model object or relation. Following 
Guizzardi [14], a model Jk4 is complete w.r.t, an ab- 
straction ,,4 if the interpretation mapping from .M to 
.,4 is surjective. 

The UML candidates for visual modeling are either not 
well-defined or they fail to suport comprehensive or laconic 
models. Visual modeling candidates outside UML are well- 
defined but  are either state-based or fail to suport models 
that are laconic or comprehensive. The visual interfaces to 
current security protocol modeling tools also do not provide 
a formalism that satisifies all of our criteria. These candi- 
dates are not necessarily bad but  are not suited to visual 
security protocol modeling, according to one or more of the 
criteria above. We make these statements without explana- 
tion here but  present a detailed justification in Section 4. 

process region 

event r e g i o n ~  

sequential box concurrent box 

Figure 1: Basic Boxes of GSPML 

3. GSPML 
We present GSPML as a visual security protocol modeling 

language that  satisfies all of the above criteria. (At the 
time this paper was written, GSPML did not stand as an 
acronym of any particular name.) The goal of the GSPML 
alternative is to provide a visual modeling language suitable 
for the security-specific problem of protocol modeling. The 
emphasis is on a solid visual model with complete syntax 
and semantics, rather than tool application via the specific 
semantics. Given a well-defined visual modeling language, a 
variety of formal techniques could be used, including many 
with semantics tha t  differ from the semantics of GSPML 
(e.g. NPATRL, CAPSL, strand spaces [12, 39], or a general 
LTS). 

The GSPML alternative is well-defined, event-based, com- 
positional, comprehensive, and laconic. This is demonstrated 
by the diagram at the end of this paper (see Figure 11) that  
defines a complete model of the Yahahlom cryptographic se- 
curity protocol [5]. This diagram fits on a single page but  
defines all possible traces of the protocol interacting with a 
Dolev-Yao intruder. So a single GSPML diagram can define 
not only all the correct behavior of a protocol but  also its 
behavior under many attacks. 

Our presentation here in Section 3 does not define a se- 
mantics for the language but  provides an introduction and 
demonstrates the applicability of GSPML. The meaning of 
well-formed GSPML diagrams is compatible with several 
forms of process algebra but  it is not necessary to under- 
stand process algebra in order to understand the GSPML 
presented in this paper. It  is necessary to understand that  
GSPML models are arrangements of nested rectangles or 
boxes that define trace generating processes. 

In GSPML, every trace-generating process is defined by ei- 
ther a process box or a process box name. (For the rest of this 
paper we will use the term process and box interchangeably.) 
There are two major distinctions between boxes: sequential 
boxes and concurrent boxes, as in Figure 1. A sequential box 
has rectangular corners and models sequential processes. A 
concurrent box has round corners and models concurrent 
processes. A process box name (or more simply, box name) 
may only appear as a label for a box, or inside a process 
region of a box. A process region may have only one box 
or box name in it. Sequential boxes also have event regions 
that  contain the events of a GSPML model. When all of the 
events in the event region of a sequential box have occurred 
then the sequential box is replaced by or becomes the box 
contained or named in the process region below the event 
region. So GSPML diagrams are read from top to bottom 
and outside to in. 

We present the details of GSPML by examples of its use. 
We give two examples: first a cryptographic security proto- 
col and then a non-cryptographic security protocol. 
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F i g u r e  2: A G S P M L  M o d e l  o f  O n e  R u n  o f  t h e  Y a -  
h a l o m  P r o t o c o l  

3.1 The Yahalom Protocol 
Our example of a cryptographic security protocol is the 

Yahalom protocol. The GSPML model is based on the CSP 
process algebra model presented by Ryan, Schneider, et al. 
[35]. Readers interested in process algebra modeling of se- 
curity protocols, as opposed to exposition of the GSPML 
language, should consult their work. 

The Yahalom protocol is used to establish a session key 
kab between two principals A and B, via a server J.  Fig- 
ure 2 shows a simple GSPML diagram of a single run of the 
protocol, where principal A initiates a session with principal 
B. The protocol run is simplified in the sense that  the prin- 
cipals are assumed to be somehow prepared to synchronize 
on each other's nonces and the session key, in advance of 
the protocol run. That  is, each event contains precisely the 
nonces ha,rib and session key kab to make this run work. 
None of the three named boxes in Figure 2 is defined as be- 
ing prepared to deal with any possible well-formed nonce or 
session key. 

The goal of Figure 2 is to introduce the protocol, not 
model it. That  is, the GSPML of Figure 2 is playing the role 
of the usual message sequence diagram used to introduce a 
cryptographic protocol. So Figure 2 shows that  GSPML 
can be used for explanation as well as definition of security 
protocols. 

Figure 2 provides a good non-trivial first example of GSPML. 
The two outermost (unnamed, round-cornered) boxes are 
concurrent boxes that model the concurrent interaction of 
the principals A arid B and the server. Each concurrent box 
has two process regions. The outermost concurrent box has 
the next inner concurrent box in one of its process regions 
and a sequential box named J in its other process region. 
The sequential box J contains the events that  model the 
protocol steps of the server in a single run  of the Yahalom 

protocol. The second concurrent box contains the sequential 
boxes named A and B defining the corresponding protocol 
steps for the initiator and responder. 

Each event in a sequential box is denoted by a small circle, 
called an event symbol, on the left boundary of the box's 
event region. The top-to-bottom order of the event symbols 
defines the sequential order of the events for that box. So 
the events of sequential box A at the top of Figure 2 are 

a.b.a.na 
j.a.{b.kab.na.nb}S ..... Key(b).m 
a.b.m.{nb}kab 

Sequential boxes communicate or share their events via in- 
terface port symbols on enclosing concurrent boxes. Concur- 
rent boxes with interface port symbols are parallel boxes that 
define communication between their components. An inter- 
face port symbol is a small rectangle placed on the boundary 
between the process regions of a parallel box. 

Shared events are connect by synchronization lines. The 
synchronization lines shown in Figure 2 are an example of 
concrete synchronization lines because they connect event 
symbols directly. (There are abstract synchronization lines 
that do not connect event symbols. They will be presented 
shortly.) 

Concrete synchronization lines depict sharing of the spe- 
cific events they connect. The events connected by the syn- 
chronization lines happen at the same time; they appear 
as a single event to an outside observer. Synchronization 
lines may be drawn anywhere that  provides clarity while 
connecting the events, but  must pass through the interface 
port symbol that  defines the parallel combination. 

In Figure 2 the shared events model the transmission and 
receipt of a message in the security protocol. 

Events in GSPML may have compound names. The event 
itself is atomic but various information about the event can 
be represented using a "dot" separator, as in x.y between 
the name components x and y. 

In Figure 2's model of a run of the Yahalom protocol, the 
events have compound names with the first component indi- 
cating the sender for that  event and the second component 
indicating the receiver of the event. For example, the first 
event of box A is the compound event a.b.a.na: a trans- 
mission from source a to destination b of the message a.na. 
The concrete synchronization line from event a.b.a.na in box 
A to the same event in box B models the transmission of 
message a.na by principal A and receipt by principal B. 

Figure 2 also contains concrete synchronization lines con- 
necting events with different names at source and destina- 
tion. For example the second event of box A is named 
j.a{b.kab.na.nb}S . . . . .  Key(a).m while the source event in box 
J is named j.a{b.kab.na.nb}S . . . . .  Key(a).{a.kab}$ . . . . .  Key(b ) • 
This aliasing indicates that  the source and destination boxes 
have different interpretations of the shared event. In this 
case, the initiator (modeled by box A) cannot read the 
last component {a.kab}Ser~erKey(b) because it does not have 
ServerKey(b) so it interprets that  component as simply as 
a sequence of bits m. 

We can tell which event happens first in the diagram of 
Figure 2 by noticing that second event of the B box happens 
at the same time as the first event of the J box, so box J ' s  
first event cannot start the protocol. As the diagram shows 
it, the first event in the protocol must be the shared first 
event of boxes A and B: transmission of the message a.na 
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from a to b. (It is not always necessary that a unique event 
in a GSPML diagram be the first event; the first event can 
be one of several possibilities.) 

The Yahalom protocol works as follows: principal A wishes 
to establish a session with principal B and initiates a run of 
the protocol by sending its identity a and a nonce no to prin- 
cipal B. This is shown by the synchronization of the first 
event a.b.n,~ communicated from the A box to the B box in 
Figure 2. Box B then sends a,n,~ and its own nonce rib, en- 
crypted under the key ServerKey(b) to the server. This is 
show in Figure 2 by the synchronization of the second event 
of the B box with the first event of the J box. The third 
step of the protocol has the server (box J) send principal 
B's identity b, both nonces na, nb, a session key kab, and a 
message {a.kab}S~r~,erKe~(b) to principal A. This is shown in. 
Figure 2 by the synchronization of the second event of the J 
box with the second event of the A box, where the initiator 
sees the message {a.kab}s . . . . .  Keg(b) simply as a bit  string 
m .  

In Figure 2 the end of the protocol run is shown by the 
J box becoming the (constant) process box S K I P  that  de- 
notes successful termination, while the A and B boxes be- 
come parameterized Session boxes that  denote the start of 
a session between principals A and B. 

3.2 A Complete GSPML Model 
Defining a complete model of the Yahalom protocol will 

explain more of the GSPML language and demonstrate that  
it is event-based, comprehensive, concise, well-defined, and 
composable. Our complete model follows the Dolev-Yao 
structure where the intruder acts as the network connect- 
ing the principals. The complete GSPML model is shown 
as Figure 11 at the end of the paper, but  we do not use 
that  figure to explain GSPML. Instead, the model is pre- 
sented beginning from a top-level view. Then components 
of the complete model are explained, proceeding from sim- 
pler constructions to more complex. This will demonstrate 
the abstraction capabilities of GSPML. The form of our ex- 
planation is to introduce different language elements by ex- 
ample. The meaning of each language element is explained 
first and then the protocol modeling structure is explained 
based on the meaning. 

3.3 High-Level Model Structure 
Figure 3 shows a top-level view of the model of Figure 

11, with principals A and B as abstract concurrent boxes 
User(a) and User(b), the server as the abstract concurrent 
box Server(j), and the intruder as abstract sequential box 
Intruder(X). Abstract boxes have no internal regions for 
events or processes. This use of abstract concurrent and 
sequential boxes shows the high-level structure of the model 
without the internal details. 

The basic structure of Figure 3 is a parallel box synchro- 
nizing the sequential Intruder(X) box with the nested in- 
terleaving boxes that  model User(a), User(b) and Server(j). 
The boxes modeling Intruder(X), User(a), User(b) and 
Server(j) are each enclosed by a box drawn with dashed 
lines, just  like a synchronization line. These dashed boxes 
indicate the use of renaming to map the names of events into 
other event names that  correspond to the events of another 
box. This lets us give events names that  are meaningful 
to the box that  contains them, on either end of a synchro- 
nization. A good example of this is shown in Figure 11 at 

the end of this paper, which uses renaming to map the send 
and receive components of events to their  proper roles in the 
protocol. That  is, a send is first mapped to a take which 
connects it through the interface port of Figure 11; then the 
take is mapped to a learn by the intruder. Figure 4 shows 
that  the intruder's events begin with either learn or say and 
thus should be renamed to connect them to the send and 
receive of the protocol. 

The boxes contained in the process regions of the inter- 
leaving boxes are interleaved, since there is no interface port 
symbol on the boundary between them. The events of the 
boxes contained i n  the two process regions of an interleav- 
ing box are not synchronized. For example, if the boxes 
User(b) and User(a) each contained an event named a and 
both boxes performed an a event, then the traces of the 
interleaving concurrent box containing them would include 
two a events, not one. Even though the synchronization 
lines connect to the interior of both User(a) and User(b), 
we can tell that  they do not communicate directly because 
the synchronization lines do not go through an interface port 
symbol on the region boundary between them. 

Figure 3 shows that  none of the boxes User(a), User(b), 
or Server(j) communicates directly but  tha t  the three inter- 
leaved boxes are connected, via the outer parallel box, with 
the intruder box Intruder(X). The synchronization lines con- 
necting the boxes are abstract synchronization lines because 
they do not connect to specific events but  are terminated in- 
side the process region of the applicable box, without touch- 
ing anything. This termination of an abstract synch line in- 
dicates that  the shared event is within some greater level of 
detail inside the applicable box. These abstract synchroniza- 
tion lines are similar to the abstraction technique presented 
by Henderson, et al. [18] but  with a different semantics. Ab- 
stract synchronization lines in a GSPML diagram, used as 
shown in Figure 3 have no meaning but  provide a reminder 
of the communication pattern in the more concrete models. 
In a software tool these abstract synchronization lines would 
be place holders for the concrete synchronization lines of a 
more detailed vie w. In Figure 3 the abstract synchroniza- 
tion lines suggest that  box Intruder(X) participates in every 
communication event, from any of the principals. 

3.4 Intruder Structure 
Figure 4 shows the complete structure of the intruder box 

Intruder(X). Figure 4 is an example of an external choice box 
indicated by a square external choice symbol on the left end 
of the boundary between its process regions. An external 
choice box offers a choice of either of its two boxes to its 
environment. The first event of the combination determines 
the choice of box. 

In Figure 4 the events are named m because the intruder 
may or may not be able to interpret the components of an 
event name. In Figure 4 this notation shows that  the in- 
truder box Intruder(X) can copy and store details about 
any event communicated between the principals. This is 
shown by the parameterized box name Intruder(KnownFactsU 
(m}). The set KnownFacts models not  only the events 
seen by Intruder(X) but  also any event components that  
Intruder(X) may be able to separate and combine with 
components from other events. The set KnownFacts also 
includes any event components that Intruder(X) may be 
able to encrypt or decrypt, according to keys it already 
knows or learns from seeing protocol events. 
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Intruder(X) 

iii  ,earn.m 
Intruder(close(X U {m})) 

J 
. . ~ s a y . m  : X n messages ] 

In t ruder(X)  

Figure 4: Yaha lom:  T h e  Intruder  

The use of external choice indicates that  the intruder 
is prepared to participate in any events that  any of the 
three other principals offers. It  can either "copy" them 
into KnownFacts and pass them along, receive transmitted 
events but not relay them, or spontaneously generate bogus 
events that are based on the elements of KnownFacts. 

Because the intruder's events are in distinct sequential 
processes, the intruder box does not have to make its traces 
of send events correspond to the traces of receive events it 
saw. The box following a receive event (incoming arrow) 
has the parameter close(KnownFacts U {m}) that  models 
the intruder accumulating facts in KnownFacts. The close 
function models the parsing, decrypting, encrypting and re- 
composing of events seen by the intruder. Definition of the 
close function is outside the scope of the GSPML language, 
but is represented by the parameterized box name. Use of 
the parameter means that  there is a distinct intruder box 
for each possible value of the parameter. 

The other part of the intruder box uses KnownFacts N 
Messages to model faithful transmission as well as malicious 
replay and the substitution of well-formed but  spurious mes- 
sages by the intruder. 

The meaning of the intruder 's GSPML structure is that 
box Intruder(X) must receive any event "sent" by any prin- 
cipal but  it is not required to relay that  event and may per- 
form arbitrarily many send events before receiving an event 

Server(j) 
kab E KeysServer 

. •  a, b ~ Users; ha,rib ~ Nonce 

"'["X~send.j.a.{b.k~b.na.nb}S ..... Ke~(.)'{a.kab}S ..... K.u(b~ 

[ I  Ser r(,) J 

Figure  5: Yaha lom:  T h e  Server Process  Server(j)  

from a principal. 
The sequential intruder box Intruder(X) of Figure 4 is 

able to handle many events from many protocol runs be- 
cause it is recursive. The box participates in one event of 
one protocol run, by its choice mechanism. After the single 
protocol event, it uses recursion to become another box that  
is prepared to make all of the same choices again. Recur- 
sion is defined by box names, rather than graphical notation. 
That  is, the intruder box is recursive because its box name 
Intruder(X) appears within the process regions of a box 
named Intruder(X). (In our prototyping to date, we have 
found that  purely visual modeling of general recursion is 
problematic.) A convention for GSPML uses a bold font for 
box names as a reminder that  those boxes are intended to be 
recursive. In Figure 4 the bold font box name Intruder(X)  
indicates the intended recursion, but  GSPML attaches no 
meaning to the font used for the box names. 

3.5 Server Structure 
The next figure, Figure 5, shows the full definition of the 

server box Server(j). This box demonstrates several features 
of GSPML that  we have not seen yet, including two general- 
ized or indexed boxes. The outer concurrent box is a indexed 
interleaving box. It  is a concurrent interleaving box because 
it has no interface port on the boundary between its process 
regions. The double line separating the two process regions 
tells us that  it is an indexed interleaving box. The upper 
process region of an indexed interleaving box has a specifica- 
tion for the index set and the lower process region contains 
a parameterized box describing the processes that are in- 
terleaved. The meaning of the box Server(j) is that  for 
each possible key kab E KeysServer, there is an unnamed 
interleaved box. The index parameter kGb distinguishes the 
structural difference between each interleaved box. 

In Figure 5, the each interleaved box is itself an indexed 
box, an indexed external choice box. An indexed exter- 
nal choice box allows its environment to choose from an 
indexed set of boxes. An indexed external choice box is 
depicted by the double square external choice symbol in 
its upper left corner. The index set is the double index 
a, b E Users; nG, nb E Nonce. This double index shows that  
this indexed external choice box offers a choice of boxes over 
all possible pairs of users and pairs of possible nonces. The 
first event of each box chooses one sequential box that  then 
performs the appropriate protocol run. This innermost se- 
quential box of Figure 5 is essentially the same as the server 
box shown in Figure 2. It  gives the order of the protocol 
steps followed by the server in a single run, with all values 
fixed. The box containing this single server run uses exter- 
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Figure 6: 
Users  
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Responder(a) 

User(b) 
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iiiiiii _ 
Yaha lom:  H i g h - L e v e l  S t r u c t u r e  of  B o t h  

nal choice, indexed over all possible pairs of agents and all 
possible pairs of nonces, to define a collection of server boxes 
that can conduct a single run for a fixed key kab, with any 
pair of users applying any pair of nonces. This construction 
models the server being prepared to engage in any run it is 
requested to participate in. The outer indexed interleaving 
box models the condition that  the server Server(j) may be 
engaged simultaneously in many protocol runs, each with a 
different session key, including some bogus runs initiated by 
the intruder Intruder(X). 

3.6 User Structure 
The model is ~ompleted by boxes for each of the users. 

In order to model a protocol of this kind, each user should 
be able to play either role, init iator or responder. Figure 
6 shows the high-level structure of a user, either Alice or 
Bob. Each user is composed of two boxes, one for the user's 
role as a protocol run initiator and one for its role as a 
responder. The role modeling boxes are composed into a 
single user, via an interleaving box, to model the possibility 
of that user being engaged simultaneously in several protocol 
runs in either role. 

Within the high-level structure of a user, the model de- 
fines the initiator and responder runs over all possible com- 
binations of principal names, session keys, and nonces. We 
examine the structure of the responder role first, because it 
is simpler. The lower part of Figure 7 shows the box for the 
responder role, for user Alice. The lower part of Figure 7 
does not introduce any new GSPML notation. The struc- 
ture of the Responder(a) box is similar to the structure of 
the server box Server(j) shown in Figure 5: an outer inter- 
leaving box that  allows a responder to be engaged simulta- 
neously in several runs of the protocol, each distinguished 
by the responder's choice of nonce na in the second step of 
the protocol. One implication of this construction is that  
a Responder may be engaged in several protocol runs, each 
run having identical values of a, b, rib, and kab. While a 

U,er(a) 

I n l t l a t o r ( ~ )  

n E N o n c e l a  

(1) env?b  : U s e r s  

. . . . . . .  ~ send .a .b .a .na  

• kab E Key;  n b E N o n c e ;  m E M e s s a g e s  

. . . . . . .  ! . . . .  ~ r e c e i v e . f f . a . { b . k a b . n a . n b } S e r v e r K e y ( a  ) .m  
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Figure 7: Y a h a l o m :  T h e  Single  User  Alice 

properly implemented protocol will not do this for a legiti- 
mate run, an intruder might try it. A good protocol model 
will be able to reflect this and support the investigation of 
its consequences. The indexed external choice box that de- 
fines Responder(a, na) within the interleaving box gives us a 
choice of every possible responder process, over session keys 
kab, initiator n o n c e s  •b 1 , and initiator names b. There is no 
recursion here; once the names, nonces, and session keys are 
fixed, the responder runs until  a session is established, as 
shown by the process name Session(b, a, kba, ha, rib) in the 
process region of the innermost box. 

The most complex component of our complete model is 
the initiator role. It  introduces one new GSPML construct, 
the menu choice box. Menu choice boxes offer a choice of 
first events, from a single box, rather than a choice of boxes. 
The menu choice box of Figure 7 is contained inside indexed 
interleaving box Initiator(a). Menu choice is denoted by the 
double diamond event choice symbol. Above the event choice 
symbol there is a single event name env?b : Users that  
denotes a choice of event b of type Users, received from the 
environment env of the box .  Other than this one new box, 
the rest of Figure 7 uses notation already explained. Notice 
this initial event is not connected via a synchronization line. 

The added complexity in the initiator arises because of 
the need to model an initiator 's ability to start legitimate 
protocol runs entirely as a consequence of its own decision. 

T h a t  is, the intruder Intruder(X) should not be able to force 
any user to start  a legitimate protocol run. Otherwise, the 
intruder either has mind control powers over the human user 

XWhen Alice is responder, the subscripts axe reversed. 
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or has obtained control of the user's host. An intruder in 
either of these situations has no reason to try to break this 
session key establishment protocol. So the initiator has to 
use menu choice to allow its environment (i.e. the human 
user) to chose the responder. 

The outer structure of the Initiator box in Figure 7 is 
similar to the responder's structure. An interleaving box 
models concurrent runs of the protocol using different ini- 
tiator nonces n~. Within the interleaving of runs defined by 
possible nonces the menu choice box models the initiator's 
choice of responder. 

Within the process region of this menu choice box that 
selects a user b we find a simple sequential box for each pos- 
sible choice of user received from channel env. This simple 
sequential box transmits the applicable nonce to the chosen 
user's responder. The process region of this simple sequen- 
tial box uses an external choice box to select the box that 
finishes the initiator's part of a single run, given the nonce nb 
chosen and returned by the responder b. Once the respon- 
der has chosen a nonce nb the rest of the initiator becomes 
a single run via a sequential box, just like the server and 
responder boxes seen earlier. 

3.7 Modeling a Non-Cryptographic Protocol 
We can demonstrate the versatility of GSPML by model- 

ing a non-cryptographic security protocol, and use this sec- 
ond example as an opportunity to introduce further GSPML 
notation. In contrast to the preceding example of the Ya- 
halom protocol, information flow security protocols do not 
involve cryptography. Intuitively, an information flow secu- 
rity protocol involves a resource that is shared between two 
environments High and Low. The resource is supposed to 
provide shared service to both High and Low but  prevent 
information from flowing from High to Low. 

The problem is not as easy as it looks and is still a research 
topic. One of the most difficult parts of the problem is defin- 
ing absence of information flow. There axe simple definitions 
of an information-flow-secure resource shared between High 
and Low that are clearly effective but inhibit or preclude 
functionality. For example, if the allowable security proto- 
col provides no services to the High environment, then the 
shared resource in question will be information flow secure. 
The difficulty is getting a less restrictive definition of an al- 
lowable protocol that still has acceptable information flow 
properties. GSPML can both define allowable information 
flow and model the protocols. 

We now define information flow security, for a simple ser- 
vice protocol. The definition of information flow security is 
taken from Ryan and Schneider [34]. The definition is not 
the best proposed by Ryan and Schneider [34] but  is chosen 
because it can show GSPML notation we have not seen yet. 
Readers interested in information flow security can refer to 
McLeaxi [26]. 

The most significant difference in this example is that  we 
are now modeling a relation between two GSPML models. 
In our case, the relation is equivalence 2 between the un- 
named box of Figure 8(a) and the unnamed box on of Figure 
8(b). 

The new feature of GSPML used in this example is that  
both parts of Figure 8 use a hiding box. A hiding box makes 

2For definitions of information flow security, the specific 
kind of equivalence is significant, but  a discussion of that  
would detract from our main point. 

P i . 6 ~ 6 ~ l  ............ " 

(~) 

>:. .... Protocol  

i iU  

(b) 

F i g u r e  8: M o d e l i n g  an I n f o r m a t i o n - F l o w - S e c u r i t y  
P r o t o c o l  

events inside it invisible to the environment of the hiding 
box; inside the hiding box the hidden events axe still visible. 
A hiding box is distinguished by its strikethrough symbols; 
the strikethrough symbols indicate the events that axe to 
be hidden in the enclosed box. Outside the hiding boxes of 
Figure 8 events alo~ and blo~, axe visible but events ahigh 
and bhlgh axe invisible. Inside the hiding box, all four events 
axe visible when they take place. 

The box construction on the right side of Figure 8 is using 
synchronization with the constant box STOPH to block H 
(i.e. High) events in the box Protocol. The constant box 
S T O P  is a process box that  never performs events. It may 
be considered to have an interface with visible events, but 
it never performs them. Thus S T O P  generates only one 
trace: (/. S T O P  does not represent normal termination but  
deadlock or a blocked process. When boxes are synchronized 
via a parallel box but the combination reaches a point in its 
execution where one of them is not prepared to synchronize 
then the combination blocks. In this case, since box S T O P n  
has precisely all the H events of box Protocol, only L events 
happen in the combination. 

Figure 8 uses the process box Protocol to define the ser- 
vice itself and the two models containing copies of Protocol 
to define information flow security for the service. Essen- 
tially, the GSPML of Figure 8 defines information flow se- 
curity for Protocol as the condition that  any behavior of 
Protocol with the H events hidden (i.e., Figure 8(a)) is the 
same as any behavior of Protocol, with its H events blocked 
and then hidden (i.e., Figure 8(b)). The implications of this 
definition may be understood by considering that an axbi- 
traxy intruder box may be inserted as synchronized with the 
Protocol box inside each model of Figure 8; thus there is po- 
tential for different behavior to be visible between the two 
parts of Figure 8. For example, axi adversary added to Fig- 
ure 8(a) can use the external choice semantics of Protocol to 
selectively choose the second inner box of Protocol (the one 
that  does bhigh) but then only request event ahlah, resulting 
in a failure (i.e. a covert channel). A similar adversary could 
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be added to Figure 8(b) but  would not be able to block the 
(already blocked) high events. 

Adding specific details to the protocol (i.e. the Protocol 
box) is a key step in modeling information flow security. The 
example uses two simple events a and b while a more realistic 
example might use events like create-channel, start-channel, 
stop-channel, clear-channel and delete-channel for a mul- 
tilevel boundary controller. Some specifications of Protocol 
will define sets of traces (and failures) that  result in equality 
and others, sometimes surprisingly, will not. The process of 
designing a suitable information flow security protocol in- 
volves trade offs between the specification of Protocol, the 
protocol itself, and the pair of enclosing security definition 
boxes. 

Figure 8 also demonstrates the compositional nature of 
GSPML models. If the service defined by the box named 
Protocol is to have another security property besides infor- 
mation flow security, then the box named Protocol can be 
removed unchanged from the hiding and blocking equiva- 
lence and placed in a model for tha t  property. 

4. RELATED WORK 
After looking at two examples, it may be helpful to con- 

sider related work and analyze it according to our criteria. 
With our criteria: event-based, composable, comprehensive, 
concise, well-defined, we can assess the suitability of the 
various MDA/UML models for security protocol design and 
analysis. We can also investigate the usefulness of other 
modeling approaches that  are not part of the MDA suite. 

4.1 UML Candidates 
To model security protocols in UML, we must use one or 

more of the available modeling mechanisms: actions, activ- 
ities, interactions, state machines, or use cases. Use case 
models are high-level requirements tools and use the other 
visual modeling techniques to describe behavior, so they are 
not candidates for modeling any but  the most rudimentary 
concepts of security protocols. UML Actions include con- 
structs such as BroadcastSignal, ReadVariable, and WriteLink; 
they correspond to individual events, methods, messages, or 
calls. Thus, they are also not suited to modeling complete 
security protocols. 

UML Activities organize UML Actions into structures that  
resemble Petri nets. UML Activities employ control- and 
data-flow relationships in their Petri-net-like structures, which 
is less desirable when the issue is protocols and we wish to 
avoid details about internal computations. 

UML Interactions are similar to ITU Standard Z.120 Mes- 
sage Sequence Charts, or the older UML 1.x Sequence Di- 
agrams: a collection of vertical life-lines with message flow 
between the lifelines shown horizontally. Both UML Inter- 
actions and ITU Message Sequence Charts have semantic 
problems. Datum and Harel have provided a well-defined 
semantics for these kinds of diagrams, in a visual model- 
ing technique called Live Sequence Charts [10]. All of these 
"sequence-diagram" modeling paradigms have the critical 
strength of being event-based: they model sequences with- 
out internal computational detail. Tha t  is, they model be- 
havior directly in terms of protocol traces. Unfortunately, 
they all have limited usefulness in modeling security pro- 
tocols because each diagram defines only a subset of the 
traces of a protocol. The nature of these diagrams is that  
they visually enumerate traces and lack the power of set 

theory or process algebra to explicitly define all possible 
traces of a combination of principals. For example, suppose 
we use the BPA (Basic Process Algebra) process algebra of 
Bergstra and Klop [1] to define P = a. P,  the process P that  
does event a and then acts like process P.  If the expression 
traces(P) means the set of all traces of process P and the 
symbol ~ denotes concatenation of traces then we can use 
set theory to explicitly define all of the traces of P = a • P 
a s  

{0} U { (a)~tr  [ tr E traces(P)} 

while the corresponding "sequence-diagram" enumeration 
approach is equivalent to the symbolic listing of each possi- 
ble trace 

0, (a), (a, a),... 
As soon as there is a modest variation in the pat tern of the 
traces, this enumeration approach begins to break down. In 
contrast, process algebra or set theory provides us a com- 
plete definition in a single model but  still allows us to unwind 
the model to see or check any trace. The visual modeling 
equivalent of set theory or process algebra is needed to solve 
this problem. 

UML State Machines would appear to offer some promise. 
They are based upon (but are not the same as) the object- 
oriented version [17] of Harel's elegant statechart [16] vi- 
sual formalism. Since statecharts are a well-defined visual 
model, UML State Machines should be able to define com- 
pletely any security protocol, with a single model. Unfor- 
tunately, UML State Machines have some problems: 1) re- 
ceived events are modeled by a different mechanism that  
sent events, 2) the semantics are run-to-completion which 
poses problems for modeling some forms of recursion (Ten- 
zer and Stevens [40] provide good examples of this), and 3) 
some of the events are not atomic [28]. Some of these prob- 
lems are avoided by the concept of UML Protocol State Ma- 
chines. UML Protocol State Machines are like UML State 
Machines without UML Activities. That  is, a UML Protocol 
State Machine only has triggers associated with its transi- 
tions while the more general UML State Machine also has 
UML Activities associated with its transitions. The effect 
of this is that  a UML Protocol State Machine can describe 
one side of an interaction between two security principals: 
either the sequence of requests a principal can make or the 
sequence of responses that  that  a principal can provide. This 
is sufficient for constraining interfaces but  not for modeling 
a complete security protocol. 

From these circumstances we can conclude that UML is 
not well-suited to modeling security protocols. This leads 
us to examine other visual modeling techniques outside of 

• UML, to see if they are better tools for modeling security 
protocols. 

4.2 Existing Visual Models Outside of UML 
We have already mentioned Live Sequence Charts as a 

well-defined event-based modeling technique. The problem 
of needing more than one diagram to define all of a proto- 
col remains. Another possibility is a visual representation 
of labeled transition systems. A labeled transition system 
or LTS is a triple (F, A,--~) where F is a set of configu- 
rations, A is a set of events, and --~ is a ternary relation: 
--~ C F x A x F. Intuitively, the relation --~ represents the 
transitions from one configuration to another; ('7, a, '7') E 
is usually writ ten as '7 -~ '7 I. Labeled transition systems 
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are ideal for machine representation and processing of event 
systems. The problem with labeled transition systems as a 
visual modeling paradigm is the same problem that  lead to 
the development of statecharts: "the unmanageable, expo- 
nentially growing multitude of states, all of which have to be 
arranged in a 'flat' unstratified fashion" [16]. Labeled transi- 
tion systems are not concise. Current LTS work is turning to 
algebraic treatments to overcome this difficulty. Petri nets 
were developed by Carl Petri [33] for formal modeling of con- 
currency, nondeterminism, and communication. Petri nets 
are well-defined and have a large body of literature. They 
are useful for a wide range of problems including workflow 
and performance modeling. The difficulty with using them 
to model security protocols is the presence of computation 
details: initial markings, places, transitions, and data flow. 
They are not event-based. Another difficulty is that  Petri- 
net-based models are not naturally composable in terms of 
security principals. 

Port state machines, a formalism developed by Mencl [28], 
have removed the semantic difficulties associated with UML 
State Machines, while retaining the semantic clarity of state- 
charts. Furthermore, port state machines also address mod- 
eling details needed for object-oriented programming, which 
the original statecharts lack. However, because of this and 
their state-based nature, port state machines have too much 
computational detail for modeling security protocols. They 
are not event-based. 

Harel's original statecharts are a good candidate for mod- 
eling security protocols, because they lack the extra details 
needed to model object-oriented programming issues. They 
are semantically sound and can define an entire protocol 
with a single diagram. Statecharts also have excellent visual 
modeling characteristics. They are not event-based and re- 
quire consideration of states and transitions as well as the 
events they model. We would prefer a more directly event- 
based modeling paradigm. 

Waiters has designed RDT  [42] as a formal visual language 
based on activity diagrams. RDT is designed foremost for 
visual clarity, just what is needed for visual modeling of 
security protocols. It  would be a good candidate but it uses 
an LTS form of depicting behavior, so it is not event-based. 

Another alternative we have not considered up to now is 
a graphical form of process algebra. Process algebras are 
event-based but avoid the explosive complexity of labeled 
transition systems by means of algebraic operators. Process 
algebras view processes as abstract trace generators and pro- 
vide means for composing processes to define more complex 
trace generators. 

Cleaveland, Du, and Smolka developed Graphical Calcu- 
lus of Communicating Systems (GCCS) [8] as part of the 
Concurrency Factory tool [9]. The GCCS visual notation is 
based on Milner's CCS [31] process algebra but the diagrams 
are visual depictions of labeled transition systems. GCCS 
diagrams have the same visual limitations as basic labeled 
transition systems: they are not concise. 

Cerone developed Visual Process Algebra or VPA [6], a 
modeling technique based on combinations of the CCS, CSP 
[21], and Circal [30] process algebras. The VPA approach 
models processes as boxes with ports to indicate communi- 
cation and thus has the potential to be event-based. Un- 
fortunately, VPA uses an LTS or state-machine approach 
within each box to model the behavior of the correspond- 
ing process. For security protocol modeling we would really 

P ; Q I I R  
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g C S P  

prefer an approach that  avoids labeled transition systems 
altogether. 

Gilmore and Gribaudo [13] extended the DrawNET tool 
to model the PEPA [20] stochastic process algebra. The 
DrawNET tool is oriented towards performance modeling; 
the graphical representation of process algebra retains the 
Petri nets of the underlying tool, so the DrawNET repre- 
sentation is not really well-suited to modeling security pro- 
tocols. 

The gCSP (for graphical CSP) tool, developed by Hilderink, 
3ovanovic, et al. [19, 22] is the most ambitious graphical 
form of process algebra to date. Processes are denoted as 
circles in gCSP. Lines connecting the processes denote com- 
position via the various operators of CSP. A surprising omis- 
sion is the graphical modeling of events and their ordering 
within a sequential process. That  is, even though gCSP can 
cleanly show sequential processes P and Q in parallel P l] Q, 
it cannot show the events that  make up sequential process P 
(or Q). This is not a difficulty for control applications that  
gCSP has been applied to, but it is critical for modeling 
security protocols. 

From a security protocol modeling perspective, the gCSP 
notation is interesting because it presents a contrast to  the 
graphical modeling paradigm proposed in this paper. Pro- 
cess algebras are strongly compositional. It is difficult to 
present complex process algebra relationships graphically. 
Figures 9 and 10 illustrate this difficulty in the gCSP nota- 
tion. Figure 9 shows the process algebra fragment P;  QIIR 
which is an ambiguous term specifying the sequential (via 
the ; operator) and parallel (via the I] operator) composition 
of processes P, Q and R. Figure 9 (a) shows how this am- 
biguity can be drawn in gCSP. Figure 9 (b) shows how this 
ambiguity can be resolved by drawing cycles to add arts for 
all relationships. This is problematic in complex composi- 
tions since the diagram tends to become a fully connected 
graph. The gCSP notation has a clever solution to this, 
shown in Figure 9 (c), where a smaller circle is used on 
one side to denote the precedence. The notation is well- 
defined and capable of automatic simplification. However, 
in complex situations, the notation becomes difficult to read, 
as shown by Figure 10. However, it is the lack of explicit 
events that renders gCSP unsuitable for security protocol 
modeling. 

4.3 Security Protocol Modeling Tools 
Another possibility is the (visual) modeling provided by 

security-protocol-specific tools. Most of the these tools have 
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Figure 10: Complex Composition in gCSP 

4.4 UML-Based Security Modeling 
Some work has been done on security modeling with UML. 

Epstein and Sandhu [11] show how UML can be used to 
model RBAC policies. Jiirjens [23] has proposed UMLsec 
as a means of annotating UML with sterotypes and tagged 
values, to specify security requirements. Basin, Doser, and 
Lodderstedt [2] have extended UML, via sterotypes, to Se- 
cureUML. The SecureUML language can be used to specify 
access control requirements on UML Class Diagrams and 
UML Statemachines. None of this work covers security pro- 
tocol modeling. Nevertheless, it supports our observation 
that  bare UML does not treat security issues adequately. 

visual modeling components and it is possible that  we may 
find a satisfactory (from the visual modeling perspective) 
language or technique there. Considering these tools will 
also clarify our emphasis on presentation and understand- 
ing as opposed other purposes such as verification or anal- 
ysis. Clearly the existing tools are effective for those other 
purposes. 

The Security Protocol Engineering and Analysis Resource 
(SPEAR) tool [36] provides multidimensional protocol anal- 
ysis. Multidimensional protocol analysis combines several 
non-visual modeling approaches in order to get a more com- 
plete picture of the security of a cryptographic security pro- 
tocol. The SPEAR tool incorporates multidimensional pro- 
tocol analysis under a graphical user interface. Unfortu- 
nately, SPEAR uses message sequence chaxts to visually 
model security protocols. Its graphical language is not com- 
prehensive. 

The Common Authentication Protocol Specification Lan- 
guage (CAPSL) and MuCAPSL, its group multicast pro- 
tocol version, is a formal language for specifying crypto- 
graphic security protocols [29]. CAPSL is well-defined, con- 
cise, comprehensive, and compositional. CAPSL models can 
be translated into many forms and several cryptographic 
protocol analysis tools have CAPSL support. Unfortunately, 
there is no visual form of CAPSL per se. 
The Convince tool is a pioneer effort in visual modeling of 
cryptographic security protocols [25]. Convince uses a text- 
based formal language based on BGNY [4] logic. Unfortu- 
nately, the characteristics of BGNY do not carry over into 
the visual modeling language, which is essentially a version 
of UML. In particular, protocol steps are modeled visually 
using message sequence charts. 

One security protocol analysis tool tha t  does use a dis- 
tinct security-specific visual language is the NRL Protocol 
Analyzer (NPA) [27]. NPA has its own text-based language 
NPATRL (pronounced "N Patrol") tha t  models a wide range 
of security protocol requirements. NPATRL is an event- 
based language for expressing trace properties. It  uses fa- 
miliar logic operators and one temporal operator to define 
logical properties of events or traces. The NPA tool has 
a corresponding tree-structured language for visual mod- 
eling of NPATRL specifications [7]. The visual language 
is event-based, concise, and well-defined. Our motive for 
looking further is that  the visual NPATRL language is a 
trace-property-language while we are looking for a protocol- 
definition language. That  is, the visual NPATRL language 
does not define the traces of a particular protocol, but  the 
properties (i.e. requirements) of a good protocol. We are 
looking for a language that  can define protocols as they op- 
erate, good or bad. 

5. CONCLUSIONS 
Our first conclusion is tha t  visual modeling does not mag- 

ically make complex security issues simple. The two exam- 
ples were chosen because they are as complex and realistic 
as can be presented in a brief paper. The GSPML depiction 
cannot remove inherent complexity from a security proto- 
col, but it can present security protocols in a laconic form. 
The fact that  GSPML generates correspondingly complex 
models is a good thing: since simplicity and minimality are 
explicit design goals of security, a tool that  makes adding 
unneeded complexity an unpleasant experience is a design 
aid. 

Some complex concepts can be understood more quickly 
by visual means. Visual descriptions are sometimes prefer- 
able to text-based notation. GSPML provides those benefits 
for security protocols. 

Our second conclusion is tha t  GSPML is a modeling lan- 
guage that  meets the security protocol modeling criteria: 
event-based, compositional, comprehensive, laconic, lucid, 
sound, complete, and well-defined. There is no other vi- 
sual modeling technique that  satisfies all of these criteria. 
The current Model Driven Architecture does not provide 
security-specific modeling facilities and its general modeling 
facilities fail to satisfy one or more of the security protocol 
modeling criteria. There are well-defined visual formalisms 
outside of the UML that  could be used to model security 
protocols: labeled transition systems, Harel's original stat- 
echarts, and Petri nets. However, each of these three is also 
lacking according to at least one criterion. 

A comment on our second conclusion is that  all of the 
modeling approaches considered in Sections 4.1 and 4.2 are 
useful and in some cases superior to GSPML, for applica- 
tions other than security protocol modeling. For instance, a 
lack of states and other internal computational details makes 
GSPML less suitable for modeling object-oriented imple- 
mentations. GSPML is for modeling and defining proto- 
cols visually. Other than through some visual form of the 
rank function approach [37], GSPML is probably not suited 
to verification or analysis of protocols but should be used 
as a front-end for a protocol analysis tool as considered in 
Section 4.3 

Our third conclusion is that,  from a visual modeling point 
of view, the idea of a security protocol should be generalized 
to any form of interaction between security principals. The 
proposed notation should be security or protocol specific, 
rather than specialized to only cryptographic protocols. 

Our final conclusion regards the application of GSPML. 
Security protocol design and modeling is usually consid- 
ered a specialist responsibility, even by security specialists. 
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Thus security protocols are outside the expertise of a gen- 
eral software developer. Why then would we need a mod- 
eling language just for security protocols? There are three 
reasons: 1) security specialists benefit from visual modeling, 
as demonstrated by the visual components of the tools de- 
scribed in Section 4.3 above, 2) a visual presentation may 
be more useful to software developers who have to imple- 
ment the security protocol and thus serve as a bridge from 
security specialist to other developers, 3) many security pro- 
tocols fail because they are used in new or different environ- 
ments; GSPML models may reveal the impact of the new 
environment more clearly than a text-based model. This 
result is supported by the fact that  (non-security-protocol) 
security specialists at the New Security Paradigms Work- 
shop were able to identify protocol flaws in a few minutes, 
using GSPML after less than a 30 minute initial exposure 
to the language. 

Given that fact that  good well-defined visual languages 
are syntactic sugar for some text-based langauge we chose 
to use an existing semantics rather than define a new one. 
The essential GSPML diagramming approach is compatible 
with several forms of process algebra. That  is, the differ- 
ences in the various process algebras are not great enough to 
require substantially different diagrams. In our experience, 
we have used GSPML to visually depict security protocol 
models of both classical CSP and PEPA stochastic process 
algebra semantics. It  should be possible to use GSPML-like 
diagrams for CCS [31] or ACP [3, 1] semantics. 

Our future work on GSPML will include further prototyp- 
ing and application, to validate the syntax, semantics, and 
pragmatics (e.g. laconicity). We will also strive to improve 
the balance [41] between security protocol complexity and 
the complexity of visual models drawn in GSPML. 
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